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Summary. This article is devoted to functions of general topological spaces. A func-
tion from X to Y is A-continuous if the counterimage of every open setV of Y belongs toA,
whereA is a collection of subsets ofX. We give the following characteristics of the conti-
nuity, called decomposition of continuity: A functionf is continuous if and only if it is both
A-continuous andB-continuous.

MML Identifier: DECOMP_1.

WWW: http://mizar.org/JFM/Vol6/decomp_1.html

The articles [3], [1], [2], and [4] provide the notation and terminology for this paper.
Let T be a non empty topological space. A subset ofT is called anα-set ofT if:

(Def. 1) It⊆ Int Int it.

Let I1 be a subset ofT. We say thatI1 is semi-open if and only if:

(Def. 2) I1 ⊆ Int I1.

We say thatI1 is pre-open if and only if:

(Def. 3) I1 ⊆ Int I1.

We say thatI1 is pre-semi-open if and only if:

(Def. 4) I1 ⊆ Int I1.

We say thatI1 is semi-pre-open if and only if:

(Def. 5) I1 ⊆ Int I1∪ Int I1.

Let T be a non empty topological space and letB be a subset ofT. The functor sInt(B) yielding
a subset ofT is defined as follows:

(Def. 6) sInt(B) = B∩ IntB.

The functor pInt(B) yielding a subset ofT is defined by:

(Def. 7) pInt(B) = B∩ IntB.

The functorαInt(B) yielding a subset ofT is defined as follows:

(Def. 8) αInt(B) = B∩ Int IntB.

The functor psInt(B) yielding a subset ofT is defined by:
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(Def. 9) psInt(B) = B∩ IntB.

Let T be a non empty topological space and letB be a subset ofT. The functor spInt(B) yields
a subset ofT and is defined as follows:

(Def. 10) spInt(B) = sInt(B)∪pInt(B).

Let T be a non empty topological space. The functorTα yields a family of subsets ofT and is
defined by:

(Def. 11) Tα = {B;B ranges over subsets ofT: B is anα-set ofT}.

The functor SO(T) yielding a family of subsets ofT is defined by:

(Def. 12) SO(T) = {B;B ranges over subsets ofT: B is semi-open}.

The functor PO(T) yielding a family of subsets ofT is defined by:

(Def. 13) PO(T) = {B;B ranges over subsets ofT: B is pre-open}.

The functor SPO(T) yielding a family of subsets ofT is defined as follows:

(Def. 14) SPO(T) = {B;B ranges over subsets ofT: B is semi-pre-open}.

The functor PSO(T) yields a family of subsets ofT and is defined by:

(Def. 15) PSO(T) = {B;B ranges over subsets ofT: B is pre-semi-open}.

The functorD(c,α)(T) yielding a family of subsets ofT is defined by:

(Def. 16) D(c,α)(T) = {B;B ranges over subsets ofT: IntB = αInt(B)}.

The functorD(c, p)(T) yielding a family of subsets ofT is defined by:

(Def. 17) D(c, p)(T) = {B;B ranges over subsets ofT: IntB = pInt(B)}.

The functorD(c,s)(T) yields a family of subsets ofT and is defined as follows:

(Def. 18) D(c,s)(T) = {B;B ranges over subsets ofT: IntB = sInt(B)}.

The functorD(c, ps)(T) yielding a family of subsets ofT is defined by:

(Def. 19) D(c, ps)(T) = {B;B ranges over subsets ofT: IntB = psInt(B)}.

The functorD(α, p)(T) yields a family of subsets ofT and is defined by:

(Def. 20) D(α, p)(T) = {B;B ranges over subsets ofT: αInt(B) = pInt(B)}.

The functorD(α,s)(T) yields a family of subsets ofT and is defined by:

(Def. 21) D(α,s)(T) = {B;B ranges over subsets ofT: αInt(B) = sInt(B)}.

The functorD(α, ps)(T) yields a family of subsets ofT and is defined as follows:

(Def. 22) D(α, ps)(T) = {B;B ranges over subsets ofT: αInt(B) = psInt(B)}.

The functorD(p,sp)(T) yields a family of subsets ofT and is defined by:

(Def. 23) D(p,sp)(T) = {B;B ranges over subsets ofT: pInt(B) = spInt(B)}.

The functorD(p, ps)(T) yields a family of subsets ofT and is defined by:

(Def. 24) D(p, ps)(T) = {B;B ranges over subsets ofT: pInt(B) = psInt(B)}.

The functorD(sp, ps)(T) yields a family of subsets ofT and is defined as follows:

(Def. 25) D(sp, ps)(T) = {B;B ranges over subsets ofT: spInt(B) = psInt(B)}.
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In the sequelT denotes a non empty topological space andB denotes a subset ofT.
The following propositions are true:

(1) αInt(B) = pInt(B) iff sInt(B) = psInt(B).

(2) B is anα-set ofT iff B = αInt(B).

(3) B is semi-open iffB = sInt(B).

(4) B is pre-open iffB = pInt(B).

(5) B is pre-semi-open iffB = psInt(B).

(6) B is semi-pre-open iffB = spInt(B).

(7) Tα∩D(c,α)(T) = the topology ofT.

(8) SO(T)∩D(c,s)(T) = the topology ofT.

(9) PO(T)∩D(c, p)(T) = the topology ofT.

(10) PSO(T)∩D(c, ps)(T) = the topology ofT.

(11) PO(T)∩D(α, p)(T) = Tα.

(12) SO(T)∩D(α,s)(T) = Tα.

(13) PSO(T)∩D(α, ps)(T) = Tα.

(14) SPO(T)∩D(p,sp)(T) = PO(T).

(15) PSO(T)∩D(p, ps)(T) = PO(T).

(16) PSO(T)∩D(α, p)(T) = SO(T).

(17) PSO(T)∩D(sp, ps)(T) = SPO(T).

Let X, Y be non empty topological spaces and letf be a map fromX into Y. We say thatf is
s-continuous if and only if:

(Def. 26) For every subsetG of Y such thatG is open holdsf−1(G) ∈ SO(X).

We say thatf is p-continuous if and only if:

(Def. 27) For every subsetG of Y such thatG is open holdsf−1(G) ∈ PO(X).

We say thatf is α-continuous if and only if:

(Def. 28) For every subsetG of Y such thatG is open holdsf−1(G) ∈ Xα.

We say thatf is ps-continuous if and only if:

(Def. 29) For every subsetG of Y such thatG is open holdsf−1(G) ∈ PSO(X).

We say thatf is sp-continuous if and only if:

(Def. 30) For every subsetG of Y such thatG is open holdsf−1(G) ∈ SPO(X).

We say thatf is (c,α)-continuous if and only if:

(Def. 31) For every subsetG of Y such thatG is open holdsf−1(G) ∈ D(c,α)(X).

We say thatf is (c,s)-continuous if and only if:

(Def. 32) For every subsetG of Y such thatG is open holdsf−1(G) ∈ D(c,s)(X).

We say thatf is (c, p)-continuous if and only if:
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(Def. 33) For every subsetG of Y such thatG is open holdsf−1(G) ∈ D(c, p)(X).

We say thatf is (c, ps)-continuous if and only if:

(Def. 34) For every subsetG of Y such thatG is open holdsf−1(G) ∈ D(c, ps)(X).

We say thatf is (α, p)-continuous if and only if:

(Def. 35) For every subsetG of Y such thatG is open holdsf−1(G) ∈ D(α, p)(X).

We say thatf is (α,s)-continuous if and only if:

(Def. 36) For every subsetG of Y such thatG is open holdsf−1(G) ∈ D(α,s)(X).

We say thatf is (α, ps)-continuous if and only if:

(Def. 37) For every subsetG of Y such thatG is open holdsf−1(G) ∈ D(α, ps)(X).

We say thatf is (p, ps)-continuous if and only if:

(Def. 38) For every subsetG of Y such thatG is open holdsf−1(G) ∈ D(p, ps)(X).

We say thatf is (p,sp)-continuous if and only if:

(Def. 39) For every subsetG of Y such thatG is open holdsf−1(G) ∈ D(p,sp)(X).

We say thatf is (sp, ps)-continuous if and only if:

(Def. 40) For every subsetG of Y such thatG is open holdsf−1(G) ∈ D(sp, ps)(X).

In the sequelX, Y denote non empty topological spaces andf denotes a map fromX into Y.
One can prove the following propositions:

(18) f is α-continuous iff f is p-continuous and(α, p)-continuous.

(19) f is α-continuous iff f is s-continuous and(α,s)-continuous.

(20) f is α-continuous iff f is ps-continuous and(α, ps)-continuous.

(21) f is p-continuous iff f is sp-continuous and(p,sp)-continuous.

(22) f is p-continuous iff f is ps-continuous and(p, ps)-continuous.

(23) f is s-continuous iff f is ps-continuous and(α, p)-continuous.

(24) f is sp-continuous iff f is ps-continuous and(sp, ps)-continuous.

(25) f is continuous ifff is α-continuous and(c,α)-continuous.

(26) f is continuous ifff is s-continuous and(c,s)-continuous.

(27) f is continuous ifff is p-continuous and(c, p)-continuous.

(28) f is continuous ifff is ps-continuous and(c, ps)-continuous.
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