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Summary. The continuation of the sequence of articles on trees ($e€ [2].13].14], [5])
and on context-free grammars ([13]). We define the set of complete parse trees for a given
context-free grammar. Next we define the scheme of induction for the set and the scheme of
defining functions by induction on the set. For each symbol of a context-free grammar we
define the terminal, the pretraversal, and the posttraversal languages. The introduced termi-
nology is tested on the example of Peano naturals.

MML Identifier: DTCONSTR.
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The articles[[1F],[[10],[[21],[[19],[1],[123],[122] [ [8] [[9] .[6],[[12],[1T4] [[18] [[15], [16] 7]/ [20],
[13], [2], [3], [4], [5], and [11] provide the notation and terminology for this paper.

1. PRELIMINARIES

The following propositions are true:

(1) For every non empty sé@ holds every finite sequence of elements of FinT{Bgds a
finite sequence of elements of TréBs.

(2) For all set, y and for every finite sequengeof elements ok such thaty € domp holds
p(y) € x.

Let X be a set. Observe that every elemenXbfis relation-like and function-like.
Let X be a set. Observe that every elemenXbfs finite sequence-like.
Let D be a non empty set and lebe an element of FinTre@3). Note that donhis finite.

Let D be a non empty set and [€tbe a set of trees decorated with element®ofNote that
every finite sequence of elementsTofs decorated tree yielding.

Let D be a non empty set, |& be a non empty set of trees decorated with elemeni ahd
let T; be a non empty subset Bf We see that the element ©f is an element oF .

Let p be a finite sequence. Let us assume thé decorated tree yielding. The roots pf
constitute a finite sequence defined by the conditions (Def. 1).

(Def. 1)(i) dom(the roots op) = domp, and

(i)  for every natural number such that € domp there exists a decorated tréesuch that
T = p(i) and (the roots op)(i) = T(0).

1This work was partially supported by NSERC Grant OGP9207 while the first author visited University
of Alberta, May—June 1993.
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Let D be a non empty set, |8t be a set of trees decorated with element®pénd letp be a
finite sequence of elements Bf Then the roots op is a finite sequence of elementsf
We now state four propositions:

(3) Theroots ofd = 0.
(4) For every decorated trdeholds the roots ofT) = (T(0)).

(5) LetD be a non empty sef; be a subset of FinTre@3), and p be a finite sequence of
elements oF. Suppose len (the roots pj = 1. Then there exists an elemectf FinTreegD)
such thatp = (x) andx € F.

(6) For all decorated treés, T3 holds the roots ofT,, T3) = (T2(0), T3(0)).

Let f be a function. The functor p(f) yields a function and is defined by:
(Def. 2) domprlf)=domf and for every set such tha € domf holds pri f)(x) = f(x);.
The functor pr2f) yielding a function is defined as follows:
(Def. 3) dompr2f)=domf and for every set such tha € domf holds prZ f)(x) = f(x)2.

Let X, Y be sets and lef be a finite sequence of elements[.of, Y]. Then prlf) is a finite
sequence of elements ¥f Then prZf) is a finite sequence of elementsYof
Next we state the proposition

(7) prl0)=0and pr20) =0.

The scheméMonoSetSedeals with a functior, a setB, and a binary functorf yielding a
set, and states that:
For all natural numberk, sholds4(k) C 4(k+5s)
provided the parameters satisfy the following condition:
e For every natural numberholds4(n+1) = 4(n)U F(n,4(n)).

2. THE SET OF PARSE TREES

Let A be a non empty set and IBtbe a relation betweef andA*. Note that(A, R) is non empty.
Now we present two schemes. The sché€onstrStrExdeals with a non empty set and a
binary predicate?, and states that:
There exists a strict non empty tree construction strucdusach that
(i) the carrier ofG = 4, and
(i) for every symbolx of G and for every finite sequengeof elements of the
carrier ofG holdsx = piff P[x, p|
for all values of the parameters.
The schem®TConstrStrUnigdeals with a non empty sgt and a binary predicat®, and states
that:
Let G1, Gy be strict non empty tree construction structures. Suppose that
(i) the carrier ofG; = 4,
(i)  for every symbolx of G; and for every finite sequengeof elements of the
carrier of Gy holdsx = piff P[x, p|,
(iii)  the carrier of G, = 4, and
(iv) for every symbolx of G, and for every finite sequengeof elements of the
carrier of Gy holdsx = piff P[x, pl.
ThenGl = Gz
for all values of the parameters.
We now state the proposition

(8) For every non empty tree construction struct@diolds the terminals o6& misses the
nonterminals ofG.
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Now we present four schemes. The sch@i€Min deals with a functiom, a non empty tree
construction structur&, a non empty set’, a unary functor# yielding an element of”, and a
ternary functorg yielding an element of’, and states that:

There exists a subsktof FinTreeg|: the carrier ofB, C ) such that

i XxX=U4,

(i) for every symbold of B such thad < the terminals ofB holds the root tree
of (d, F(d)) € X,
(iii)  for every symbolo of B and for every finite sequenge of elements ofX
such thab = prl(the roots ofp) holds{o, G (o, prl(the roots ofp), pr2(the roots of
p)))-tregp) € X, and

(iv) for every subsef of FinTreeg[the carrier ofB, C]) such that for every
symbold of B such thad € the terminals ofB holds the root tree ofd, 7 (d)) €
F and for every symbob of B and for every finite sequenge of elements ofF
such thab = prl(the roots ofp) holds{o, G (o, prl(the roots ofp), pr2(the roots of
p)))-tregp) € F holdsX CF

provided the parameters meet the following conditions:

e domAa =N,

e A4(0) = {the root tree oft, d); t ranges over symbols @&,d ranges over elements

of C:tetheterminalsofB A d=%(t) Vt=0A d= G(t,0,0)}, and

e Let n be a natural number. TheA(n+ 1) = A(n) U {(o, G(o,pri(the roots of

p), pr2(the roots ofp)))-treg p); o ranges over symbols &, p ranges over elements

of ﬂ(n)*: VQ:finite sequence of elements BinTreeg[.the carrier of B, C1) (p =qA 0= prl(the
roots ofq))}.

The schem®TCSymbolsleals with a functiord, a non empty tree construction structiea
non empty set’, a unary functorf yielding an element of”, and a ternary functog yielding an
element ofC, and states that:

There exists a subskj of FinTreegthe carrier ofB) such that

(i) Xy ={t1;t ranges over elements of FinTrégthe carrier ofB, C]): t € | 4},
(ii) for every symbold of B such thad < the terminals ofB holds the root tree
ofd € Xy,
(i) for every symbolo of B and for every finite sequengeof elements ofX;
such thab = the roots ofp holdso-tregp) € X3, and
(iv) for every subseF of FinTreegthe carrier ofB) such that for every symbol
d of B such thatd € the terminals ofB holds the root tree ofl € F and for every
symbolo of B and for every finite sequengeof elements of such that = the
roots ofp holdso-treg(p) € F holdsX; C F

provided the parameters meet the following conditions:

e domAa =N,

e A4(0) = {the root tree oft, d); t ranges over symbols @&,d ranges over elements

of C:tetheterminalsofB A d=7(t) Vt=0A d= G(t,0,0)}, and

e Let n be a natural number. ThefAi(n+ 1) = A4(n) U {(o, G(o,pri(the roots of

p), pr2(the roots ofp)))-treg p); o ranges over symbols &, p ranges over elements

of le(n)*: Vq:finite sequence of elements BinTreeg[.the carrier of B, C1) (p =0 AN 0= prl(the
roots ofq))}.

The schem®TCHeightdeals with a functiord, a non empty tree construction structuea

non empty set’, a unary functorf yielding an element of”, and a ternary functog yielding an
element ofC, and states that:

Let n be a natural number artt be an element of FinTrefghe carrier ofB, C1).
If d; € JA4, thend; € 4(n) iff heightdomd; <n
provided the parameters meet the following requirements:

e domAa =N,

e 4(0) = {the root tree oft, d); t ranges over symbols @,d ranges over elements
of C:tetheterminalsofB A d=F(t) Vt=0A d=G(t,0,0)}, and

e Let n be a natural number. TheA(n+ 1) = A4(n) U {{o, G(o,pri(the roots of
p),pr2(the roots ofp)))-treq p); o ranges over symbols &, p ranges over elements
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of ﬂ(n)*: VQ:finite sequence of elements BinTreeg[.the carrier of B, C1) (p =g ANO0= prl(the
roots ofq))}.

The schem@TCUniqdeals with a functionq, a non empty tree construction structube a
non empty set’, a unary functorf yielding an element of”, and a ternary functog yielding an
element ofC, and states that:

Letd,, d; be trees decorated with elementd; tie carrier ofB, CJ. If d; € U4 and
d; € U4 and(dy)1 = (d3)1, thend, = d3
provided the following conditions are satisfied:

e domAa =N,

e 4(0) = {the root tree oft, d); t ranges over symbols @,d ranges over elements

of C:tetheterminalsofB A d=%(t) Vt=0A d=G(t,0,0)}, and

e Let n be a natural number. TheA(n+ 1) = A4(n) U {{o, G(o,pri(the roots of

p), pr2(the roots ofp)))-treq p); o ranges over symbols &, p ranges over elements

of ﬂ(n)*: \/q:finite sequence of elements BfnTreeg|:the carrier of B, C) (p =qAO0= prl(the
roots ofq))}.

Let G be a non empty tree construction structure. The funct¢G] Sields a subset of FinTre@be
carrier ofG) and is defined by the conditions (Def. 4).

(Def. 4)()) For every symbotl of G such thatd € the terminals ofG holds the root tree ofl €
TS(G),

(i) for every symbolo of G and for every finite sequengeof elements of T85) such that
0 = the roots ofp holdso-treg p) € TS(G), and

(iiiy  for every subsef of FinTreegthe carrier ofG) such that for every symbal of G such
thatd € the terminals ofG holds the root tree ofl € F and for every symbab of G and for

every finite sequencp of elements of such thato = the roots ofp holdso-tregp) € F
holds TSG) CF.

Now we present three schemes. The schBfi€onstrinddeals with a non empty tree construc-
tion structureq and a unary predicatg, and states that:
For every tre¢ decorated with elements of the carriecdsuch that € TS(4) holds
Plt]
provided the following conditions are satisfied:
e For every symbos of 4 such thas € the terminals 0f2 holdsP[the root tree of],
and
e Letn; be a symbol 0of2 andt; be a finite sequence of elements of(H3. Suppose
that
(i) ny=theroots oty, and

(i) for every treet decorated with elements of the carrier®tuch that € rngt;
holdsP]t].

Then®[n;-tregty)].

The schem®TConstrindDefleals with a non empty tree construction structdre non empty
setB, a unary functorf yielding an element of3, and a ternary functog yielding an element of
‘B, and states that:

There exists a functiofi from TS(4) into B such that
(i) for every symbot of 4 such that € the terminals of2 holds f (the root tree
oft) = F(t), and
(i) forevery symboin; of 4 and for every finite sequentgof elements of T82)
such than; = the roots of; holds f (n;-tregt1)) = G(m,the roots oty, f-t1)
for all values of the parameters.

The scheméDTConstrUnigDefdeals with a non empty tree construction structdrea non
empty setB, a unary functor¥ yielding an element of3, a ternary functor; yielding an element
of B, and functiong”, D from TS(A4) into B, and states that:

C=97
provided the following conditions are met:

e (i) Forevery symbot of 4 such that € the terminals 0f2 holds C(the root tree

oft) = ¥ (t), and
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(i) for every symboln; of 4 and for every finite sequenteof elements of T84)
such than; = the roots ot; holdsC(n;-tregt;)) = G(n1,the roots oty, C-t1),
and
e (i) Foreverysymbot of 4 such that € the terminals of2 holdsD(the root tree
oft) = ¥ (t), and
(i) for every symboin; of 4 and for every finite sequentgeof elements of T84)
such than; = the roots of; holdsD(m-treglt;)) = G(ny,the roots oty, D-t1).

3. AN EXAMPLE: PEANO NATURALS

The strict non empty tree construction structiganois defined by the conditions (Def. 5).
(Def.5)(i) The carrier oNpeane= {0,1}, and

(i)  for every symbolx of Npeanoand for every finite sequengeof elements of the carrier of
Npeanoholdsx =y iff x=1 buty = (0) ory = (1).

4. PROPERTIES OF PARSE TREES

Let G be a non empty tree construction structure. We say@Hzs terminals if and only if:
(Def. 6) The terminals o6 # 0.

We say thats has nonterminals if and only if:
(Def. 7) The nonterminals d& # 0.

We say thaG has useful nonterminals if and only if the condition (Def. 8) is satisfied.

(Def. 8) Letn; be a symbol ofc. Supposen € the nonterminals o6. Then there exists a finite
sequence of elements of T85) such than; = the roots ofp.

Let us note that there exists a non empty tree construction structure which is strict and has
terminals, nonterminals, and useful nonterminals.

Let G be a non empty tree construction structure with terminals. Then the termin@léscd
non empty subset @d. Observe that T&3) is non empty.

Let G be a non empty tree construction structure with useful nonterminals. Note tt@j S
non empty.

Let G be a non empty tree construction structure with nonterminals. Then the nonterminals of
Gis a non empty subset &.

Let G be a non empty tree construction structure with terminals. A termin@liefan element
of the terminals of5.

Let G be a non empty tree construction structure with nonterminals. A nontermitaioan
element of the nonterminals &.

Let G be a non empty tree construction structure with nonterminals and useful nonterminals and
letn; be a nonterminal dB. A finite sequence of elements of ) is said to be a subtree sequence
joinable byn; if:

(Def. 9) n; = theroots of it.

Let G be a non empty tree construction structure with terminals andbeta terminal ofG.
Then the root tree dfis an element of T&).

Let G be a non empty tree construction structure with nonterminals and useful nonterminals, let
n; be a nonterminal o6, and letp be a subtree sequence joinablerly Thenn;-treg(p) is an
element of TSG).

We now state two propositions:

(9) LetGbe a non empty tree construction structure with terminatse an element of T$),
andsbe a terminal of3. If t,(0) = s, thent, = the root tree os.

(10) LetG be a non empty tree construction structure with terminals and nonterntinlaésan
element of T$G), andn; be a nonterminal o65. Supposé;(0) = n;. Then there exists a
finite sequence of elements of T85) such that, = nj-tregt;) andn; = the roots of;.
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5. THE EXAMPLE CONTINUED

Let us note thaNpeanchas terminals, nonterminals, and useful nonterminals.

Let n; be a nonterminal oNpeanoand lett be an element of T®peang. Thenn;-tregt) is an
element of TNpeang-

Let x be a finite sequence of elementsNof Let us assume that# 0. The functor(x)(1+1)
yielding a natural number is defined as follows:

(Def. 10) There exists a natural numiesuch tha(x)(;+1) = n+1 andx(1) = n.
The functionNpeano— N from TS(Npeang into N is defined by the conditions (Def. 11).

(Def. 11)(i) For every symbdlof Npeganosuch that € the terminals oNpeancholds(Npeano— N)(the
root tree oft) = 0, and

(i) for every symboln; of Npeanoand for every finite sequentgof elements of T8@Npeang
such than; = the roots ot; holds(Npeano— N)(ni-tre€t1)) = ((Npeano— N) -t1)(1+1).

Let x be an element of Ti®peang. The functor sucx) yields an element of T®peang and is
defined by:

(Def. 12) suc€x) = 1-treg(x)).
The functionN — Npeanoffom N into TS(Npeang is defined as follows:

(Def. 13) (N — Npeang(0) = the root tree of 0 and for every natural numberholds (N —
Npeand (n+1) = sucg(N — Npeang (N))-

The following propositions are true:

(11) For every elemeng; of TS(Npeang holdspi = (N — Npeand (Npeano— N)(p1)).
(12) For every natural numberholdsn = (Npeano— N)((N — Npeang(n)).

6. TREE TRAVERSALS AND TERMINAL LANGUAGE

Let D be a set and €t be a finite sequence of elementsf. The functor FlatF) yielding an
element oD* is defined as follows:

(Def. 14) There exists a binary operatigron D* such that for all elementp, g of D* holdsg(p,
g)=p~gandFlatF) =g&oF.

One can prove the following proposition
(13) For every seb and for every elemertt of D* holds Flat(d)) = d.

Let G be a non empty tree construction structure antblbe a tree decorated with elements of
the carrier ofG. Let us assume that € TS(G). The terminals of; constitute a finite sequence of
elements of the terminals & defined by the condition (Def. 15).

(Def. 15) There exists a functiohfrom TS(G) into (the terminals o6)* such that

(i) the terminals of; = f(t2),

(i) for every symbolt of G such that € the terminals ofs holds f (the root tree of) = (t),
and

(i)  for every symboln; of G and for every finite sequentgof elements of T85) such that
ni = the roots oty holds f (n;-treg(t;)) = Flat(f -t1).

The pretraversal string ¢f is a finite sequence of elements of the carrieGatnd is defined by the
condition (Def. 16).
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(Def. 16) There exists a functiohfrom TS(G) into (the carrier ofG)* such that
(i) the pretraversal string @ = f(t2),

(i) for every symbol of G such that € the terminals ofc holds f (the root tree of) = (t),
and

(iii)  for every symboln; of G and for every finite sequendg of elements of T85) and for
every finite sequenag such that; = the roots ot; andn; = r1 and for every finite sequence
x of elements of (the carrier @)* such thak = f -t; holds f (ni-tre€t;)) = (n1) ~ Flat(x).

The posttraversal string ¢f is a finite sequence of elements of the carrieGadnd is defined by
the condition (Def. 17).
(Def. 17) There exists a functiohfrom TS(G) into (the carrier ofG)* such that
(i) the posttraversal string ¢f = f(t2),

(i) for every symbolt of G such that € the terminals of holds f (the root tree of) = (t),
and

(i)  for every symboln; of G and for every finite sequende of elements of T85) and for
every finite sequenag such that; = the roots ot; andn; = r; and for every finite sequence
x of elements of (the carrier &)* such thak = f -t; holds f (n1-treg(t;)) = Flat(x) ~ (ny).

Let G be a non empty non empty tree construction structure with nonterminals amddeta
symbol of G. The language derivable from is a subset of (the terminals &)* and is defined by
the condition (Def. 18).

(Def. 18) The language derivable from = {the terminals ofty; t, ranges over elements of
FinTreegthe carrier ofG): t; € TS(G) A t2(0) = ny}.
The language of pretraversals derivable frogmis a subset of (the carrier &)* and is defined by
the condition (Def. 19).

(Def. 19) The language of pretraversals derivable frama= {the pretraversal string af; t, ranges
over elements of FinTreéhe carrier ofG): t; € TS(G) A t2(0) = ny}.

The language of posttraversals derivable fronis a subset of (the carrier &)* and is defined by
the condition (Def. 20).

(Def. 20) The language of posttraversals derivable fmars {the posttraversal string ¢f; t, ranges
over elements of FinTreéhe carrier ofG): t; € TS(G) A t2(0) = ny}.

Next we state several propositions:

(14) For every tre¢ decorated with elements of the carrieNgeanosuch that € TS(Npeang
holds the terminals df= (0).

(15) For every symbah; of Npeanoholds the language derivable fram = {(0)}.
(16) For every elemerit of TS(Npeang holds the pretraversal string of= (heightdont —
1)~ (0).
(17) Letn; be a symbol oNpeane Then
(i) if np =0, then the language of pretraversals derivable frara- {(0)}, and
(i) if np =1, then the language of pretraversals derivable frara- {(n+— 1)~ (0); n ranges
over natural numbersi # 0}.
(18) For every elemeniof TS(Npeang holds the posttraversal stringtof (0) ~ (heightdom —
1).
(19) Letn; be a symbol oNpeane Then
(i) if np =0, then the language of posttraversals derivable fmgrs {(0)}, and

(i) if np =1, then the language of posttraversals derivable frgr {(0) ™ (n+— 1); nranges
over natural numbersi # 0}.
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