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Summary. This article formalizes the proof of Dynkin’s lemma in measure theory.
Dynkin’s lemma is a useful tool in measure theory and probability theory: it helps frequently
to generalize a statement about all elements of a intersection-stable set system to all elements
of the sigma-field generated by that system.

MML Identifier: DYNKIN.

WWW: http://mizar.org/JFM/Vol12/dynkin.html

The articles [11], [3], [13], [5], [12], [9], [14], [1], [2], [4], [10], [6], [7], and [8] provide the notation
and terminology for this paper.

1. PRELIMINARIES

For simplicity, we use the following convention:O1, F are non empty sets,f is a sequence of
subsets ofO1, X, A, B are subsets ofO1, D is a non empty subset of 2O1, n, m are natural numbers,
andx, Y are sets.

The following propositions are true:

(1) For every sequencef of subsets ofO1 and for everyx holdsx∈ rng f iff there existsn such
that f (n) = x.

(2) For everyn holds PSegn is finite.

Let us considern. One can verify that PSegn is finite.
Let a, b, c be sets. The functora,b followed byc is defined as follows:

(Def. 1) a,b followed byc = (N 7−→ c)+·[0 7−→ a,1 7−→ b].

Let a, b, c be sets. One can check thata,b followed byc is function-like and relation-like.
Let X be a non empty set and leta, b, c be elements ofX. Thena,b followed byc is a function

from N into X.
Let O1 be a non empty set and leta, b, c be subsets ofO1. Thena,b followed byc is a sequence

of subsets ofO1.
One can prove the following two propositions:

(5)1 For all setsa, b, c holds(a,b followed byc)(0) = a and(a,b followed byc)(1) = b and
for everyn such thatn 6= 0 andn 6= 1 holds(a,b followed byc)(n) = c.

(6) For all subsetsa, b of O1 holds
⋃

rng(a,b followed by /0) = a∪b.

Let O1 be a non empty set, letf be a sequence of subsets ofO1, and letX be a subset ofO1.
The functor seqIntersection(X, f ) yields a sequence of subsets ofO1 and is defined as follows:

(Def. 2) For everyn holds(seqIntersection(X, f ))(n) = X∩ f (n).
1 The propositions (3) and (4) have been removed.
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2. DISJOINT-VALUED FUNCTIONS AND INTERSECTION

Let us considerO1 and let us considerf . Let us observe thatf is disjoint valued if and only if:

(Def. 3) If n < m, then f (n) missesf (m).

Next we state the proposition

(7) For every non empty setY and for everyx holdsx⊆
⋂

Y iff for every elementy of Y holds
x⊆ y.

Let x be a set. We introducex is intersection stable as a synonym ofx is multiplicative.
Let O1 be a non empty set, letf be a sequence of subsets ofO1, and letn be an element ofN.

The functor disjointify( f ,n) yielding an element of 2O1 is defined as follows:

(Def. 5)2 disjointify( f ,n) = f (n)\
⋃

rng( f �PSegn).

Let O1 be a non empty set and letg be a sequence of subsets ofO1. The functor disjointifyg
yields a sequence of subsets ofO1 and is defined by:

(Def. 6) For everyn holds(disjointifyg)(n) = disjointify(g,n).

We now state several propositions:

(8) For everyn holds(disjointify f )(n) = f (n)\
⋃

rng( f �PSegn).

(9) For every sequencef of subsets ofO1 holds disjointifyf is disjoint valued.

(10) For every sequencef of subsets ofO1 holds
⋃

rngdisjointify f =
⋃

rng f .

(11) For all subsetsx, y of O1 such thatx missesy holdsx,y followed by /0(O1) is disjoint valued.

(12) Let f be a sequence of subsets ofO1. Supposef is disjoint valued. LetX be a subset of
O1. Then seqIntersection(X, f ) is disjoint valued.

(13) For every sequencef of subsets ofO1 and for every subsetX of O1 holds X ∩
⋃

f =⋃
seqIntersection(X, f ).

3. DYNKIN SYSTEMS: DEFINITION AND CLOSUREPROPERTIES

Let us considerO1. A subset of 2O1 is called a Dynkin system ofO1 if:

(Def. 7) For everyf such that rngf ⊆ it and f is disjoint valued holds
⋃

f ∈ it and for everyX such
thatX ∈ it holdsXc ∈ it and /0 ∈ it.

Let us considerO1. Note that every Dynkin system ofO1 is non empty.
Next we state several propositions:

(14) 2O1 is a Dynkin system ofO1.

(15) If for everyY such thatY ∈ F holdsY is a Dynkin system ofO1, then
⋂

F is a Dynkin
system ofO1.

(16) If D is a Dynkin system ofO1 and intersection stable, then ifA ∈ D and B ∈ D, then
A\B∈ D.

(17) If D is a Dynkin system ofO1 and intersection stable, then ifA ∈ D and B ∈ D, then
A∪B∈ D.

(18) SupposeD is a Dynkin system ofO1 and intersection stable. Letx be a finite set. Ifx⊆D,
then

⋃
x∈ D.

2 The definition (Def. 4) has been removed.
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(19) SupposeD is a Dynkin system ofO1 and intersection stable. Letf be a sequence of subsets
of O1. If rng f ⊆ D, then rngdisjointifyf ⊆ D.

(20) SupposeD is a Dynkin system ofO1 and intersection stable. Letf be a sequence of subsets
of O1. If rng f ⊆ D, then

⋃
rng f ∈ D.

(21) For every Dynkin systemD of O1 and for all elementsx, y of D such thatx missesy holds
x∪y∈ D.

(22) For every Dynkin systemD of O1 and for all elementsx, y of D such thatx⊆ y holds
y\x∈ D.

4. MAIN STEPS FORDYNKIN ’ S LEMMA

Next we state the proposition

(23) If D is a Dynkin system ofO1 and intersection stable, thenD is aσ-field of subsets ofO1.

Let O1 be a non empty set and letE be a subset of 2O1. The functor GenDynSysE yielding a
Dynkin system ofO1 is defined as follows:

(Def. 8) E ⊆ GenDynSysE and for every Dynkin systemD of O1 such thatE ⊆ D holds
GenDynSysE ⊆ D.

Let O1 be a non empty set, letG be a set, and letX be a subset ofO1. The functor DynSys(X,G)
yielding a subset of 2O1 is defined by:

(Def. 9) For every subsetA of O1 holdsA∈ DynSys(X,G) iff A∩X ∈G.

Let O1 be a non empty set, letG be a Dynkin system ofO1, and letX be an element ofG. Then
DynSys(X,G) is a Dynkin system ofO1.

We now state four propositions:

(24) LetE be a subset of 2O1 andX, Y be subsets ofO1. If X ∈ E andY ∈GenDynSysE andE
is intersection stable, thenX∩Y ∈GenDynSysE.

(25) Let E be a subset of 2O1 and X, Y be subsets ofO1. If X ∈ GenDynSysE and Y ∈
GenDynSysE andE is intersection stable, thenX∩Y ∈GenDynSysE.

(26) For every subsetE of 2O1 such thatE is intersection stable holds GenDynSysE is intersec-
tion stable.

(27) LetE be a subset of 2O1. SupposeE is intersection stable. LetD be a Dynkin system of
O1. If E ⊆ D, thenσ(E)⊆ D.
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