On the Decomposition of the Continuity

Marian Przemski Warsaw University Białystok

Summary. This article is devoted to functions of general topological spaces. A function from X to Y is A-continuous if the counterimage of every open set V of Y belongs to A, where A is a collection of subsets of X. We give the following characteristics of the continuity, called decomposition of continuity: A function f is continuous if and only if it is both A-continuous and B-continuous.

MML Identifier: DECOMP_1.

WWW: http://mizar.org/JFM/Vol6/decomp_1.html

The articles [3], [1], [2], and [4] provide the notation and terminology for this paper. Let T be a non empty topological space. A subset of T is called an α -set of T if:

(Def. 1) It \subseteq Int \overline{Intit} .

Let I_1 be a subset of T. We say that I_1 is semi-open if and only if:

(Def. 2) $I_1 \subseteq \overline{\operatorname{Int} I_1}$.

We say that I_1 is pre-open if and only if:

(Def. 3) $I_1 \subseteq \operatorname{Int} \overline{I_1}$.

We say that I_1 is pre-semi-open if and only if:

(Def. 4) $I_1 \subseteq \overline{\operatorname{Int} \overline{I_1}}$.

We say that I_1 is semi-pre-open if and only if:

(Def. 5) $I_1 \subseteq \overline{\operatorname{Int} I_1} \cup \operatorname{Int} \overline{I_1}$.

Let T be a non empty topological space and let B be a subset of T. The functor SInt(B) yielding a subset of T is defined as follows:

(Def. 6) $\operatorname{sInt}(B) = B \cap \overline{\operatorname{Int} B}$.

The functor pInt(B) yielding a subset of T is defined by:

(Def. 7) $\operatorname{pInt}(B) = B \cap \operatorname{Int} \overline{B}$.

The functor $\alpha Int(B)$ yielding a subset of T is defined as follows:

(Def. 8) $\alpha \operatorname{Int}(B) = B \cap \operatorname{Int} \overline{\operatorname{Int} B}$.

The functor psInt(B) yielding a subset of T is defined by:

```
(Def. 9) \operatorname{psInt}(B) = B \cap \overline{\operatorname{Int} \overline{B}}.
```

Let T be a non empty topological space and let B be a subset of T. The functor spInt(B) yields a subset of T and is defined as follows:

(Def. 10) $\operatorname{spInt}(B) = \operatorname{sInt}(B) \cup \operatorname{pInt}(B)$.

Let T be a non empty topological space. The functor T^{α} yields a family of subsets of T and is defined by:

- (Def. 11) $T^{\alpha} = \{B; B \text{ ranges over subsets of } T : B \text{ is an } \alpha\text{-set of } T\}.$ The functor SO(T) yielding a family of subsets of T is defined by:
- (Def. 12) $SO(T) = \{B; B \text{ ranges over subsets of } T : B \text{ is semi-open} \}.$ The functor PO(T) yielding a family of subsets of T is defined by:
- (Def. 13) $PO(T) = \{B; B \text{ ranges over subsets of } T : B \text{ is pre-open} \}.$ The functor SPO(T) yielding a family of subsets of T is defined as follows:
- (Def. 14) SPO $(T) = \{B; B \text{ ranges over subsets of } T : B \text{ is semi-pre-open} \}$. The functor PSO(T) yields a family of subsets of T and is defined by:
- (Def. 15) $PSO(T) = \{B; B \text{ ranges over subsets of } T : B \text{ is pre-semi-open} \}.$ The functor $D(c, \alpha)(T)$ yielding a family of subsets of T is defined by:
- (Def. 16) $D(c,\alpha)(T) = \{B; B \text{ ranges over subsets of } T : \operatorname{Int} B = \alpha \operatorname{Int}(B)\}.$ The functor D(c,p)(T) yielding a family of subsets of T is defined by:
- (Def. 17) $D(c,p)(T) = \{B; B \text{ ranges over subsets of } T \colon \text{Int } B = p\text{Int}(B)\}.$ The functor D(c,s)(T) yields a family of subsets of T and is defined as follows:
- (Def. 18) $D(c,s)(T) = \{B; B \text{ ranges over subsets of } T \colon \text{Int } B = s\text{Int}(B)\}.$ The functor D(c,ps)(T) yielding a family of subsets of T is defined by:
- (Def. 19) $D(c, ps)(T) = \{B; B \text{ ranges over subsets of } T : \text{Int } B = ps \text{Int}(B)\}.$ The functor $D(\alpha, p)(T)$ yields a family of subsets of T and is defined by:
- (Def. 20) $D(\alpha, p)(T) = \{B; B \text{ ranges over subsets of } T : \alpha Int(B) = pInt(B)\}.$ The functor $D(\alpha, s)(T)$ yields a family of subsets of T and is defined by:
- (Def. 21) $D(\alpha, s)(T) = \{B; B \text{ ranges over subsets of } T : \alpha Int(B) = sInt(B)\}.$ The functor $D(\alpha, ps)(T)$ yields a family of subsets of T and is defined as follows:
- (Def. 22) $D(\alpha, ps)(T) = \{B; B \text{ ranges over subsets of } T : \alpha Int(B) = psInt(B)\}.$ The functor D(p, sp)(T) yields a family of subsets of T and is defined by:
- (Def. 23) $D(p, sp)(T) = \{B; B \text{ ranges over subsets of } T : pInt(B) = spInt(B)\}.$ The functor D(p, ps)(T) yields a family of subsets of T and is defined by:
- (Def. 24) $D(p, ps)(T) = \{B; B \text{ ranges over subsets of } T : pInt(B) = psInt(B)\}.$ The functor D(sp, ps)(T) yields a family of subsets of T and is defined as follows:
- (Def. 25) $D(sp, ps)(T) = \{B; B \text{ ranges over subsets of } T: \text{spInt}(B) = \text{psInt}(B)\}.$

In the sequel T denotes a non empty topological space and B denotes a subset of T. The following propositions are true:

- (1) $\alpha Int(B) = pInt(B)$ iff sInt(B) = psInt(B).
- (2) B is an α -set of T iff $B = \alpha Int(B)$.
- (3) B is semi-open iff B = sInt(B).
- (4) B is pre-open iff B = pInt(B).
- (5) B is pre-semi-open iff B = psInt(B).
- (6) B is semi-pre-open iff B = spInt(B).
- (7) $T^{\alpha} \cap D(c, \alpha)(T) =$ the topology of T.
- (8) $SO(T) \cap D(c,s)(T) =$ the topology of T.
- (9) $PO(T) \cap D(c, p)(T) =$ the topology of T.
- (10) $PSO(T) \cap D(c, ps)(T) =$ the topology of T.
- (11) $PO(T) \cap D(\alpha, p)(T) = T^{\alpha}$.
- (12) $SO(T) \cap D(\alpha, s)(T) = T^{\alpha}$.
- (13) $PSO(T) \cap D(\alpha, ps)(T) = T^{\alpha}$.
- (14) SPO(T) \cap D(p, sp)(T) = PO(T).
- (15) $PSO(T) \cap D(p, ps)(T) = PO(T)$.
- (16) $PSO(T) \cap D(\alpha, p)(T) = SO(T)$.
- (17) $PSO(T) \cap D(sp, ps)(T) = SPO(T)$.

Let X, Y be non empty topological spaces and let f be a map from X into Y. We say that f is s-continuous if and only if:

(Def. 26) For every subset G of Y such that G is open holds $f^{-1}(G) \in SO(X)$.

We say that f is p-continuous if and only if:

(Def. 27) For every subset G of Y such that G is open holds $f^{-1}(G) \in PO(X)$.

We say that f is α -continuous if and only if:

(Def. 28) For every subset G of Y such that G is open holds $f^{-1}(G) \in X^{\alpha}$.

We say that f is ps-continuous if and only if:

(Def. 29) For every subset *G* of *Y* such that *G* is open holds $f^{-1}(G) \in PSO(X)$.

We say that f is sp-continuous if and only if:

(Def. 30) For every subset *G* of *Y* such that *G* is open holds $f^{-1}(G) \in SPO(X)$.

We say that f is (c, α) -continuous if and only if:

(Def. 31) For every subset *G* of *Y* such that *G* is open holds $f^{-1}(G) \in D(c, \alpha)(X)$.

We say that f is (c,s)-continuous if and only if:

(Def. 32) For every subset G of Y such that G is open holds $f^{-1}(G) \in D(c,s)(X)$.

We say that f is (c, p)-continuous if and only if:

- (Def. 33) For every subset G of Y such that G is open holds $f^{-1}(G) \in D(c,p)(X)$. We say that f is (c,ps)-continuous if and only if:
- (Def. 34) For every subset G of Y such that G is open holds $f^{-1}(G) \in D(c, ps)(X)$. We say that f is (α, p) -continuous if and only if:
- (Def. 35) For every subset G of Y such that G is open holds $f^{-1}(G) \in D(\alpha, p)(X)$. We say that f is (α, s) -continuous if and only if:
- (Def. 36) For every subset G of Y such that G is open holds $f^{-1}(G) \in D(\alpha, s)(X)$. We say that f is (α, ps) -continuous if and only if:
- (Def. 37) For every subset G of Y such that G is open holds $f^{-1}(G) \in D(\alpha, ps)(X)$. We say that f is (p, ps)-continuous if and only if:
- (Def. 38) For every subset G of Y such that G is open holds $f^{-1}(G) \in D(p, ps)(X)$. We say that f is (p, sp)-continuous if and only if:
- (Def. 39) For every subset G of Y such that G is open holds $f^{-1}(G) \in D(p, sp)(X)$. We say that f is (sp, ps)-continuous if and only if:
- (Def. 40) For every subset G of Y such that G is open holds $f^{-1}(G) \in D(sp, ps)(X)$. In the sequel X, Y denote non empty topological spaces and f denotes a map from X into Y. One can prove the following propositions:
 - (18) f is α -continuous iff f is p-continuous and (α, p) -continuous.
 - (19) f is α -continuous iff f is s-continuous and (α, s) -continuous.
 - (20) f is α -continuous iff f is ps-continuous and (α, ps) -continuous.
 - (21) f is p-continuous iff f is sp-continuous and (p, sp)-continuous.
 - (22) f is p-continuous iff f is ps-continuous and (p, ps)-continuous.
 - (23) f is s-continuous iff f is ps-continuous and (α, p) -continuous.
 - (24) f is sp-continuous iff f is ps-continuous and (sp, ps)-continuous.
 - (25) f is continuous iff f is α -continuous and (c, α) -continuous.
 - (26) f is continuous iff f is s-continuous and (c,s)-continuous.
 - (27) f is continuous iff f is p-continuous and (c, p)-continuous.
 - (28) f is continuous iff f is ps-continuous and (c, ps)-continuous.

ACKNOWLEDGMENTS

The author wishes to thank Professor A. Trybulec for many helpful talks during the preparation of this paper.

REFERENCES

- [1] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [2] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [3] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [4] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/tops_1.html.

Received December 12, 1994

Published January 2, 2004