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Summary. This article formalizes the proof of Dynkin's lemma in measure theory.
Dynkin’s lemma is a useful tool in measure theory and probability theory: it helps frequently
to generalize a statement about all elements of a intersection-stable set system to all elements
of the sigma-field generated by that system.

MML Identifier: DYNKIN.

WWW: http://mizar.org/JFM/Voll2/dynkin.html

The articles[[11],[[3],[13],[[5],[[1R],[[O].[14],[11],[[2].[[4],[10],[[6].[1¥], and [8] provide the notation
and terminology for this paper.

1. PRELIMINARIES

For simplicity, we use the following conventior®;, F are non empty setd, is a sequence of
subsets 001, X, A, B are subsets dDy, D is a non empty subset of2, n, mare natural numbers,
andx, Y are sets.

The following propositions are true:

(1) For every sequencieof subsets 00, and for every holdsx € rngf iff there existan such
that f(n) = x.

(2) For everyn holds PSeg is finite.

Let us considen. One can verify that PSegs finite.
Leta, b, c be sets. The functa, b followed byc is defined as follows:

(Def. 1) a,bfollowed byc= (N+— ¢)+:[0+— a,1+— b].

Leta, b, c be sets. One can check tlzab followed byc is function-like and relation-like.

Let X be a non empty set and letb, c be elements oK. Thena, b followed byc is a function
from N into X.

Let O1 be a non empty set and latb, c be subsets dD;. Thena, b followed byc is a sequence
of subsets 00;.

One can prove the following two propositions:

(SE] For all setsa, b, ¢ holds (a,b followed byc)(0) = a and (a, b followed byc)(1) = b and
for everyn such than # 0 andn # 1 holds(a, b followed byc)(n) = c.

(6) For all subsets, b of O; holds|Jrng(a, b followed by0) = aub.

Let O; be a non empty set, Idtbe a sequence of subsets@f, and letX be a subset oD;.
The functor seqIntersecti¢X, f) yields a sequence of subsets@fand is defined as follows:

(Def. 2) For evenyn holds(seqintersectiofX, f))(n) = XN f(n).

1 The propositions (3) and (4) have been removed.
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2. DISJOINTVALUED FUNCTIONS AND INTERSECTION

Let us conside®; and let us considef. Let us observe thdit is disjoint valued if and only if:
(Def. 3) If n< m, thenf(n) missesf(m).

Next we state the proposition

(7) For every non empty s&tand for everyx holdsx C Y iff for every elementy of Y holds
xCy.

Let x be a set. We introduceis intersection stable as a synonynmxaé multiplicative.
Let O; be a non empty set, Idtbe a sequence of subsets@f, and letn be an element aN.
The functor disjointify f,n) yielding an element of2 is defined as follows:

(Def. SE] disjointify(f,n) = f(n)\ Urng(f | PSeq).

Let O1 be a non empty set and Igtbe a sequence of subsets@f. The functor disjointifyg
yields a sequence of subseta®fand is defined by:

(Def. 6) For everyn holds(disjointify g)(n) = disjointify(g, n).
We now state several propositions:
(8) Foreveryn holds(disjointify f)(n) = f(n) \Urng(f[PSeq).
(9) For every sequenckof subsets 00; holds disjointifyf is disjoint valued.
(10) For every sequendeof subsets 001 holds|Jrngdisjointifyf = Jrngf.
(11) Forall subsets, y of O; such thak missesy holdsx, y followed by, is disjoint valued.

(12) Letf be a sequence of subsets@f. Supposef is disjoint valued. LeX be a subset of
O1. Then seqlntersectidK, f) is disjoint valued.

(13) For every sequenck of subsets 0f0; and for every subseX of O; holds XN f =
UseqlntersectiofX, f).

3. DYNKIN SYSTEMS. DEFINITION AND CLOSURE PROPERTIES

Let us consideD;. A subset of 21 is called a Dynkin system @, if:

(Def. 7) For everyf such that rnd C it and f is disjoint valued holdg) f € it and for everyX such
thatX e it holdsX® e itand0 € it.

Let us consideD;. Note that every Dynkin system @f; is non empty.
Next we state several propositions:

(14) 21 is a Dynkin system 00;.

(15) If for everyY such thaty € F holdsY is a Dynkin system oD;, thenF is a Dynkin
system 0fO;.

(16) If D is a Dynkin system of>; and intersection stable, thenAfe D andB € D, then
A\BeD.

(17) If D is a Dynkin system ofD; and intersection stable, thenAf< D andB € D, then
AUBeD.

(18) Suppos® is a Dynkin system oD1 and intersection stable. Lete a finite set. Ik C D,
thenJx € D.

2 The definition (Def. 4) has been removed.
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(19) Suppos® is a Dynkin system 0D®; and intersection stable. Létbe a sequence of subsets
of Oy. If rng f C D, then rngdisjointifyf C D.

(20) Suppos® is a Dynkin system oD; and intersection stable. Léthe a sequence of subsets
of O;. Ifrng f C D, thenJrngf € D.

(21) For every Dynkin syste of O, and for all elementg, y of D such thak missesy holds
xUy e D.

(22) For every Dynkin syster® of O; and for all elements, y of D such thatx C y holds
y\xeD.

4. MAIN STEPS FORDYNKIN’S LEMMA
Next we state the proposition
(23) If Dis a Dynkin system 00, and intersection stable, thé&nis ac-field of subsets 00;.

Let O; be a non empty set and IEtbe a subset of 2. The functor GenDynSyE yielding a
Dynkin system ofO; is defined as follows:

(Def. 8) E C GenDynSy& and for every Dynkin systenD of O; such thatE C D holds
GenDynSy& C D.

Let O1 be a non empty set, I& be a set, and le{ be a subset dD;. The functor DynSyX, G)
yielding a subset of2 is defined by:

(Def. 9) For every subseét of O; holdsA € DynSygX,G) iff AnNX € G.

Let O; be a non empty set, I& be a Dynkin system dD1, and letX be an element d&. Then
DynSy<X,G) is a Dynkin system 00;.
We now state four propositions:

(24) LetE be a subset 0f2 andX, Y be subsets dD;. If X € E andY € GenDynSy& andE
is intersection stable, thexinY € GenDynSy£.

(25) LetE be a subset of 2 and X, Y be subsets 0D;. If X € GenDynSy& andY e
GenDynSy& andE is intersection stable, theXinY € GenDynSy&.

(26) For every subsd of 2°1 such tha€ is intersection stable holds GenDyn$yis intersec-
tion stable.

(27) LetE be a subset of 2. SupposeE is intersection stable. L& be a Dynkin system of
Os. If EC D, theno(E) CD.
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