A First-Order Predicate Calculus

Agata Darmochwał Warsaw University
Białystok

Abstract

Summary. A continuation of [7], with an axiom system of first-order predicate theory. The consequence Cn of a set of formulas X is defined as the intersection of all theories containing X and some basic properties of it has been proved (monotonicity, idempotency, completeness etc.). The notion of a proof of given formula is also introduced and it is shown that $\mathrm{Cn} X=\{p: p$ has a proof w.r.t. $X\}$. First 14 theorems are rather simple facts. I just wanted them to be included in the data base.

MML Identifier: CQC_THE1.
WWW:|http://mizar.org/JFM/Vol2/cqc_the1.html

The articles [10], [6], [12], [2], [13], [5], [3], [1], [8], [4], [11], [9], and [7] provide the notation and terminology for this paper.

In this paper n is a natural number.
Next we state several propositions:
(2) If $n \leq 1$, then $n=0$ or $n=1$.
(3) If $n \leq 2$, then $n=0$ or $n=1$ or $n=2$.
(4) If $n \leq 3$, then $n=0$ or $n=1$ or $n=2$ or $n=3$
(5) If $n \leq 4$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$.
(6) If $n \leq 5$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$ or $n=5$.
(7) If $n \leq 6$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$ or $n=5$ or $n=6$.
(8) If $n \leq 7$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$ or $n=5$ or $n=6$ or $n=7$.
(9) If $n \leq 8$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$ or $n=5$ or $n=6$ or $n=7$ or $n=8$,
(10) If $n \leq 9$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$ or $n=5$ or $n=6$ or $n=7$ or $n=8$ or $n=9$.

In the sequel i, j, n, k, l are natural numbers.
One can prove the following propositions:

$$
\begin{equation*}
\{k: k \leq n+1\}=\{i: i \leq n\} \cup\{n+1\} . \tag{11}
\end{equation*}
$$

(12) For every n holds $\{k: k \leq n\}$ is finite.

[^0]In the sequel X, Y, Z denote sets.
Next we state two propositions:
(13) If X is finite and $X \subseteq[: Y, Z:]$, then there exist sets A, B such that A is finite and $A \subseteq Y$ and B is finite and $B \subseteq Z$ and $X \subseteq[: A, B:]$.
(14) If X is finite and Z is finite and $X \subseteq[: Y, Z:]$, then there exists a set A such that A is finite and $A \subseteq Y$ and $X \subseteq[: A, Z:]$.

For simplicity, we adopt the following rules: T, S, X, Y denote subsets of CQC-WFF, p, q, r, t, F denote elements of CQC-WFF, s denotes a formula, and x, y denote bound variables.

Let us consider T. We say that T is a theory if and only if the conditions (Def. 1) are satisfied.
(Def. 1)(i) \quad VERUM $\in T$, and
(ii) for all p, q, r, s, x, y holds $(\neg p \Rightarrow p) \Rightarrow p \in T$ and $p \Rightarrow(\neg p \Rightarrow q) \in T$ and $(p \Rightarrow q) \Rightarrow$ $(\neg(q \wedge r) \Rightarrow \neg(p \wedge r)) \in T$ and $p \wedge q \Rightarrow q \wedge p \in T$ and if $p \in T$ and $p \Rightarrow q \in T$, then $q \in T$ and $\forall_{x} p \Rightarrow p \in T$ and if $p \Rightarrow q \in T$ and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_{x} q \in T$ and if $s(x) \in \mathrm{CQC}-\mathrm{WFF}$ and $s(y) \in \mathrm{CQC}-\mathrm{WFF}$ and $x \notin \operatorname{snb}(s)$ and $s(x) \in T$, then $s(y) \in T$.

We introduce T is a theory as a synonym of T is a theory.
We now state the proposition
$(25)^{2}$ If T is a theory and S is a theory, then $T \cap S$ is a theory.
Let us consider X. The functor $\mathrm{Cn} X$ yielding a subset of CQC-WFF is defined as follows:
(Def. 2) $t \in \operatorname{Cn} X$ iff for every T such that T is a theory and $X \subseteq T$ holds $t \in T$.
Next we state a number of propositions:
(27) VERUM $\in \mathrm{Cn} X$.
(28) $(\neg p \Rightarrow p) \Rightarrow p \in \mathrm{Cn} X$.
(29) $p \Rightarrow(\neg p \Rightarrow q) \in \mathrm{Cn} X$.
(30) $\quad(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r)) \in \operatorname{Cn} X$.
(31) $p \wedge q \Rightarrow q \wedge p \in \mathrm{Cn} X$.
(32) If $p \in \operatorname{Cn} X$ and $p \Rightarrow q \in \operatorname{Cn} X$, then $q \in \operatorname{Cn} X$.
(33) $\forall_{x} p \Rightarrow p \in \operatorname{Cn} X$.
(34) If $p \Rightarrow q \in \operatorname{Cn} X$ and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_{x} q \in \operatorname{Cn} X$.
(35) If $s(x) \in \mathrm{CQC}-\mathrm{WFF}$ and $s(y) \in \mathrm{CQC}-\mathrm{WFF}$ and $x \notin \operatorname{snb}(s)$ and $s(x) \in \mathrm{Cn} X$, then $s(y) \in$ $\mathrm{Cn} X$.
(36) $\mathrm{Cn} X$ is a theory.
(37) If T is a theory and $X \subseteq T$, then $\operatorname{Cn} X \subseteq T$.
(38) $X \subseteq \operatorname{Cn} X$.
(39) If $X \subseteq Y$, then $\mathrm{Cn} X \subseteq \operatorname{Cn} Y$.
(40) $\operatorname{CnCn} X=\operatorname{Cn} X$.
(41) T is a theory iff $\operatorname{Cn} T=T$.

[^1]The set \mathbb{K} is defined as follows:
(Def. 3) $\mathbb{K}=\{k: k \leq 9\}$.
Let us observe that \mathbb{K} is non empty.
The following two propositions are true:
(43) $0 \in \mathbb{K}$ and $1 \in \mathbb{K}$ and $2 \in \mathbb{K}$ and $3 \in \mathbb{K}$ and $4 \in \mathbb{K}$ and $5 \in \mathbb{K}$ and $6 \in \mathbb{K}$ and $7 \in \mathbb{K}$ and $8 \in \mathbb{K}$ and $9 \in \mathbb{K}$.
(44) \mathbb{K} is finite.

In the sequel f, g are finite sequences of elements of $[: C Q C-W F F, \mathbb{K}:]$.
We now state the proposition
(45) Suppose $1 \leq n$ and $n \leq \operatorname{len} f$. Then $f(n)_{\mathbf{2}}=0$ or $f(n)_{\mathbf{2}}=1$ or $f(n)_{\mathbf{2}}=2$ or $f(n)_{\mathbf{2}}=3$ or $f(n)_{\mathbf{2}}=4$ or $f(n)_{\mathbf{2}}=5$ or $f(n)_{\mathbf{2}}=6$ or $f(n)_{\mathbf{2}}=7$ or $f(n)_{\mathbf{2}}=8$ or $f(n)_{\mathbf{2}}=9$.

Let P_{1} be a finite sequence of elements of [:CQC-WFF, \mathbb{K} :] and let us consider n, X. We say that $P_{1}(n)$ is a correct proof step w.r.t. X if and only if:
(Def. 4)(i) $\quad P_{1}(n)_{\mathbf{1}} \in X$ if $P_{1}(n)_{\mathbf{2}}=0$,
(ii) $\quad P_{1}(n)_{\mathbf{1}}=$ VERUM if $P_{1}(n)_{\mathbf{2}}=1$,
(iii) there exists p such that $P_{1}(n)_{\mathbf{1}}=(\neg p \Rightarrow p) \Rightarrow p$ if $P_{1}(n)_{\mathbf{2}}=2$,
(iv) there exist p, q such that $P_{1}(n)_{\mathbf{1}}=p \Rightarrow(\neg p \Rightarrow q)$ if $P_{1}(n)_{\mathbf{2}}=3$,
(v) there exist p, q, r such that $P_{1}(n)_{\mathbf{1}}=(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r))$ if $P_{1}(n)_{\mathbf{2}}=4$,
(vi) there exist p, q such that $P_{1}(n)_{\mathbf{1}}=p \wedge q \Rightarrow q \wedge p$ if $P_{1}(n)_{\mathbf{2}}=5$,
(vii) there exist p, x such that $P_{1}(n)_{\mathbf{1}}=\forall_{x} p \Rightarrow p$ if $P_{1}(n)_{\mathbf{2}}=6$,
(viii) there exist i, j, p, q such that $1 \leq i$ and $i<n$ and $1 \leq j$ and $j<i$ and $p=P_{1}(j)_{\mathbf{1}}$ and $q=P_{1}(n)_{\mathbf{1}}$ and $P_{1}(i)_{\mathbf{1}}=p \Rightarrow q$ if $P_{1}(n)_{\mathbf{2}}=7$,
(ix) there exist i, p, q, x such that $1 \leq i$ and $i<n$ and $P_{1}(i)_{\mathbf{1}}=p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$ and $P_{1}(n)_{\mathbf{1}}=p \Rightarrow \forall_{x} q$ if $P_{1}(n)_{\mathbf{2}}=8$,
(x) there exist i, x, y, s such that $1 \leq i$ and $i<n$ and $s(x) \in$ CQC-WFF and $s(y) \in \mathrm{CQC}-\mathrm{WFF}$ and $x \notin \operatorname{snb}(s)$ and $s(x)=P_{1}(i)_{\mathbf{1}}$ and $s(y)=P_{1}(n)_{\mathbf{1}}$ if $P_{1}(n)_{\mathbf{2}}=9$.

Let us consider X, f. We say that f is a proof w.r.t. X if and only if:
(Def. 5) $f \neq \emptyset$ and for every n such that $1 \leq n$ and $n \leq \operatorname{len} f$ holds $f(n)$ is a correct proof step w.r.t. X.

We now state several propositions:
$(57)^{5}$ If f is a proof w.r.t. X, then $\operatorname{rng} f \neq \emptyset$.
(58) If f is a proof w.r.t. X, then $1 \leq \operatorname{len} f$.
(59) If f is a proof w.r.t. X, then $f(1)_{\mathbf{2}}=0$ or $f(1)_{\mathbf{2}}=1$ or $f(1)_{\mathbf{2}}=2$ or $f(1)_{\mathbf{2}}=3$ or $f(1)_{\mathbf{2}}=4$ or $f(1)_{2}=5$ or $f(1)_{2}=6$.
(60) Suppose $1 \leq n$ and $n \leq \operatorname{len} f$. Then $f(n)$ is a correct proof step w.r.t. X if and only if $f^{\wedge} g$ (n) is a correct proof step w.r.t. X.
(61) Suppose $1 \leq n$ and $n \leq \operatorname{len} g$ and $g(n)$ is a correct proof step w.r.t. X. Then $f^{\wedge} g(n+\operatorname{len} f$) is a correct proof step w.r.t. X.
(62) If f is a proof w.r.t. X and g is a proof w.r.t. X, then $f^{\wedge} g$ is a proof w.r.t. X.

[^2](63) If f is a proof w.r.t. X and $X \subseteq Y$, then f is a proof w.r.t. Y.
(64) If f is a proof w.r.t. X and $1 \leq l$ and $l \leq \operatorname{len} f$, then $f(l)_{\mathbf{1}} \in \operatorname{Cn} X$.

Let us consider f. Let us assume that $f \neq \emptyset$. The functor Effect f yields an element of CQC-WFF and is defined as follows:
(Def. 6) $\quad \operatorname{Effect} f=f(\operatorname{len} f)_{\mathbf{1}}$.
Next we state several propositions:
(66) If f is a proof w.r.t. X, then Effect $f \in \operatorname{Cn} X$.
(67) $X \subseteq\left\{F: \bigvee_{f}(f\right.$ is a proof w.r.t. $X \wedge$ Effect $\left.f=F)\right\}$.
(68) For every X such that $Y=\left\{p: \bigvee_{f}(f\right.$ is a proof w.r.t. $X \wedge$ Effect $\left.f=p)\right\}$ holds Y is a theory.
(69) For every X holds $\left\{p: \bigvee_{f}(f\right.$ is a proof w.r.t. $\left.X \wedge \operatorname{Effect} f=p)\right\}=\operatorname{Cn} X$.
(70) $\quad p \in \operatorname{Cn} X$ iff there exists f such that f is a proof w.r.t. X and Effect $f=p$.
(71) If $p \in \operatorname{Cn} X$, then there exists Y such that $Y \subseteq X$ and Y is finite and $p \in \operatorname{Cn} Y$.

The subset Taut of CQC-WFF is defined as follows:
(Def. 8$)^{7}$ Taut $=\operatorname{Cn}\left(\emptyset_{\mathrm{CQC}-\mathrm{wFF}}\right)$.
We now state a number of propositions:
$(74)^{8}$ If T is a theory, then Taut $\subseteq T$.
(75) \quad Taut $\subseteq \operatorname{Cn} X$.
(76) Taut is a theory.
(77) VERUM \in Taut.
(78) $(\neg p \Rightarrow p) \Rightarrow p \in$ Taut.
(79) $\quad p \Rightarrow(\neg p \Rightarrow q) \in$ Taut.
(80) $\quad(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r)) \in$ Taut.
(81) $p \wedge q \Rightarrow q \wedge p \in$ Taut.
(82) If $p \in$ Taut and $p \Rightarrow q \in$ Taut, then $q \in$ Taut.
(83) $\forall_{x} p \Rightarrow p \in$ Taut.
(84) If $p \Rightarrow q \in$ Taut and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_{x} q \in$ Taut.
(85) If $s(x) \in \mathrm{CQC}-\mathrm{WFF}$ and $s(y) \in \mathrm{CQC}-\mathrm{WFF}$ and $x \notin \operatorname{snb}(s)$ and $s(x) \in$ Taut, then $s(y) \in$ Taut.

Let us consider X, s. The predicate $X \vdash s$ is defined as follows:
(Def. 9) $s \in \operatorname{Cn} X$.
One can prove the following propositions:
(87) $X \vdash$ VERUM .

[^3](88) $X \vdash(\neg p \Rightarrow p) \Rightarrow p$.
(89) $X \vdash p \Rightarrow(\neg p \Rightarrow q)$.
(90) $X \vdash(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r))$.
(91) $X \vdash p \wedge q \Rightarrow q \wedge p$.
(92) If $X \vdash p$ and $X \vdash p \Rightarrow q$, then $X \vdash q$.
(93) $X \vdash \forall_{x} p \Rightarrow p$.
(94) If $X \vdash p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$, then $X \vdash p \Rightarrow \forall_{x} q$.
(95) If $s(x) \in \mathrm{CQC}-\mathrm{WFF}$ and $s(y) \in \mathrm{CQC}-\mathrm{WFF}$ and $x \notin \operatorname{snb}(s)$ and $X \vdash s(x)$, then $X \vdash s(y)$.

Let us consider s. We say that s is valid if and only if:
(Def. 10) $\emptyset_{\mathrm{CQC}-\mathrm{wFF}} \vdash s$.
We introduce $\vdash s$ as a synonym of s is valid.
Let us consider s. Let us observe that s is valid if and only if:
(Def. 11) $s \in$ Taut.
Next we state a number of propositions:
(98 $\sqrt{10}$ If $\vdash p$, then $X \vdash p$.
(99) \vdash VERUM.
(100) $\vdash(\neg p \Rightarrow p) \Rightarrow p$.
(101) $\vdash p \Rightarrow(\neg p \Rightarrow q)$.
(102) $\vdash(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r))$.
(103) $\vdash p \wedge q \Rightarrow q \wedge p$.
(104) If $\vdash p$ and $\vdash p \Rightarrow q$, then $\vdash q$.
(105) $\vdash \forall_{x} p \Rightarrow p$.
(106) If $\vdash p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$, then $\vdash p \Rightarrow \forall_{x} q$.
(107) If $s(x) \in \mathrm{CQC}-\mathrm{WFF}$ and $s(y) \in \mathrm{CQC}-\mathrm{WFF}$ and $x \notin \operatorname{snb}(s)$ and $\vdash s(x)$, then $\vdash s(y)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/nat_1.html
[2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
[3] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ ordinal2.html
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html
[5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/

[^4][7] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_ lang.html
[8] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
[9] Piotr Rudnicki and Andrzej Trybulec. A first order language. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/qc_lang1.html
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[11] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/mcart_1.html
[12] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[13] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

Received May 25, 1990

Published January 2, 2004

[^0]: ${ }^{1}$ The proposition (1) has been removed.

[^1]: ${ }^{2}$ The propositions (15)-(24) have been removed.
 ${ }^{3}$ The proposition (26) has been removed.

[^2]: ${ }^{4}$ The proposition (42) has been removed.
 ${ }^{5}$ The propositions (46)-(56) have been removed.

[^3]: ${ }^{6}$ The proposition (65) has been removed.
 ${ }^{7}$ The definition (Def. 7) has been removed.
 ${ }^{8}$ The propositions (72) and (73) have been removed.
 ${ }^{9}$ The proposition (86) has been removed.

[^4]: ${ }^{10}$ The propositions (96) and (97) have been removed.

