On Defining Functions on Trees¹ Grzegorz Bancerek Polish Academy of Sciences Institute of Mathematics Warsaw Piotr Rudnicki University of Alberta Department of Computing Science Edmonton **Summary.** The continuation of the sequence of articles on trees (see [2], [3], [4], [5]) and on context-free grammars ([13]). We define the set of complete parse trees for a given context-free grammar. Next we define the scheme of induction for the set and the scheme of defining functions by induction on the set. For each symbol of a context-free grammar we define the terminal, the pretraversal, and the posttraversal languages. The introduced terminology is tested on the example of Peano naturals. MML Identifier: DTCONSTR. WWW: http://mizar.org/JFM/Vol5/dtconstr.html The articles [17], [10], [21], [19], [1], [23], [22], [8], [9], [6], [12], [14], [18], [15], [16], [7], [20], [13], [2], [3], [4], [5], and [11] provide the notation and terminology for this paper. ## 1. Preliminaries The following propositions are true: - (1) For every non empty set D holds every finite sequence of elements of FinTrees(D) is a finite sequence of elements of Trees(D). - (2) For all sets x, y and for every finite sequence p of elements of x such that $y \in \text{dom } p$ holds $p(y) \in x$. - Let X be a set. Observe that every element of X^* is relation-like and function-like. - Let X be a set. Observe that every element of X^* is finite sequence-like. - Let D be a non empty set and let t be an element of FinTrees(D). Note that dom t is finite. - Let D be a non empty set and let T be a set of trees decorated with elements of D. Note that every finite sequence of elements of T is decorated tree yielding. - Let D be a non empty set, let F be a non empty set of trees decorated with elements of D, and let T_1 be a non empty subset of F. We see that the element of T_1 is an element of F. - Let p be a finite sequence. Let us assume that p is decorated tree yielding. The roots of p constitute a finite sequence defined by the conditions (Def. 1). - (Def. 1)(i) $\operatorname{dom}(\operatorname{the roots of } p) = \operatorname{dom} p$, and - (ii) for every natural number i such that $i \in \text{dom } p$ there exists a decorated tree T such that T = p(i) and (the roots of p(i) = T(0)). 1 © Association of Mizar Users ¹This work was partially supported by NSERC Grant OGP9207 while the first author visited University of Alberta, May–June 1993. Let D be a non empty set, let T be a set of trees decorated with elements of D, and let p be a finite sequence of elements of T. Then the roots of p is a finite sequence of elements of D. We now state four propositions: - (3) The roots of $\emptyset = \emptyset$. - (4) For every decorated tree *T* holds the roots of $\langle T \rangle = \langle T(\emptyset) \rangle$. - (5) Let D be a non empty set, F be a subset of FinTrees(D), and p be a finite sequence of elements of F. Suppose len (the roots of p) = 1. Then there exists an element x of FinTrees(D) such that $p = \langle x \rangle$ and $x \in F$. - (6) For all decorated trees T_2 , T_3 holds the roots of $\langle T_2, T_3 \rangle = \langle T_2(\emptyset), T_3(\emptyset) \rangle$. Let f be a function. The functor pr1(f) yields a function and is defined by: (Def. 2) $\operatorname{dom} \operatorname{pr1}(f) = \operatorname{dom} f$ and for every set x such that $x \in \operatorname{dom} f$ holds $\operatorname{pr1}(f)(x) = f(x)_1$. The functor pr2(f) yielding a function is defined as follows: (Def. 3) $\operatorname{dom} \operatorname{pr2}(f) = \operatorname{dom} f$ and for every set x such that $x \in \operatorname{dom} f$ holds $\operatorname{pr2}(f)(x) = f(x)_2$. Let X, Y be sets and let f be a finite sequence of elements of [:X,Y:]. Then pr1(f) is a finite sequence of elements of X. Then pr2(f) is a finite sequence of elements of Y. Next we state the proposition (7) $\operatorname{pr1}(\emptyset) = \emptyset$ and $\operatorname{pr2}(\emptyset) = \emptyset$. The scheme MonoSetSeq deals with a function \mathcal{A} , a set \mathcal{B} , and a binary functor \mathcal{F} yielding a set, and states that: For all natural numbers k, s holds $\mathcal{A}(k) \subseteq \mathcal{A}(k+s)$ provided the parameters satisfy the following condition: • For every natural number n holds $\mathcal{A}(n+1) = \mathcal{A}(n) \cup \mathcal{F}(n,\mathcal{A}(n))$. ## 2. The set of parse trees Let A be a non empty set and let R be a relation between A and A^* . Note that $\langle A, R \rangle$ is non empty. Now we present two schemes. The scheme DTConstrStrEx deals with a non empty set \mathcal{A} and a binary predicate \mathcal{P} , and states that: There exists a strict non empty tree construction structure G such that - (i) the carrier of $G = \mathcal{A}$, and - (ii) for every symbol x of G and for every finite sequence p of elements of the carrier of G holds $x \Rightarrow p$ iff $\mathcal{P}[x,p]$ for all values of the parameters. The scheme DTConstrStrUniq deals with a non empty set $\mathcal A$ and a binary predicate $\mathcal P$, and states that: Let G_1 , G_2 be strict non empty tree construction structures. Suppose that - (i) the carrier of $G_1 = \mathcal{A}$, - (ii) for every symbol x of G_1 and for every finite sequence p of elements of the carrier of G_1 holds $x \Rightarrow p$ iff $\mathcal{P}[x, p]$, - (iii) the carrier of $G_2 = \mathcal{A}$, and - (iv) for every symbol x of G_2 and for every finite sequence p of elements of the carrier of G_2 holds $x \Rightarrow p$ iff $\mathcal{P}[x, p]$. Then $$G_1 = G_2$$ for all values of the parameters. We now state the proposition (8) For every non empty tree construction structure *G* holds the terminals of *G* misses the nonterminals of *G*. Now we present four schemes. The scheme *DTCMin* deals with a function \mathcal{A} , a non empty tree construction structure \mathcal{B} , a non empty set \mathcal{C} , a unary functor \mathcal{F} yielding an element of \mathcal{C} , and a ternary functor \mathcal{G} yielding an element of \mathcal{C} , and states that: There exists a subset *X* of FinTrees([: the carrier of \mathcal{B} , \mathcal{C} :]) such that - (i) $X = \bigcup \mathcal{A}$, - (ii) for every symbol d of \mathcal{B} such that $d \in$ the terminals of \mathcal{B} holds the root tree of $\langle d, \mathcal{F}(d) \rangle \in X$, - (iii) for every symbol o of \mathcal{B} and for every finite sequence p of elements of X such that $o \Rightarrow \operatorname{pr1}(\text{the roots of } p)$ holds $\langle o, \mathcal{G}(o, \operatorname{pr1}(\text{the roots of } p), \operatorname{pr2}(\text{the roots of } p)) \rangle$ -tree $(p) \in X$, and - (iv) for every subset F of FinTrees([:the carrier of $\mathcal{B}, \mathcal{C}:]$) such that for every symbol d of \mathcal{B} such that $d \in$ the terminals of \mathcal{B} holds the root tree of $\langle d, \mathcal{F}(d) \rangle \in F$ and for every symbol o of \mathcal{B} and for every finite sequence p of elements of F such that $o \Rightarrow \operatorname{pr1}$ (the roots of p) holds $\langle o, \mathcal{G}(o, \operatorname{pr1})$ (the roots of p), $\operatorname{pr2}$ (the roots of p)) \rangle -tree(p) $\in F$ holds $X \subseteq F$ provided the parameters meet the following conditions: - $\operatorname{dom} \mathcal{A} = \mathbb{N}$, - $\mathcal{A}(0) = \{ \text{the root tree of } \langle t, d \rangle; t \text{ ranges over symbols of } \mathcal{B}, d \text{ ranges over elements of } \mathcal{C} : t \in \text{the terminals of } \mathcal{B} \land d = \mathcal{F}(t) \lor t \Rightarrow \emptyset \land d = \mathcal{G}(t, \emptyset, \emptyset) \}, \text{ and}$ - Let n be a natural number. Then $\mathcal{A}(n+1) = \mathcal{A}(n) \cup \{\langle o, \mathcal{G}(o, \operatorname{pr1}(\operatorname{the roots of } p), \operatorname{pr2}(\operatorname{the roots of } p)) \rangle$ -tree(p); o ranges over symbols of \mathcal{B}, p ranges over elements of $\mathcal{A}(n)^*$: $\bigvee_{q:\operatorname{finite sequence of elements of FinTrees}([:\operatorname{the carrier of } \mathcal{B}, \mathcal{C}:])} (p = q \land o \Rightarrow \operatorname{pr1}(\operatorname{the roots of } q)) \}.$ The scheme DTCSymbols deals with a function \mathcal{A} , a non empty tree construction structure \mathcal{B} , a non empty set \mathcal{C} , a unary functor \mathcal{F} yielding an element of \mathcal{C} , and a ternary functor \mathcal{G} yielding an element of \mathcal{C} , and states that: There exists a subset X_1 of FinTrees(the carrier of \mathcal{B}) such that - (i) $X_1 = \{t_1; t \text{ ranges over elements of FinTrees}([: \text{the carrier of } \mathcal{B}, \mathcal{C}:]): t \in \bigcup \mathcal{A}\},$ - (ii) for every symbol d of \mathcal{B} such that $d \in$ the terminals of \mathcal{B} holds the root tree of $d \in X_1$, - (iii) for every symbol o of \mathcal{B} and for every finite sequence p of elements of X_1 such that $o \Rightarrow$ the roots of p holds o-tree $(p) \in X_1$, and - (iv) for every subset F of FinTrees(the carrier of \mathcal{B}) such that for every symbol d of \mathcal{B} such that $d \in$ the terminals of \mathcal{B} holds the root tree of $d \in F$ and for every symbol o of \mathcal{B} and for every finite sequence p of elements of F such that $o \Rightarrow$ the roots of p holds o-tree(p) $\in F$ holds $X_1 \subseteq F$ provided the parameters meet the following conditions: - dom $\mathcal{A} = \mathbb{N}$, - $\mathcal{A}(0) = \{ \text{the root tree of } \langle t, d \rangle; t \text{ ranges over symbols of } \mathcal{B}, d \text{ ranges over elements}$ of $\mathcal{C} : t \in \text{the terminals of } \mathcal{B} \land d = \mathcal{F}(t) \lor t \Rightarrow \emptyset \land d = \mathcal{G}(t, \emptyset, \emptyset) \},$ and - Let n be a natural number. Then $\mathcal{A}(n+1) = \mathcal{A}(n) \cup \{\langle o, \mathcal{G}(o, \operatorname{pr1}(\operatorname{the roots of } p), \operatorname{pr2}(\operatorname{the roots of } p)) \rangle$ -tree(p); o ranges over symbols of \mathcal{B}, p ranges over elements of $\mathcal{A}(n)^*$: $\bigvee_{q:\operatorname{finite sequence of elements of FinTrees}([:\operatorname{the carrier of } \mathcal{B}, \mathcal{C}:])} (p = q \land o \Rightarrow \operatorname{pr1}(\operatorname{the roots of } q)) \}.$ The scheme DTCHeight deals with a function \mathcal{A} , a non empty tree construction structure \mathcal{B} , a non empty set \mathcal{C} , a unary functor \mathcal{F} yielding an element of \mathcal{C} , and a ternary functor \mathcal{G} yielding an element of \mathcal{C} , and states that: Let n be a natural number and d_1 be an element of FinTrees([:the carrier of \mathcal{B}, \mathcal{C} :]). If $d_1 \in \bigcup \mathcal{A}$, then $d_1 \in \mathcal{A}(n)$ iff height dom $d_1 \leq n$ provided the parameters meet the following requirements: - dom $\mathcal{A} = \mathbb{N}$, - $\mathcal{A}(0) = \{ \text{the root tree of } \langle t, d \rangle; t \text{ ranges over symbols of } \mathcal{B}, d \text{ ranges over elements of } \mathcal{C} : t \in \text{the terminals of } \mathcal{B} \land d = \mathcal{F}(t) \lor t \Rightarrow \emptyset \land d = \mathcal{G}(t, \emptyset, \emptyset) \}, \text{ and}$ - Let n be a natural number. Then $\mathcal{A}(n+1) = \mathcal{A}(n) \cup \{\langle o, \mathcal{G}(o, \text{pr1}(\text{the roots of } p), \text{pr2}(\text{the roots of } p))\}$ -tree(p); o ranges over symbols of \mathcal{B}, p ranges over elements of $\mathcal{A}(n)^*$: $\bigvee_{q:\text{finite sequence of elements of FinTrees}([:\text{the carrier of }\mathcal{B},\mathcal{C}:])}$ $(p=q \land o \Rightarrow \text{pr1}(\text{the roots of }q))$. The scheme DTCUniq deals with a function \mathcal{A} , a non empty tree construction structure \mathcal{B} , a non empty set \mathcal{C} , a unary functor \mathcal{F} yielding an element of \mathcal{C} , and a ternary functor \mathcal{G} yielding an element of \mathcal{C} , and states that: Let d_2 , d_3 be trees decorated with elements of [: the carrier of \mathcal{B} , \mathcal{C} :]. If $d_2 \in \bigcup \mathcal{A}$ and $d_3 \in \bigcup \mathcal{A}$ and $(d_2)_1 = (d_3)_1$, then $d_2 = d_3$ provided the following conditions are satisfied: - dom $\mathcal{A} = \mathbb{N}$, - $\mathcal{A}(0) = \{ \text{the root tree of } \langle t, d \rangle; t \text{ ranges over symbols of } \mathcal{B}, d \text{ ranges over elements of } \mathcal{C}: t \in \text{the terminals of } \mathcal{B} \land d = \mathcal{F}(t) \lor t \Rightarrow \emptyset \land d = \mathcal{G}(t, \emptyset, \emptyset) \}, \text{ and}$ - Let n be a natural number. Then $\mathcal{A}(n+1) = \mathcal{A}(n) \cup \{\langle o, \mathcal{G}(o, \operatorname{pr1}(\operatorname{the roots of } p), \operatorname{pr2}(\operatorname{the roots of } p))\}$ -tree(p); o ranges over symbols of \mathcal{B}, p ranges over elements of $\mathcal{A}(n)^*$: $\bigvee_{q:\operatorname{finite sequence of elements of FinTrees}([:\operatorname{the carrier of } \mathcal{B},\mathcal{C}:])}$ $(p=q \land o \Rightarrow \operatorname{pr1}(\operatorname{the roots of } q))\}$. Let G be a non empty tree construction structure. The functor TS(G) yields a subset of FinTrees(the carrier of G) and is defined by the conditions (Def. 4). - (Def. 4)(i) For every symbol d of G such that $d \in$ the terminals of G holds the root tree of $d \in TS(G)$, - (ii) for every symbol o of G and for every finite sequence p of elements of TS(G) such that $o \Rightarrow$ the roots of p holds o-tree $(p) \in TS(G)$, and - (iii) for every subset F of FinTrees(the carrier of G) such that for every symbol d of G such that $d \in$ the terminals of G holds the root tree of $d \in F$ and for every symbol o of G and for every finite sequence p of elements of F such that $o \Rightarrow$ the roots of p holds o-tree(p) $\in F$ holds $TS(G) \subseteq F$. Now we present three schemes. The scheme DTConstrInd deals with a non empty tree construction structure \mathcal{A} and a unary predicate \mathcal{P} , and states that: For every tree t decorated with elements of the carrier of \mathcal{A} such that $t \in TS(\mathcal{A})$ holds $\mathcal{P}[t]$ provided the following conditions are satisfied: - For every symbol s of \mathcal{A} such that $s \in$ the terminals of \mathcal{A} holds \mathcal{P} [the root tree of s], and - Let n_1 be a symbol of \mathcal{A} and t_1 be a finite sequence of elements of $TS(\mathcal{A})$. Suppose that - (i) $n_1 \Rightarrow$ the roots of t_1 , and - (ii) for every tree t decorated with elements of the carrier of \mathcal{A} such that $t \in \operatorname{rng} t_1$ holds $\mathcal{P}[t]$. Then $\mathcal{P}[n_1\text{-tree}(t_1)]$. The scheme DTConstrIndDef deals with a non empty tree construction structure \mathcal{A} , a non empty set \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{B} , and a ternary functor \mathcal{G} yielding an element of \mathcal{B} , and states that: There exists a function f from $TS(\mathcal{A})$ into \mathcal{B} such that - (i) for every symbol t of \mathcal{A} such that $t \in \text{the terminals of } \mathcal{A} \text{ holds } f(\text{the root tree of } t) = \mathcal{F}(t)$, and - (ii) for every symbol n_1 of $\mathcal A$ and for every finite sequence t_1 of elements of $\mathrm{TS}(\mathcal A)$ such that $n_1\Rightarrow$ the roots of t_1 holds $f(n_1\text{-tree}(t_1))=\mathcal G(n_1,$ the roots of $t_1,\,f\cdot t_1)$ for all values of the parameters. The scheme DTConstrUniqDef deals with a non empty tree construction structure \mathcal{A} , a non empty set \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{B} , a ternary functor \mathcal{G} yielding an element of \mathcal{B} , and functions \mathcal{C} , \mathcal{D} from $TS(\mathcal{A})$ into \mathcal{B} , and states that: $$C = D$$ provided the following conditions are met: • (i) For every symbol t of \mathcal{A} such that $t \in \text{the terminals of } \mathcal{A} \text{ holds } \mathcal{C}(\text{the root tree of } t) = \mathcal{F}(t)$, and - (ii) for every symbol n_1 of \mathcal{A} and for every finite sequence t_1 of elements of $TS(\mathcal{A})$ such that $n_1 \Rightarrow$ the roots of t_1 holds $\mathcal{C}(n_1\text{-tree}(t_1)) = \mathcal{G}(n_1, \text{the roots of } t_1, \mathcal{C} \cdot t_1)$, and - (i) For every symbol t of \mathcal{A} such that $t \in$ the terminals of \mathcal{A} holds \mathcal{D} (the root tree of t) = $\mathcal{F}(t)$, and - (ii) for every symbol n_1 of \mathcal{A} and for every finite sequence t_1 of elements of $TS(\mathcal{A})$ such that $n_1 \Rightarrow$ the roots of t_1 holds $\mathcal{D}(n_1\text{-tree}(t_1)) = \mathcal{G}(n_1, \text{the roots of } t_1, \mathcal{D} \cdot t_1)$. #### 3. AN EXAMPLE: PEANO NATURALS The strict non empty tree construction structure \mathbb{N}_{Peano} is defined by the conditions (Def. 5). (Def. 5)(i) The carrier of $\mathbb{N}_{Peano} = \{0, 1\}$, and (ii) for every symbol x of \mathbb{N}_{Peano} and for every finite sequence y of elements of the carrier of \mathbb{N}_{Peano} holds $x \Rightarrow y$ iff x = 1 but $y = \langle 0 \rangle$ or $y = \langle 1 \rangle$. #### 4. Properties of parse trees Let G be a non empty tree construction structure. We say that G has terminals if and only if: (Def. 6) The terminals of $G \neq \emptyset$. We say that *G* has nonterminals if and only if: (Def. 7) The nonterminals of $G \neq \emptyset$. We say that G has useful nonterminals if and only if the condition (Def. 8) is satisfied. (Def. 8) Let n_1 be a symbol of G. Suppose $n_1 \in$ the nonterminals of G. Then there exists a finite sequence p of elements of TS(G) such that $n_1 \Rightarrow$ the roots of p. Let us note that there exists a non empty tree construction structure which is strict and has terminals, nonterminals, and useful nonterminals. Let G be a non empty tree construction structure with terminals. Then the terminals of G is a non empty subset of G. Observe that TS(G) is non empty. Let G be a non empty tree construction structure with useful nonterminals. Note that TS(G) is non empty. Let G be a non empty tree construction structure with nonterminals. Then the nonterminals of G is a non empty subset of G. Let G be a non empty tree construction structure with terminals. A terminal of G is an element of the terminals of G. Let G be a non empty tree construction structure with nonterminals. A nonterminal of G is an element of the nonterminals of G. Let G be a non empty tree construction structure with nonterminals and useful nonterminals and let n_1 be a nonterminal of G. A finite sequence of elements of TS(G) is said to be a subtree sequence joinable by n_1 if: (Def. 9) $n_1 \Rightarrow$ the roots of it. Let G be a non empty tree construction structure with terminals and let t be a terminal of G. Then the root tree of t is an element of TS(G). Let G be a non empty tree construction structure with nonterminals and useful nonterminals, let n_1 be a nonterminal of G, and let p be a subtree sequence joinable by n_1 . Then n_1 -tree(p) is an element of $\mathrm{TS}(G)$. We now state two propositions: - (9) Let G be a non empty tree construction structure with terminals, t_2 be an element of TS(G), and s be a terminal of G. If $t_2(\emptyset) = s$, then $t_2 =$ the root tree of s. - (10) Let G be a non empty tree construction structure with terminals and nonterminals, t_2 be an element of TS(G), and n_1 be a nonterminal of G. Suppose $t_2(\emptyset) = n_1$. Then there exists a finite sequence t_1 of elements of TS(G) such that $t_2 = n_1$ -tree (t_1) and $n_1 \Rightarrow$ the roots of t_1 . #### 5. The example continued Let us note that $\mathbb{N}_{\text{Peano}}$ has terminals, nonterminals, and useful nonterminals. Let n_1 be a nonterminal of \mathbb{N}_{Peano} and let t be an element of $TS(\mathbb{N}_{Peano})$. Then n_1 -tree(t) is an element of $TS(\mathbb{N}_{Peano})$. Let x be a finite sequence of elements of \mathbb{N} . Let us assume that $x \neq \emptyset$. The functor (x)(1+1) yielding a natural number is defined as follows: (Def. 10) There exists a natural number n such that (x)(1+1) = n+1 and x(1) = n. The function $\mathbb{N}_{Peano} \to \mathbb{N}$ from $TS(\mathbb{N}_{Peano})$ into \mathbb{N} is defined by the conditions (Def. 11). - (Def. 11)(i) For every symbol t of \mathbb{N}_{Peano} such that $t \in \text{the terminals of } \mathbb{N}_{Peano} \text{ holds } (\mathbb{N}_{Peano} \to \mathbb{N})$ (the root tree of t) = 0, and - (ii) for every symbol n_1 of \mathbb{N}_{Peano} and for every finite sequence t_1 of elements of $TS(\mathbb{N}_{Peano})$ such that $n_1 \Rightarrow$ the roots of t_1 holds $(\mathbb{N}_{Peano} \rightarrow \mathbb{N})(n_1\text{-tree}(t_1)) = ((\mathbb{N}_{Peano} \rightarrow \mathbb{N}) \cdot t_1)(t_1 + t_1)$. Let *x* be an element of $TS(\mathbb{N}_{Peano})$. The functor succ(x) yields an element of $TS(\mathbb{N}_{Peano})$ and is defined by: (Def. 12) $\operatorname{succ}(x) = 1\operatorname{-tree}(\langle x \rangle).$ The function $\mathbb{N} \to \mathbb{N}_{Peano}$ from \mathbb{N} into $TS(\mathbb{N}_{Peano})$ is defined as follows: (Def. 13) $(\mathbb{N} \to \mathbb{N}_{Peano})(0) = \text{the root tree of } 0 \text{ and for every natural number } n \text{ holds } (\mathbb{N} \to \mathbb{N}_{Peano})(n+1) = \operatorname{succ}((\mathbb{N} \to \mathbb{N}_{Peano})(n)).$ The following propositions are true: - (11) For every element p_1 of $TS(\mathbb{N}_{Peano})$ holds $p_1 = (\mathbb{N} \to \mathbb{N}_{Peano})((\mathbb{N}_{Peano} \to \mathbb{N})(p_1))$. - (12) For every natural number n holds $n = (\mathbb{N}_{Peano} \to \mathbb{N})((\mathbb{N} \to \mathbb{N}_{Peano})(n))$. ### 6. Tree traversals and terminal language Let D be a set and let F be a finite sequence of elements of D^* . The functor Flat(F) yielding an element of D^* is defined as follows: (Def. 14) There exists a binary operation g on D^* such that for all elements p, q of D^* holds $g(p, q) = p \cap q$ and $\operatorname{Flat}(F) = g \odot F$. One can prove the following proposition (13) For every set *D* and for every element *d* of D^* holds $\operatorname{Flat}(\langle d \rangle) = d$. Let G be a non empty tree construction structure and let t_2 be a tree decorated with elements of the carrier of G. Let us assume that $t_2 \in TS(G)$. The terminals of t_2 constitute a finite sequence of elements of the terminals of G defined by the condition (Def. 15). - (Def. 15) There exists a function f from TS(G) into (the terminals of G)* such that - (i) the terminals of $t_2 = f(t_2)$, - (ii) for every symbol t of G such that $t \in$ the terminals of G holds f (the root tree of t) = $\langle t \rangle$, and - (iii) for every symbol n_1 of G and for every finite sequence t_1 of elements of TS(G) such that $n_1 \Rightarrow$ the roots of t_1 holds $f(n_1\text{-tree}(t_1)) = Flat(f \cdot t_1)$. The pretraversal string of t_2 is a finite sequence of elements of the carrier of G and is defined by the condition (Def. 16). - (Def. 16) There exists a function f from TS(G) into (the carrier of G)* such that - (i) the pretraversal string of $t_2 = f(t_2)$, - (ii) for every symbol t of G such that $t \in$ the terminals of G holds f (the root tree of t) = $\langle t \rangle$, and - (iii) for every symbol n_1 of G and for every finite sequence t_1 of elements of TS(G) and for every finite sequence r_1 such that r_1 = the roots of t_1 and $n_1 \Rightarrow r_1$ and for every finite sequence x of elements of (the carrier of G)* such that $x = f \cdot t_1$ holds $f(n_1 tree(t_1)) = \langle n_1 \rangle \cap Flat(x)$. The posttraversal string of t_2 is a finite sequence of elements of the carrier of G and is defined by the condition (Def. 17). - (Def. 17) There exists a function f from TS(G) into (the carrier of G)* such that - (i) the posttraversal string of $t_2 = f(t_2)$, - (ii) for every symbol t of G such that $t \in$ the terminals of G holds f (the root tree of t) = $\langle t \rangle$, and - (iii) for every symbol n_1 of G and for every finite sequence t_1 of elements of TS(G) and for every finite sequence r_1 such that r_1 = the roots of t_1 and $n_1 \Rightarrow r_1$ and for every finite sequence t_1 of elements of (the carrier of t_2) such that t_2 = t_1 holds t_2 = t_2 and for every finite sequence t_2 of elements of (the carrier of t_2). Let G be a non empty non empty tree construction structure with nonterminals and let n_1 be a symbol of G. The language derivable from n_1 is a subset of (the terminals of G)* and is defined by the condition (Def. 18). (Def. 18) The language derivable from $n_1 = \{\text{the terminals of } t_2; t_2 \text{ ranges over elements of FinTrees}(\text{the carrier of } G): t_2 \in TS(G) \land t_2(\emptyset) = n_1\}.$ The language of pretraversals derivable from n_1 is a subset of (the carrier of G)* and is defined by the condition (Def. 19). (Def. 19) The language of pretraversals derivable from $n_1 = \{\text{the pretraversal string of } t_2; t_2 \text{ ranges over elements of FinTrees}(\text{the carrier of } G): t_2 \in \mathsf{TS}(G) \land t_2(\emptyset) = n_1\}.$ The language of posttraversals derivable from n_1 is a subset of (the carrier of G)* and is defined by the condition (Def. 20). (Def. 20) The language of posttraversals derivable from $n_1 = \{\text{the posttraversal string of } t_2; t_2 \text{ ranges over elements of FinTrees}(\text{the carrier of } G): t_2 \in TS(G) \land t_2(\emptyset) = n_1\}.$ Next we state several propositions: - (14) For every tree t decorated with elements of the carrier of \mathbb{N}_{Peano} such that $t \in TS(\mathbb{N}_{Peano})$ holds the terminals of $t = \langle 0 \rangle$. - (15) For every symbol n_1 of \mathbb{N}_{Peano} holds the language derivable from $n_1 = \{\langle 0 \rangle\}$. - (16) For every element t of $TS(\mathbb{N}_{Peano})$ holds the pretraversal string of $t = (\text{height dom } t \mapsto 1) \cap \langle 0 \rangle$. - (17) Let n_1 be a symbol of \mathbb{N}_{Peano} . Then - (i) if $n_1 = 0$, then the language of pretraversals derivable from $n_1 = \{\langle 0 \rangle\}$, and - (ii) if $n_1 = 1$, then the language of pretraversals derivable from $n_1 = \{(n \mapsto 1) \cap \langle 0 \rangle; n \text{ ranges over natural numbers: } n \neq 0\}$. - (18) For every element t of $TS(\mathbb{N}_{Peano})$ holds the posttraversal string of $t = \langle 0 \rangle \cap (\text{height dom } t \mapsto 1)$. - (19) Let n_1 be a symbol of \mathbb{N}_{Peano} . Then - (i) if $n_1 = 0$, then the language of posttraversals derivable from $n_1 = \{\langle 0 \rangle\}$, and - (ii) if $n_1 = 1$, then the language of posttraversals derivable from $n_1 = \{\langle 0 \rangle \cap (n \mapsto 1); n \text{ ranges over natural numbers: } n \neq 0\}$. #### REFERENCES - Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html. - [2] Grzegorz Bancerek. Introduction to trees. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/trees_1. - [3] Grzegorz Bancerek. König's Lemma. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/trees_2.html. - [4] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/trees_3.html. - [5] Grzegorz Bancerek. Joining of decorated trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/trees_4.html. - [6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html. - [7] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html. - [8] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html. - [9] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html. - [10] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_1.html. - [11] Czesław Byliński. Binary operations applied to finite sequences. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/finseqop.html. - [12] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseg 2.html. - [13] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar part I. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/langl.html. - [14] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html. - [15] Andrzej Nędzusiak. σ-fields and probability. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/prob_1. - [16] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/domain_1.html. - [17] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. - [18] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/mcart 1.html. - [19] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html - [20] Wojciech A. Trybulec. Binary operations on finite sequences. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finsop_1.html. - [21] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. - [22] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html. - [23] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset_1.html. Received October 12, 1993 Published January 2, 2004