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Summary. This article is devoted to functions of general topological spaces. A func-
tion from X to Y is A-continuous if the counterimage of every open\éaif Y belongs toA,
whereA is a collection of subsets of. We give the following characteristics of the conti-
nuity, called decomposition of continuity: A functidhis continuous if and only if it is both
A-continuous an@-continuous.

MML Identifier: DECOMP_1.

WWW: http://mizar.org/JFM/Vol6/decomp_1.html

The articlesl[3],[[1],[[2], and_[4] provide the notation and terminology for this paper.
Let T be a non empty topological space. A subset @ called am-set of T if:

(Def. 1) 1t C Intintit.
Letl; be a subset of . We say that; is semi-open if and only if:
(Def. 2) 11 Clntl;.
We say that; is pre-open if and only if:
(Def. 3) 1 C Intl;.
We say that; is pre-semi-open if and only if:
(Def. 4) 11 C Intly.
We say that; is semi-pre-open if and only if:
(Def.5) 11 CIntl Ulntly.

Let T be a non empty topological space andBeie a subset of . The functor sIntB) yielding
a subset ofl is defined as follows:

(Def. 6) sIn{B) =BNIntB.

The functor pIn{B) yielding a subset of is defined by:
(Def. 7) pIn{B) =BNIntB.

The functoralnt(B) yielding a subset of is defined as follows:
(Def. 8) alnt(B) =BnIntIntB.

The functor psIntB) yielding a subset of is defined by:
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(Def. 9) psintB) = BN IntB.

Let T be a non empty topological space andBdie a subset of . The functor spIntB) yields
a subset off and is defined as follows:

(Def. 10) spIntB) = sInt(B) UpInt(B).

Let T be a non empty topological space. The fun&8ryields a family of subsets of and is
defined by:

(Def. 11) TY ={B;Branges over subsets &f B is ana-set ofT }.

The functor SQT) yielding a family of subsets of is defined by:
(Def. 12) SQT) = {B;B ranges over subsets of B is semi-ope.

The functor PQT) yielding a family of subsets of is defined by:
(Def. 13) PQdT) = {B;Branges over subsets of B is pre-open.

The functor SPQT) yielding a family of subsets ofF is defined as follows:
(Def. 14) SPQT) = {B;B ranges over subsets of B is semi-pre-opeh

The functor PSQT) yields a family of subsets df and is defined by:
(Def. 15) PSQT) = {B;B ranges over subsets ©f B is pre-semi-opeh

The functorD(c,a)(T) yielding a family of subsets df is defined by:
(Def. 16) D(c,a)(T) = {B;Branges over subsets of IntB = alInt(B)}.

The functorD(c, p)(T) yielding a family of subsets of is defined by:
(Def. 17) D(c,p)(T) = {B;B ranges over subsets of IntB = pInt(B)}.

The functorD(c, s)(T) yields a family of subsets df and is defined as follows:
(Def. 18) D(c,s)(T) = {B;Branges over subsets of IntB = sInt(B)}.

The functorD(c, ps)(T) yielding a family of subsets dF is defined by:

(Def. 19) D(c, ps)(T) = {B;Branges over subsets of IntB = psin{B)}.

The functorD(a, p)(T) yields a family of subsets of and is defined by:
(Def. 20) D(a,p)(T) = {B;Branges over subsets of alnt(B) = pInt(B)}.

The functorD(a, s)(T) yields a family of subsets df and is defined by:
(Def. 21) D(a,s)(T) = {B; B ranges over subsets ®f alnt(B) = sInt(B)}.

The functorD(a, ps)(T) yields a family of subsets df and is defined as follows:
(Def. 22) D(a, ps)(T) = {B;Branges over subsets of alnt(B) = psin{B)}.
The functorD(p,sp)(T) yields a family of subsets df and is defined by:

(Def. 23) D(p,sp)(T) = {B;Branges over subsets of pint(B) = spIntB)}.
The functorD(p, ps)(T) yields a family of subsets &f and is defined by:
(Def. 24) D(p, ps)(T) = {B;Branges over subsets ©f pint(B) = psintB)}.
The functorD(sp ps)(T) yields a family of subsets of and is defined as follows:

(Def. 25) D(sp ps)(T) = {B; B ranges over subsets ©f spint{B) = psint{B)}.
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In the sequel denotes a non empty topological space Brienotes a subset of.
The following propositions are true:

(1) alnt(B) = pint(B) iff sint(B) = psInt{B).

(2) Bisana-setofT iff B=alnt(B).

(3) Bis semi-open ifB = sInt(B).

(4) Bis pre-open iffB = pInt(B).

(5) Bis pre-semi-open ifB = psintB).

(6) Bis semi-pre-open ifB = spintB).

(7) TYND(c,a)(T) = the topology ofT.

(8) SAT)ND(c,s)(T) = the topology ofT.

(9) POT)ND(c,p)(T) =the topology ofT.
(10) PSQT)ND(c, ps)(T) = the topology ofT .
(11) PQT)ND(a,p)(T) =T
(12) sQT)ND(a,s)(T)=TC.

(
a, ps)

)
(13) PSQT)ND( (T)y=T%
(14) SPQT)ND(p,sp)(T) =PAT)
(15) PSQ@T)ND(p,ps)(T) = PAT)
(16) PSQT)ND(a,p)(T)=SA(T)
(17) PSQT)ND(sp ps)(T)=SPAT)

Let X, Y be non empty topological spaces andfldie a map fronX into Y. We say thatff is
s-continuous if and only if:

(Def. 26) For every subs& of Y such thaG is open holds ~1(G) € SO(X).
We say thatf is p-continuous if and only if:

(Def. 27)  For every subs@ of Y such thaiG is open holds ~1(G) € PO(X).
We say thaff is a-continuous if and only if:

(Def. 28) For every subs@ of Y such thaiG is open holds ~1(G) € X¢.
We say thaff is ps-continuous if and only if:

(Def. 29) For every subs@ of Y such thatG is open holds ~1(G) € PSQX).
We say thatf is sp-continuous if and only if:

(Def. 30) For every subs@ of Y such thaiG is open holds ~1(G) € SPQX).
We say thaff is (c,a)-continuous if and only if:

(Def. 31) For every subs@ of Y such thatG is open holds ~%(G) € D(c,a)(X).
We say thaff is (c,s)-continuous if and only if:

(Def. 32) For every subs& of Y such thatG is open holds ~1(G) € D(c,s)(X).

We say thaff is (c, p)-continuous if and only if:
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(Def. 33) For every subs& of Y such thatG is open holds ~%(G) € D(c, p)(X).
We say thaff is (c, ps)-continuous if and only if:

(Def. 34) For every subs@ of Y such thatG is open holds ~1(G) € D(c, ps)(X).
We say thaff is (a, p)-continuous if and only if:

(Def. 35) For every subs@ of Y such thatG is open holds ~1(G) € D(a, p)(X).
We say thaff is (a,s)-continuous if and only if:

(Def. 36) For every subs& of Y such thaiG is open holds ~1(G) € D(a, s)(X).
We say thaff is (a, ps)-continuous if and only if:

(Def. 37) For every subs& of Y such that is open holds ~1(G) € D(a, ps)(X).
We say thaff is (p, ps)-continuous if and only if:

(Def. 38) For every subs& of Y such thaiG is open holds ~1(G) € D(p, ps)(X).
We say thaff is (p,sp)-continuous if and only if:

(Def. 39) For every subs& of Y such thatG is open holds ~1(G) € D(p,sp)(X).
We say thaff is (sp, ps)-continuous if and only if:

(Def. 40) For every subs& of Y such thaiG is open holds ~1(G) € D(sp, ps)(X).

In the sequek, Y denote non empty topological spaces drdenotes a map frord into Y.
One can prove the following propositions:

(18) f isa-continuous ifff is p-continuous anda, p)-continuous.
(19) fisa-continuous ifff is s-continuous anda, s)-continuous.
(20) f isa-continuous ifff is pscontinuous anda, ps)-continuous.
(21) fis p-continuous ifff is sp-continuous andp, sp)-continuous.
(22) fis p-continuous ifff is ps-continuous andp, ps)-continuous.
(23) fiss-continuous ifff is ps-continuous anda, p)-continuous.
(24) fisspcontinuous ifff is ps-continuous andsp, ps)-continuous.
(25) fis continuous ifff is a-continuous andc, a)-continuous.

(26) fis continuous ifff is s-continuous andc, s)-continuous.

(27) fis continuous ifff is p-continuous andc, p)-continuous.

(28) f is continuous ifff is pscontinuous andc, ps)-continuous.
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