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Summary. The continuation of the sequence of articles on trees (see [2], [3], [4], [5])
and on context-free grammars ([13]). We define the set of complete parse trees for a given
context-free grammar. Next we define the scheme of induction for the set and the scheme of
defining functions by induction on the set. For each symbol of a context-free grammar we
define the terminal, the pretraversal, and the posttraversal languages. The introduced termi-
nology is tested on the example of Peano naturals.
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The articles [17], [10], [21], [19], [1], [23], [22], [8], [9], [6], [12], [14], [18], [15], [16], [7], [20],
[13], [2], [3], [4], [5], and [11] provide the notation and terminology for this paper.

1. PRELIMINARIES

The following propositions are true:

(1) For every non empty setD holds every finite sequence of elements of FinTrees(D) is a
finite sequence of elements of Trees(D).

(2) For all setsx, y and for every finite sequencep of elements ofx such thaty∈ domp holds
p(y) ∈ x.

Let X be a set. Observe that every element ofX∗ is relation-like and function-like.
Let X be a set. Observe that every element ofX∗ is finite sequence-like.
Let D be a non empty set and lett be an element of FinTrees(D). Note that domt is finite.
Let D be a non empty set and letT be a set of trees decorated with elements ofD. Note that

every finite sequence of elements ofT is decorated tree yielding.
Let D be a non empty set, letF be a non empty set of trees decorated with elements ofD, and

let T1 be a non empty subset ofF . We see that the element ofT1 is an element ofF .
Let p be a finite sequence. Let us assume thatp is decorated tree yielding. The roots ofp

constitute a finite sequence defined by the conditions (Def. 1).

(Def. 1)(i) dom(the roots ofp) = domp, and

(ii) for every natural numberi such thati ∈ domp there exists a decorated treeT such that
T = p(i) and (the roots ofp)(i) = T( /0).

1This work was partially supported by NSERC Grant OGP9207 while the first author visited University
of Alberta, May–June 1993.
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Let D be a non empty set, letT be a set of trees decorated with elements ofD, and letp be a
finite sequence of elements ofT. Then the roots ofp is a finite sequence of elements ofD.

We now state four propositions:

(3) The roots of/0 = /0.

(4) For every decorated treeT holds the roots of〈T〉= 〈T( /0)〉.

(5) Let D be a non empty set,F be a subset of FinTrees(D), and p be a finite sequence of
elements ofF . Suppose len(the roots ofp) = 1. Then there exists an elementx of FinTrees(D)
such thatp = 〈x〉 andx∈ F.

(6) For all decorated treesT2, T3 holds the roots of〈T2,T3〉= 〈T2( /0),T3( /0)〉.

Let f be a function. The functor pr1( f ) yields a function and is defined by:

(Def. 2) dompr1( f ) = dom f and for every setx such thatx∈ dom f holds pr1( f )(x) = f (x)1.

The functor pr2( f ) yielding a function is defined as follows:

(Def. 3) dompr2( f ) = dom f and for every setx such thatx∈ dom f holds pr2( f )(x) = f (x)2.

Let X, Y be sets and letf be a finite sequence of elements of[:X, Y :]. Then pr1( f ) is a finite
sequence of elements ofX. Then pr2( f ) is a finite sequence of elements ofY.

Next we state the proposition

(7) pr1( /0) = /0 and pr2( /0) = /0.

The schemeMonoSetSeqdeals with a functionA , a setB, and a binary functorF yielding a
set, and states that:

For all natural numbersk, s holdsA(k)⊆ A(k+s)
provided the parameters satisfy the following condition:

• For every natural numbern holdsA(n+1) = A(n)∪F (n,A(n)).

2. THE SET OF PARSE TREES

Let A be a non empty set and letRbe a relation betweenA andA∗. Note that〈A,R〉 is non empty.
Now we present two schemes. The schemeDTConstrStrExdeals with a non empty setA and a

binary predicateP , and states that:
There exists a strict non empty tree construction structureG such that

(i) the carrier ofG = A , and
(ii) for every symbolx of G and for every finite sequencep of elements of the

carrier ofG holdsx⇒ p iff P [x, p]
for all values of the parameters.

The schemeDTConstrStrUniqdeals with a non empty setA and a binary predicateP , and states
that:

Let G1, G2 be strict non empty tree construction structures. Suppose that
(i) the carrier ofG1 = A ,

(ii) for every symbolx of G1 and for every finite sequencep of elements of the
carrier ofG1 holdsx⇒ p iff P [x, p],
(iii) the carrier ofG2 = A , and
(iv) for every symbolx of G2 and for every finite sequencep of elements of the
carrier ofG2 holdsx⇒ p iff P [x, p].

ThenG1 = G2

for all values of the parameters.
We now state the proposition

(8) For every non empty tree construction structureG holds the terminals ofG misses the
nonterminals ofG.
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Now we present four schemes. The schemeDTCMin deals with a functionA , a non empty tree
construction structureB, a non empty setC , a unary functorF yielding an element ofC , and a
ternary functorG yielding an element ofC , and states that:

There exists a subsetX of FinTrees([: the carrier ofB, C :]) such that
(i) X =

⋃
A ,

(ii) for every symbold of B such thatd ∈ the terminals ofB holds the root tree
of 〈〈d, F (d)〉〉 ∈ X,
(iii) for every symbolo of B and for every finite sequencep of elements ofX
such thato⇒ pr1(the roots ofp) holds〈〈o, G(o,pr1(the roots ofp),pr2(the roots of
p))〉〉-tree(p) ∈ X, and
(iv) for every subsetF of FinTrees([: the carrier ofB, C :]) such that for every
symbold of B such thatd ∈ the terminals ofB holds the root tree of〈〈d, F (d)〉〉 ∈
F and for every symbolo of B and for every finite sequencep of elements ofF
such thato⇒ pr1(the roots ofp) holds〈〈o, G(o,pr1(the roots ofp),pr2(the roots of
p))〉〉-tree(p) ∈ F holdsX ⊆ F

provided the parameters meet the following conditions:
• domA = N,
• A(0) = {the root tree of〈〈t, d〉〉; t ranges over symbols ofB,d ranges over elements

of C : t ∈ the terminals ofB ∧ d = F (t) ∨ t ⇒ /0 ∧ d = G(t, /0, /0)}, and
• Let n be a natural number. ThenA(n+ 1) = A(n) ∪ {〈〈o, G(o,pr1(the roots of

p),pr2(the roots ofp))〉〉-tree(p);o ranges over symbols ofB, p ranges over elements
of A(n)∗:

∨
q:finite sequence of elements ofFinTrees([: the carrier ofB,C :]) (p = q ∧ o⇒ pr1(the

roots ofq))}.
The schemeDTCSymbolsdeals with a functionA , a non empty tree construction structureB, a

non empty setC , a unary functorF yielding an element ofC , and a ternary functorG yielding an
element ofC , and states that:

There exists a subsetX1 of FinTrees(the carrier ofB) such that
(i) X1 = {t1; t ranges over elements of FinTrees([: the carrier ofB, C :]): t ∈

⋃
A},

(ii) for every symbold of B such thatd ∈ the terminals ofB holds the root tree
of d ∈ X1,
(iii) for every symbolo of B and for every finite sequencep of elements ofX1

such thato⇒ the roots ofp holdso-tree(p) ∈ X1, and
(iv) for every subsetF of FinTrees(the carrier ofB) such that for every symbol
d of B such thatd ∈ the terminals ofB holds the root tree ofd ∈ F and for every
symbolo of B and for every finite sequencep of elements ofF such thato⇒ the
roots ofp holdso-tree(p) ∈ F holdsX1 ⊆ F

provided the parameters meet the following conditions:
• domA = N,
• A(0) = {the root tree of〈〈t, d〉〉; t ranges over symbols ofB,d ranges over elements

of C : t ∈ the terminals ofB ∧ d = F (t) ∨ t ⇒ /0 ∧ d = G(t, /0, /0)}, and
• Let n be a natural number. ThenA(n+ 1) = A(n) ∪ {〈〈o, G(o,pr1(the roots of

p),pr2(the roots ofp))〉〉-tree(p);o ranges over symbols ofB, p ranges over elements
of A(n)∗:

∨
q:finite sequence of elements ofFinTrees([: the carrier ofB,C :]) (p = q ∧ o⇒ pr1(the

roots ofq))}.
The schemeDTCHeightdeals with a functionA , a non empty tree construction structureB, a

non empty setC , a unary functorF yielding an element ofC , and a ternary functorG yielding an
element ofC , and states that:

Let n be a natural number andd1 be an element of FinTrees([: the carrier ofB, C :]).
If d1 ∈

⋃
A , thend1 ∈ A(n) iff heightdomd1 ≤ n

provided the parameters meet the following requirements:
• domA = N,
• A(0) = {the root tree of〈〈t, d〉〉; t ranges over symbols ofB,d ranges over elements

of C : t ∈ the terminals ofB ∧ d = F (t) ∨ t ⇒ /0 ∧ d = G(t, /0, /0)}, and
• Let n be a natural number. ThenA(n+ 1) = A(n) ∪ {〈〈o, G(o,pr1(the roots of

p),pr2(the roots ofp))〉〉-tree(p);o ranges over symbols ofB, p ranges over elements
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of A(n)∗:
∨

q:finite sequence of elements ofFinTrees([: the carrier ofB,C :]) (p = q ∧ o⇒ pr1(the
roots ofq))}.

The schemeDTCUniq deals with a functionA , a non empty tree construction structureB, a
non empty setC , a unary functorF yielding an element ofC , and a ternary functorG yielding an
element ofC , and states that:

Let d2, d3 be trees decorated with elements of[: the carrier ofB, C :]. If d2 ∈
⋃

A and
d3 ∈

⋃
A and(d2)1 = (d3)1, thend2 = d3

provided the following conditions are satisfied:
• domA = N,
• A(0) = {the root tree of〈〈t, d〉〉; t ranges over symbols ofB,d ranges over elements

of C : t ∈ the terminals ofB ∧ d = F (t) ∨ t ⇒ /0 ∧ d = G(t, /0, /0)}, and
• Let n be a natural number. ThenA(n+ 1) = A(n) ∪ {〈〈o, G(o,pr1(the roots of

p),pr2(the roots ofp))〉〉-tree(p);o ranges over symbols ofB, p ranges over elements
of A(n)∗:

∨
q:finite sequence of elements ofFinTrees([: the carrier ofB,C :]) (p = q ∧ o⇒ pr1(the

roots ofq))}.
LetGbe a non empty tree construction structure. The functor TS(G) yields a subset of FinTrees(the

carrier ofG) and is defined by the conditions (Def. 4).

(Def. 4)(i) For every symbold of G such thatd ∈ the terminals ofG holds the root tree ofd ∈
TS(G),

(ii) for every symbolo of G and for every finite sequencep of elements of TS(G) such that
o⇒ the roots ofp holdso-tree(p) ∈ TS(G), and

(iii) for every subsetF of FinTrees(the carrier ofG) such that for every symbold of G such
thatd ∈ the terminals ofG holds the root tree ofd ∈ F and for every symbolo of G and for
every finite sequencep of elements ofF such thato⇒ the roots ofp holdso-tree(p) ∈ F
holds TS(G)⊆ F.

Now we present three schemes. The schemeDTConstrInddeals with a non empty tree construc-
tion structureA and a unary predicateP , and states that:

For every treet decorated with elements of the carrier ofA such thatt ∈ TS(A) holds
P [t]

provided the following conditions are satisfied:
• For every symbols of A such thats∈ the terminals ofA holdsP [the root tree ofs],

and
• Let n1 be a symbol ofA andt1 be a finite sequence of elements of TS(A). Suppose

that
(i) n1 ⇒ the roots oft1, and

(ii) for every treet decorated with elements of the carrier ofA such thatt ∈ rngt1
holdsP [t].

ThenP [n1-tree(t1)].
The schemeDTConstrIndDefdeals with a non empty tree construction structureA , a non empty

setB, a unary functorF yielding an element ofB, and a ternary functorG yielding an element of
B, and states that:

There exists a functionf from TS(A) into B such that
(i) for every symbolt of A such thatt ∈ the terminals ofA holds f (the root tree

of t) = F (t), and
(ii) for every symboln1 of A and for every finite sequencet1 of elements of TS(A)

such thatn1 ⇒ the roots oft1 holds f (n1-tree(t1)) = G(n1, the roots oft1, f · t1)
for all values of the parameters.

The schemeDTConstrUniqDefdeals with a non empty tree construction structureA , a non
empty setB, a unary functorF yielding an element ofB, a ternary functorG yielding an element
of B, and functionsC , D from TS(A) into B, and states that:

C = D
provided the following conditions are met:

• (i) For every symbolt of A such thatt ∈ the terminals ofA holdsC (the root tree
of t) = F (t), and
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(ii) for every symboln1 of A and for every finite sequencet1 of elements of TS(A)
such thatn1 ⇒ the roots oft1 holdsC (n1-tree(t1)) = G(n1, the roots oft1, C · t1),

and
• (i) For every symbolt of A such thatt ∈ the terminals ofA holdsD(the root tree

of t) = F (t), and
(ii) for every symboln1 of A and for every finite sequencet1 of elements of TS(A)

such thatn1 ⇒ the roots oft1 holdsD(n1-tree(t1)) = G(n1, the roots oft1, D · t1).

3. AN EXAMPLE: PEANO NATURALS

The strict non empty tree construction structureNPeanois defined by the conditions (Def. 5).

(Def. 5)(i) The carrier ofNPeano= {0,1}, and

(ii) for every symbolx of NPeanoand for every finite sequencey of elements of the carrier of
NPeanoholdsx⇒ y iff x = 1 buty = 〈0〉 or y = 〈1〉.

4. PROPERTIES OF PARSE TREES

Let G be a non empty tree construction structure. We say thatG has terminals if and only if:

(Def. 6) The terminals ofG 6= /0.

We say thatG has nonterminals if and only if:

(Def. 7) The nonterminals ofG 6= /0.

We say thatG has useful nonterminals if and only if the condition (Def. 8) is satisfied.

(Def. 8) Letn1 be a symbol ofG. Supposen1 ∈ the nonterminals ofG. Then there exists a finite
sequencep of elements of TS(G) such thatn1 ⇒ the roots ofp.

Let us note that there exists a non empty tree construction structure which is strict and has
terminals, nonterminals, and useful nonterminals.

Let G be a non empty tree construction structure with terminals. Then the terminals ofG is a
non empty subset ofG. Observe that TS(G) is non empty.

Let G be a non empty tree construction structure with useful nonterminals. Note that TS(G) is
non empty.

Let G be a non empty tree construction structure with nonterminals. Then the nonterminals of
G is a non empty subset ofG.

Let G be a non empty tree construction structure with terminals. A terminal ofG is an element
of the terminals ofG.

Let G be a non empty tree construction structure with nonterminals. A nonterminal ofG is an
element of the nonterminals ofG.

Let G be a non empty tree construction structure with nonterminals and useful nonterminals and
let n1 be a nonterminal ofG. A finite sequence of elements of TS(G) is said to be a subtree sequence
joinable byn1 if:

(Def. 9) n1 ⇒ the roots of it.

Let G be a non empty tree construction structure with terminals and lett be a terminal ofG.
Then the root tree oft is an element of TS(G).

Let G be a non empty tree construction structure with nonterminals and useful nonterminals, let
n1 be a nonterminal ofG, and letp be a subtree sequence joinable byn1. Thenn1-tree(p) is an
element of TS(G).

We now state two propositions:

(9) LetG be a non empty tree construction structure with terminals,t2 be an element of TS(G),
ands be a terminal ofG. If t2( /0) = s, thent2 = the root tree ofs.

(10) LetG be a non empty tree construction structure with terminals and nonterminals,t2 be an
element of TS(G), andn1 be a nonterminal ofG. Supposet2( /0) = n1. Then there exists a
finite sequencet1 of elements of TS(G) such thatt2 = n1-tree(t1) andn1 ⇒ the roots oft1.
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5. THE EXAMPLE CONTINUED

Let us note thatNPeanohas terminals, nonterminals, and useful nonterminals.
Let n1 be a nonterminal ofNPeanoand lett be an element of TS(NPeano). Thenn1-tree(t) is an

element of TS(NPeano).
Let x be a finite sequence of elements ofN. Let us assume thatx 6= /0. The functor(x)(1+1)

yielding a natural number is defined as follows:

(Def. 10) There exists a natural numbern such that(x)(1+1) = n+1 andx(1) = n.

The functionNPeano→ N from TS(NPeano) into N is defined by the conditions (Def. 11).

(Def. 11)(i) For every symbolt of NPeanosuch thatt ∈ the terminals ofNPeanoholds(NPeano→N)(the
root tree oft) = 0, and

(ii) for every symboln1 of NPeanoand for every finite sequencet1 of elements of TS(NPeano)
such thatn1 ⇒ the roots oft1 holds(NPeano→ N)(n1-tree(t1)) = ((NPeano→ N) · t1)(1+1).

Let x be an element of TS(NPeano). The functor succ(x) yields an element of TS(NPeano) and is
defined by:

(Def. 12) succ(x) = 1-tree(〈x〉).

The functionN→ NPeanofrom N into TS(NPeano) is defined as follows:

(Def. 13) (N → NPeano)(0) = the root tree of 0 and for every natural numbern holds (N →
NPeano)(n+1) = succ((N→ NPeano)(n)).

The following propositions are true:

(11) For every elementp1 of TS(NPeano) holdsp1 = (N→ NPeano)((NPeano→ N)(p1)).

(12) For every natural numbern holdsn = (NPeano→ N)((N→ NPeano)(n)).

6. TREE TRAVERSALS AND TERMINAL LANGUAGE

Let D be a set and letF be a finite sequence of elements ofD∗. The functor Flat(F) yielding an
element ofD∗ is defined as follows:

(Def. 14) There exists a binary operationg on D∗ such that for all elementsp, q of D∗ holdsg(p,
q) = pa q and Flat(F) = g�F.

One can prove the following proposition

(13) For every setD and for every elementd of D∗ holds Flat(〈d〉) = d.

Let G be a non empty tree construction structure and lett2 be a tree decorated with elements of
the carrier ofG. Let us assume thatt2 ∈ TS(G). The terminals oft2 constitute a finite sequence of
elements of the terminals ofG defined by the condition (Def. 15).

(Def. 15) There exists a functionf from TS(G) into (the terminals ofG)∗ such that

(i) the terminals oft2 = f (t2),

(ii) for every symbolt of G such thatt ∈ the terminals ofG holds f (the root tree oft) = 〈t〉,
and

(iii) for every symboln1 of G and for every finite sequencet1 of elements of TS(G) such that
n1 ⇒ the roots oft1 holds f (n1-tree(t1)) = Flat( f · t1).

The pretraversal string oft2 is a finite sequence of elements of the carrier ofG and is defined by the
condition (Def. 16).
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(Def. 16) There exists a functionf from TS(G) into (the carrier ofG)∗ such that

(i) the pretraversal string oft2 = f (t2),

(ii) for every symbolt of G such thatt ∈ the terminals ofG holds f (the root tree oft) = 〈t〉,
and

(iii) for every symboln1 of G and for every finite sequencet1 of elements of TS(G) and for
every finite sequencer1 such thatr1 = the roots oft1 andn1⇒ r1 and for every finite sequence
x of elements of (the carrier ofG)∗ such thatx = f · t1 holds f (n1-tree(t1)) = 〈n1〉a Flat(x).

The posttraversal string oft2 is a finite sequence of elements of the carrier ofG and is defined by
the condition (Def. 17).

(Def. 17) There exists a functionf from TS(G) into (the carrier ofG)∗ such that

(i) the posttraversal string oft2 = f (t2),

(ii) for every symbolt of G such thatt ∈ the terminals ofG holds f (the root tree oft) = 〈t〉,
and

(iii) for every symboln1 of G and for every finite sequencet1 of elements of TS(G) and for
every finite sequencer1 such thatr1 = the roots oft1 andn1⇒ r1 and for every finite sequence
x of elements of (the carrier ofG)∗ such thatx = f · t1 holds f (n1-tree(t1)) = Flat(x)a 〈n1〉.

Let G be a non empty non empty tree construction structure with nonterminals and letn1 be a
symbol ofG. The language derivable fromn1 is a subset of (the terminals ofG)∗ and is defined by
the condition (Def. 18).

(Def. 18) The language derivable fromn1 = {the terminals oft2; t2 ranges over elements of
FinTrees(the carrier ofG): t2 ∈ TS(G) ∧ t2( /0) = n1}.

The language of pretraversals derivable fromn1 is a subset of (the carrier ofG)∗ and is defined by
the condition (Def. 19).

(Def. 19) The language of pretraversals derivable fromn1 = {the pretraversal string oft2; t2 ranges
over elements of FinTrees(the carrier ofG): t2 ∈ TS(G) ∧ t2( /0) = n1}.

The language of posttraversals derivable fromn1 is a subset of (the carrier ofG)∗ and is defined by
the condition (Def. 20).

(Def. 20) The language of posttraversals derivable fromn1 = {the posttraversal string oft2; t2 ranges
over elements of FinTrees(the carrier ofG): t2 ∈ TS(G) ∧ t2( /0) = n1}.

Next we state several propositions:

(14) For every treet decorated with elements of the carrier ofNPeanosuch thatt ∈ TS(NPeano)
holds the terminals oft = 〈0〉.

(15) For every symboln1 of NPeanoholds the language derivable fromn1 = {〈0〉}.

(16) For every elementt of TS(NPeano) holds the pretraversal string oft = (heightdomt 7→
1)a 〈0〉.

(17) Letn1 be a symbol ofNPeano. Then

(i) if n1 = 0, then the language of pretraversals derivable fromn1 = {〈0〉}, and

(ii) if n1 = 1, then the language of pretraversals derivable fromn1 = {(n 7→ 1) a 〈0〉;n ranges
over natural numbers:n 6= 0}.

(18) For every elementt of TS(NPeano) holds the posttraversal string oft = 〈0〉a (heightdomt 7→
1).

(19) Letn1 be a symbol ofNPeano. Then

(i) if n1 = 0, then the language of posttraversals derivable fromn1 = {〈0〉}, and

(ii) if n1 = 1, then the language of posttraversals derivable fromn1 = {〈0〉a (n 7→ 1);n ranges
over natural numbers:n 6= 0}.
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