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Summary. We present a Mizar formalization of the proof of Dickson’s lemma fol-
lowing [7], chapters 4.2 and 4.3.

MML Identifier: DICKSON.

WWW: http://mizar.org/JFM/Vol14/dickson.html

The articles [29], [11], [35], [22], [36], [38], [28], [37], [15], [30], [3], [33], [34], [8], [26], [27], [5],
[32], [2], [1], [24], [16], [17], [10], [9], [20], [25], [19], [14], [31], [23], [4], [18], [12], [6], [13],
and [21] provide the notation and terminology for this paper.

1. PRELIMINARIES

The following two propositions are true:

(1) For every functiong and for every setx such that domg = {x} holdsg = x7−→. g(x).

(2) For every natural numbern holdsn⊆ n+1.

The schemeFinSegRng2deals with natural numbersA , B, a unary functorF yielding a set, and
a unary predicateP , and states that:

{F (i); i ranges over natural numbers:A < i ∧ i ≤ B ∧ P [i]} is finite
for all values of the parameters.

One can prove the following proposition

(3) For every infinite setX holds there exists a function fromN into X which is one-to-one.

Let R be a relational structure and letf be a sequence ofR. We say thatf is ascending if and
only if:

(Def. 1) For every natural numbern holds f (n+ 1) 6= f (n) and 〈〈 f (n), f (n+ 1)〉〉 ∈ the internal
relation ofR.

Let R be a relational structure and letf be a sequence ofR. We say thatf is weakly ascending
if and only if:

(Def. 2) For every natural numbern holds〈〈 f (n), f (n+1)〉〉 ∈ the internal relation ofR.

One can prove the following four propositions:

(4) LetRbe a non empty transitive relational structure andf be a sequence ofR. Supposef is
weakly ascending. Leti, j be natural numbers. Ifi < j, then f (i)≤ f ( j).
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(5) Let R be a non empty relational structure. ThenR is connected if and only if the internal
relation ofR is strongly connected in the carrier ofR.

(7)1 Let L be a relational structure,Y be a set, anda be a set. Then (the internal relation of
L)-Seg(a) missesY anda∈Y if and only if a is minimal w.r.t.Y, the internal relation ofL.

(8) Let L be a non empty transitive antisymmetric relational structure,x be an element ofL,
anda, N be sets. Supposea is minimal w.r.t. (the internal relation ofL)-Seg(x)∩N, the
internal relation ofL. Thena is minimal w.r.t.N, the internal relation ofL.

2. MORE ONORDERING RELATIONS

Let Rbe a relational structure. We say thatR is quasi ordered if and only if:

(Def. 3) R is reflexive and transitive.

Let R be a relational structure. Let us assume thatR is quasi ordered. The functor EqRel(R)
yields an equivalence relation of the carrier ofRand is defined as follows:

(Def. 4) EqRel(R) = (the internal relation ofR)∩ (the internal relation ofR)`.

Next we state the proposition

(9) Let R be a relational structure andx, y be elements ofR. If R is quasi ordered, then
x∈ [y]EqRel(R) iff x≤ y andy≤ x.

Let Rbe a relational structure. The functor≤ERyielding a binary relation on ClassesEqRel(R)
is defined by:

(Def. 5) For all setsA, B holds 〈〈A, B〉〉 ∈ ≤E R iff there exist elementsa, b of R such thatA =
[a]EqRel(R) andB = [b]EqRel(R) anda≤ b.

Next we state two propositions:

(10) For every relational structureR such thatR is quasi ordered holds≤ER partially orders
ClassesEqRel(R).

(11) LetR be a non empty relational structure. IfR is quasi ordered and connected, then≤ER
linearly orders ClassesEqRel(R).

Let Rbe a binary relation. The functorR\` yields a binary relation and is defined as follows:

(Def. 6) R\` = R\ R̀ .

Let Rbe a binary relation. Observe thatR\` is asymmetric.
Let X be a set and letRbe a binary relation onX. ThenR\` is a binary relation onX.
Let R be a relational structure. The functorR\` yielding a strict relational structure is defined

by:

(Def. 7) R\` = 〈the carrier ofR, the internal relation ofR\`〉.

Let Rbe a non empty relational structure. One can verify thatR\` is non empty.
Let Rbe a transitive relational structure. Observe thatR\` is transitive.
Let Rbe a relational structure. Note thatR\` is antisymmetric.
We now state several propositions:

(12) For every non empty posetRand for every elementx of Rholds[x]EqRel(R) = {x}.

(13) For every binary relationRholdsR= R\` iff R is asymmetric.

1 The proposition (6) has been removed.
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(14) For every binary relationRsuch thatR is transitive holdsR\` is transitive.

(15) LetR be a binary relation anda, b be sets. IfR is antisymmetric, then〈〈a, b〉〉 ∈ R\` iff 〈〈a,
b〉〉 ∈ Randa 6= b.

(16) For every relational structureRsuch thatR is well founded holdsR\` is well founded.

(17) For every relational structureRsuch thatR\` is well founded andR is antisymmetric holds
R is well founded.

3. FOUNDEDNESSPROPERTIES

One can prove the following propositions:

(18) LetL be a relational structure,N be a set, andx be an element ofL\`. Thenx is minimal
w.r.t. N, the internal relation ofL\` if and only if x∈ N and for every elementy of L such
thaty∈ N and〈〈y, x〉〉 ∈ the internal relation ofL holds〈〈x, y〉〉 ∈ the internal relation ofL.

(19) LetR, Sbe non empty relational structures andmbe a map fromR into S. Suppose that

(i) R is quasi ordered,

(ii) S is antisymmetric,

(iii) S\` is well founded, and

(iv) for all elementsa, b of R holds if a≤ b, thenm(a) ≤ m(b) and if m(a) = m(b), then〈〈a,
b〉〉 ∈ EqRel(R).

ThenR\` is well founded.

Let R be a non empty relational structure and letN be a subset ofR. The functor MinClassesN
yielding a family of subsets ofR is defined by the condition (Def. 8).

(Def. 8) Letx be a set. Thenx∈MinClassesN if and only if there exists an elementy of R\` such
thaty is minimal w.r.t.N, the internal relation ofR\` andx = [y]EqRel(R)∩N.

We now state several propositions:

(20) LetR be a non empty relational structure,N be a subset ofR, andx be a set. SupposeR is
quasi ordered andx∈MinClassesN. Let y be an element ofR\`. If y∈ x, theny is minimal
w.r.t. N, the internal relation ofR\`.

(21) LetRbe a non empty relational structure. ThenR\` is well founded if and only if for every
subsetN of Rsuch thatN 6= /0 there exists a setx such thatx∈MinClassesN.

(22) LetR be a non empty relational structure,N be a subset ofR, andy be an element ofR\`.
If y is minimal w.r.t.N, the internal relation ofR\`, then MinClassesN is non empty.

(23) LetR be a non empty relational structure,N be a subset ofR, andx be a set. IfR is quasi
ordered andx∈MinClassesN, thenx is non empty.

(24) Let R be a non empty relational structure. SupposeR is quasi ordered. ThenR is con-
nected andR\` is well founded if and only if for every non empty subsetN of R holds

MinClassesN = 1.

(25) LetR be a non empty poset. Then the internal relation ofR well orders the carrier ofR if

and only if for every non empty subsetN of RholdsMinClassesN = 1.

Let Rbe a relational structure, letN be a subset ofR, and letB be a set. We say thatB is Dickson
basis ofN, R if and only if:

(Def. 9) B⊆N and for every elementa of Rsuch thata∈N there exists an elementb of Rsuch that
b∈ B andb≤ a.
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We now state two propositions:

(26) For every relational structureRholds /0 is Dickson basis of/0the carrier ofR, R.

(27) LetR be a non empty relational structure,N be a non empty subset ofR, andB be a set. If
B is Dickson basis ofN, R, thenB is non empty.

Let Rbe a relational structure. We say thatR is Dickson if and only if:

(Def. 10) For every subsetN of Rholds there exists a set which is Dickson basis ofN, Rand finite.

Next we state two propositions:

(28) For every non empty relational structureRsuch thatR\` is well founded andR is connected
holdsR is Dickson.

(29) LetR, Sbe relational structures. Suppose that

(i) the internal relation ofR⊆ the internal relation ofS,

(ii) R is Dickson, and

(iii) the carrier ofR= the carrier ofS.

ThenS is Dickson.

Let f be a function and letb be a set. Let us assume that domf = N andb∈ rng f . The functor
f mindexb yields a natural number and is defined as follows:

(Def. 11) f ( f mindexb) = b and for every natural numberi such thatf (i) = b holds f mindexb≤ i.

Let R be a non empty 1-sorted structure, letf be a sequence ofR, let b be a set, and letm be a
natural number. Let us assume that there exists a natural numberj such thatm< j and f ( j) = b.
The functorf mindex(b,m) yielding a natural number is defined by:

(Def. 12) f ( f mindex(b,m)) = b andm< f mindex(b,m) and for every natural numberi such that
m< i and f (i) = b holds f mindex(b,m)≤ i.

We now state several propositions:

(30) LetR be a non empty relational structure. SupposeR is quasi ordered and Dickson. Letf
be a sequence ofR. Then there exist natural numbersi, j such thati < j and f (i)≤ f ( j).

(31) LetR be a relational structure,N be a subset ofR, andx be an element ofR\`. SupposeR
is quasi ordered andx∈ N and (the internal relation ofR)-Seg(x)∩N⊆ [x]EqRel(R). Thenx is

minimal w.r.t.N, the internal relation ofR\`.

(32) Let R be a non empty relational structure. SupposeR is quasi ordered and for every se-
quencef of R there exist natural numbersi, j such thati < j and f (i)≤ f ( j). Let N be a non
empty subset ofR. Then MinClassesN is finite and MinClassesN is non empty.

(33) Let R be a non empty relational structure. SupposeR is quasi ordered and for every non
empty subsetN of R holds MinClassesN is finite and MinClassesN is non empty. ThenR is
Dickson.

(34) For every non empty relational structureR such thatR is quasi ordered and Dickson holds
R\` is well founded.

(35) LetRbe a non empty poset andN be a non empty subset ofR. SupposeR is Dickson. Then
there exists a setB such thatB is Dickson basis ofN, R and for every setC such thatC is
Dickson basis ofN, RholdsB⊆C.

Let R be a non empty relational structure and letN be a subset ofR. Let us assume thatR is
Dickson. The functor Dickson-Bases(N,R) yielding a non empty family of subsets ofR is defined
by:
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(Def. 13) For every setB holdsB∈ Dickson-Bases(N,R) iff B is Dickson basis ofN, R.

Next we state several propositions:

(36) LetR be a non empty relational structure ands be a sequence ofR. If R is Dickson, then
there exists a sequence ofRwhich is a subsequence ofs and weakly ascending.

(37) For every relational structureRsuch thatR is empty holdsR is Dickson.

(38) LetM, N be relational structures. SupposeM is Dickson andN is Dickson andM is quasi
ordered andN is quasi ordered. Then[:M, N :] is quasi ordered and[:M, N :] is Dickson.

(39) Let R, S be relational structures. SupposeR andS are isomorphic andR is Dickson and
quasi ordered. ThenS is quasi ordered and Dickson.

(40) Let p be a relational structure yielding many sorted set indexed by 1 andz be an element
of 1. Thenp(z) and∏ p are isomorphic.

Let X be a set, letp be a relational structure yielding many sorted set indexed byX, and letY be
a subset ofX. Note thatp�Y is relational structure yielding.

We now state three propositions:

(41) Letn be a non empty natural number andp be a relational structure yielding many sorted
set indexed byn. Then∏ p is non empty if and only ifp is nonempty.

(42) Letn be a non empty natural number,p be a relational structure yielding many sorted set
indexed byn+1, n1 be a subset ofn+1, andn2 be an element ofn+1. If n1 = n andn2 = n,
then[:∏(p�n1), p(n2) :] and∏ p are isomorphic.

(43) Letn be a non empty natural number andp be a relational structure yielding many sorted
set indexed byn. Suppose that for every elementi of n holdsp(i) is Dickson andp(i) is quasi
ordered. Then∏ p is quasi ordered and∏ p is Dickson.

Let p be a relational structure yielding many sorted set indexed by/0. One can check the follow-
ing observations:

∗ ∏ p is non empty,

∗ ∏ p is antisymmetric,

∗ ∏ p is quasi ordered, and

∗ ∏ p is Dickson.

The binary relation NATOrd onN is defined as follows:

(Def. 14) NATOrd= {〈〈x, y〉〉;x ranges over elements ofN, y ranges over elements ofN: x≤ y}.

The following four propositions are true:

(44) NATOrd is reflexive inN.

(45) NATOrd is antisymmetric inN.

(46) NATOrd is strongly connected inN.

(47) NATOrd is transitive inN.

The non empty relational structure OrderedNAT is defined by:

(Def. 15) OrderedNAT= 〈N,NATOrd〉.

One can check the following observations:
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∗ OrderedNAT is connected,

∗ OrderedNAT is Dickson,

∗ OrderedNAT is quasi ordered,

∗ OrderedNAT is antisymmetric,

∗ OrderedNAT is transitive, and

∗ OrderedNAT is well founded.

Let n be a natural number. One can check the following observations:

∗ ∏(n 7−→OrderedNAT) is non empty,

∗ ∏(n 7−→OrderedNAT) is Dickson,

∗ ∏(n 7−→OrderedNAT) is quasi ordered, and

∗ ∏(n 7−→OrderedNAT) is antisymmetric.

One can prove the following propositions:

(48) Let M be a relational structure. SupposeM is Dickson and quasi ordered. Then[:M,
OrderedNAT:] is quasi ordered and[:M, OrderedNAT:] is Dickson.

(49) LetR, Sbe non empty relational structures. Suppose that

(i) R is Dickson and quasi ordered,

(ii) S is quasi ordered,

(iii) the internal relation ofR⊆ the internal relation ofS, and

(iv) the carrier ofR= the carrier ofS.

ThenS\` is well founded.

(50) LetR be a non empty relational structure. SupposeR is quasi ordered. ThenR is Dickson
if and only if for every non empty relational structureSsuch thatS is quasi ordered and the
internal relation ofR⊆ the internal relation ofSand the carrier ofR= the carrier ofSholds
S\` is well founded.
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[9] Czesław Bylínski. Functions from a set to a set.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funct_
2.html.

[10] Czesław Bylínski. Partial functions.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/partfun1.html.

http://mizar.org/JFM/Vol1/card_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/wellord1.html
http://mizar.org/JFM/Vol1/wellord1.html
http://mizar.org/JFM/Vol2/card_3.html
http://mizar.org/JFM/Vol8/waybel_0.html
http://mizar.org/JFM/Vol8/waybel_0.html
http://mizar.org/JFM/Vol8/waybel_3.html
http://mizar.org/JFM/Vol8/waybel_3.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/partfun1.html


DICKSON’ S LEMMA 7

[11] Czesław Bylínski. Some basic properties of sets.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
zfmisc_1.html.
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