A First-Order Predicate Calculus

Agata Darmochwał Warsaw University Białystok

Summary. A continuation of [7], with an axiom system of first-order predicate theory. The consequence Cn of a set of formulas X is defined as the intersection of all theories containing X and some basic properties of it has been proved (monotonicity, idempotency, completeness etc.). The notion of a proof of given formula is also introduced and it is shown that $CnX = \{ p : p \text{ has a proof w.r.t. } X \}$. First 14 theorems are rather simple facts. I just wanted them to be included in the data base.

MML Identifier: CQC_THE1.
WWW: http://mizar.org/JFM/Vol2/cqc_the1.html

The articles [10], [6], [12], [2], [13], [5], [3], [1], [8], [4], [11], [9], and [7] provide the notation and terminology for this paper.

In this paper *n* is a natural number. Next we state several propositions:

- (2)¹ If $n \le 1$, then n = 0 or n = 1.
- (3) If $n \le 2$, then n = 0 or n = 1 or n = 2.
- (4) If $n \le 3$, then n = 0 or n = 1 or n = 2 or n = 3.
- (5) If $n \le 4$, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4.
- (6) If $n \le 5$, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5.
- (7) If $n \le 6$, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or n = 6.
- (8) If $n \le 7$, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or n = 6 or n = 7.
- (9) If $n \le 8$, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or n = 6 or n = 7 or n = 8.
- (10) If $n \le 9$, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or n = 6 or n = 7 or n = 8 or n = 9.

In the sequel *i*, *j*, *n*, *k*, *l* are natural numbers. One can prove the following propositions:

- (11) $\{k: k \le n+1\} = \{i: i \le n\} \cup \{n+1\}.$
- (12) For every *n* holds $\{k : k \le n\}$ is finite.

¹ The proposition (1) has been removed.

Next we state two propositions:

- (13) If X is finite and $X \subseteq [:Y, Z:]$, then there exist sets A, B such that A is finite and $A \subseteq Y$ and B is finite and $B \subseteq Z$ and $X \subseteq [:A, B:]$.
- (14) If X is finite and Z is finite and $X \subseteq [:Y, Z:]$, then there exists a set A such that A is finite and $A \subseteq Y$ and $X \subseteq [:A, Z:]$.

For simplicity, we adopt the following rules: *T*, *S*, *X*, *Y* denote subsets of CQC-WFF, *p*, *q*, *r*, *t*, *F* denote elements of CQC-WFF, *s* denotes a formula, and *x*, *y* denote bound variables. Let us consider *T*. We say that *T* is a theory if and only if the conditions (Def. 1) are satisfied.

- (Def. 1)(i) VERUM $\in T$, and
 - (ii) for all p, q, r, s, x, y holds $(\neg p \Rightarrow p) \Rightarrow p \in T$ and $p \Rightarrow (\neg p \Rightarrow q) \in T$ and $(p \Rightarrow q) \Rightarrow (\neg (q \land r) \Rightarrow \neg (p \land r)) \in T$ and $p \land q \Rightarrow q \land p \in T$ and if $p \in T$ and $p \Rightarrow q \in T$, then $q \in T$ and $\forall_x p \Rightarrow p \in T$ and if $p \Rightarrow q \in T$ and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_x q \in T$ and if $s(x) \in \operatorname{CQC-WFF}$ and $s(y) \in \operatorname{CQC-WFF}$ and $x \notin \operatorname{snb}(s)$ and $s(x) \in T$, then $s(y) \in T$.
 - We introduce T is a theory as a synonym of T is a theory. We now state the proposition
 - $(25)^2$ If T is a theory and S is a theory, then $T \cap S$ is a theory.

Let us consider *X*. The functor Cn*X* yielding a subset of CQC-WFF is defined as follows:

(Def. 2) $t \in CnX$ iff for every *T* such that *T* is a theory and $X \subseteq T$ holds $t \in T$.

Next we state a number of propositions:

- $(27)^3$ VERUM \in CnX.
- (28) $(\neg p \Rightarrow p) \Rightarrow p \in \operatorname{Cn} X.$
- (29) $p \Rightarrow (\neg p \Rightarrow q) \in \operatorname{Cn} X.$
- (30) $(p \Rightarrow q) \Rightarrow (\neg (q \land r) \Rightarrow \neg (p \land r)) \in CnX.$
- $(31) \quad p \wedge q \Rightarrow q \wedge p \in \operatorname{Cn} X.$
- (32) If $p \in CnX$ and $p \Rightarrow q \in CnX$, then $q \in CnX$.
- (33) $\forall_x p \Rightarrow p \in \operatorname{Cn} X.$
- (34) If $p \Rightarrow q \in \operatorname{Cn} X$ and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_x q \in \operatorname{Cn} X$.
- (35) If $s(x) \in CQC$ -WFF and $s(y) \in CQC$ -WFF and $x \notin snb(s)$ and $s(x) \in CnX$, then $s(y) \in CnX$.
- (36) CnX is a theory.
- (37) If *T* is a theory and $X \subseteq T$, then $CnX \subseteq T$.
- (38) $X \subseteq \operatorname{Cn} X$.
- (39) If $X \subseteq Y$, then $\operatorname{Cn} X \subseteq \operatorname{Cn} Y$.
- (40) $\operatorname{Cn}\operatorname{Cn} X = \operatorname{Cn} X$.
- (41) *T* is a theory iff CnT = T.

² The propositions (15)–(24) have been removed.

³ The proposition (26) has been removed.

The set \mathbb{K} is defined as follows:

(Def. 3) $\mathbb{K} = \{k : k \le 9\}.$

Let us observe that \mathbb{K} is non empty. The following two propositions are true:

- $(43)^4 \quad 0 \in \mathbb{K} \text{ and } 1 \in \mathbb{K} \text{ and } 2 \in \mathbb{K} \text{ and } 3 \in \mathbb{K} \text{ and } 4 \in \mathbb{K} \text{ and } 5 \in \mathbb{K} \text{ and } 6 \in \mathbb{K} \text{ and } 7 \in \mathbb{K} \text{ and } 8 \in \mathbb{K} \text{ and } 9 \in \mathbb{K}.$
- (44) \mathbb{K} is finite.

In the sequel f, g are finite sequences of elements of [:CQC-WFF, \mathbb{K} :]. We now state the proposition

(45) Suppose $1 \le n$ and $n \le \text{len } f$. Then $f(n)_2 = 0$ or $f(n)_2 = 1$ or $f(n)_2 = 2$ or $f(n)_2 = 3$ or $f(n)_2 = 4$ or $f(n)_2 = 5$ or $f(n)_2 = 6$ or $f(n)_2 = 7$ or $f(n)_2 = 8$ or $f(n)_2 = 9$.

Let P_1 be a finite sequence of elements of [:CQC-WFF, K:] and let us consider n, X. We say that $P_1(n)$ is a correct proof step w.r.t. X if and only if:

(Def. 4)(i) $P_1(n)_1 \in X$ if $P_1(n)_2 = 0$,

- (ii) $P_1(n)_1 = \text{VERUM if } P_1(n)_2 = 1,$
- (iii) there exists *p* such that $P_1(n)_1 = (\neg p \Rightarrow p) \Rightarrow p$ if $P_1(n)_2 = 2$,
- (iv) there exist p, q such that $P_1(n)_1 = p \Rightarrow (\neg p \Rightarrow q)$ if $P_1(n)_2 = 3$,
- (v) there exist p, q, r such that $P_1(n)_1 = (p \Rightarrow q) \Rightarrow (\neg(q \land r) \Rightarrow \neg(p \land r))$ if $P_1(n)_2 = 4$,
- (vi) there exist p, q such that $P_1(n)_1 = p \land q \Rightarrow q \land p$ if $P_1(n)_2 = 5$,
- (vii) there exist p, x such that $P_1(n)_1 = \forall_x p \Rightarrow p$ if $P_1(n)_2 = 6$,
- (viii) there exist *i*, *j*, *p*, *q* such that $1 \le i$ and i < n and $1 \le j$ and j < i and $p = P_1(j)_1$ and $q = P_1(n)_1$ and $P_1(i)_1 = p \Rightarrow q$ if $P_1(n)_2 = 7$,
- (ix) there exist *i*, *p*, *q*, *x* such that $1 \le i$ and i < n and $P_1(i)_1 = p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$ and $P_1(n)_1 = p \Rightarrow \forall_x q$ if $P_1(n)_2 = 8$,
- (x) there exist *i*, *x*, *y*, *s* such that $1 \le i$ and i < n and $s(x) \in CQC$ -WFF and $s(y) \in CQC$ -WFF and $x \notin snb(s)$ and $s(x) = P_1(i)_1$ and $s(y) = P_1(n)_1$ if $P_1(n)_2 = 9$.

Let us consider X, f. We say that f is a proof w.r.t. X if and only if:

(Def. 5) $f \neq \emptyset$ and for every *n* such that $1 \le n$ and $n \le \text{len } f$ holds f(n) is a correct proof step w.r.t. *X*.

We now state several propositions:

- $(57)^5$ If f is a proof w.r.t. X, then rng $f \neq \emptyset$.
- (58) If *f* is a proof w.r.t. *X*, then $1 \le \text{len } f$.
- (59) If f is a proof w.r.t. X, then $f(1)_2 = 0$ or $f(1)_2 = 1$ or $f(1)_2 = 2$ or $f(1)_2 = 3$ or $f(1)_2 = 4$ or $f(1)_2 = 5$ or $f(1)_2 = 6$.
- (60) Suppose $1 \le n$ and $n \le \text{len } f$. Then f(n) is a correct proof step w.r.t. X if and only if $f \cap g(n)$ is a correct proof step w.r.t. X.
- (61) Suppose $1 \le n$ and $n \le \text{len } g$ and g(n) is a correct proof step w.r.t. X. Then $f \cap g(n + \text{len } f)$ is a correct proof step w.r.t. X.
- (62) If f is a proof w.r.t. X and g is a proof w.r.t. X, then $f \cap g$ is a proof w.r.t. X.

⁴ The proposition (42) has been removed.

⁵ The propositions (46)–(56) have been removed.

- (63) If f is a proof w.r.t. X and $X \subseteq Y$, then f is a proof w.r.t. Y.
- (64) If f is a proof w.r.t. X and $1 \le l$ and $l \le \text{len } f$, then $f(l)_1 \in \text{Cn } X$.

Let us consider f. Let us assume that $f \neq \emptyset$. The functor Effect f yields an element of CQC-WFF and is defined as follows:

(Def. 6) Effect $f = f(\operatorname{len} f)_{\mathbf{1}}$.

Next we state several propositions:

- (66)⁶ If f is a proof w.r.t. X, then Effect $f \in CnX$.
- (67) $X \subseteq \{F : \bigvee_f (f \text{ is a proof w.r.t. } X \land \text{ Effect } f = F)\}.$
- (68) For every X such that $Y = \{p : \bigvee_f (f \text{ is a proof w.r.t. } X \land \text{ Effect } f = p)\}$ holds Y is a theory.
- (69) For every X holds $\{p : \bigvee_f (f \text{ is a proof w.r.t. } X \land \text{Effect } f = p)\} = \text{Cn} X$.
- (70) $p \in CnX$ iff there exists f such that f is a proof w.r.t. X and Effect f = p.
- (71) If $p \in CnX$, then there exists *Y* such that $Y \subseteq X$ and *Y* is finite and $p \in CnY$.

The subset Taut of CQC-WFF is defined as follows:

(Def. 8)⁷ Taut = $Cn(\emptyset_{CQC-WFF})$.

We now state a number of propositions:

- $(74)^8$ If T is a theory, then Taut $\subseteq T$.
- (75) Taut \subseteq Cn*X*.
- (76) Taut is a theory.
- (77) VERUM \in Taut.
- (78) $(\neg p \Rightarrow p) \Rightarrow p \in \text{Taut}.$
- (79) $p \Rightarrow (\neg p \Rightarrow q) \in \text{Taut}.$
- (80) $(p \Rightarrow q) \Rightarrow (\neg (q \land r) \Rightarrow \neg (p \land r)) \in \text{Taut}.$
- (81) $p \wedge q \Rightarrow q \wedge p \in \text{Taut}.$
- (82) If $p \in \text{Taut}$ and $p \Rightarrow q \in \text{Taut}$, then $q \in \text{Taut}$.
- (83) $\forall_x p \Rightarrow p \in \text{Taut}$.
- (84) If $p \Rightarrow q \in \text{Taut}$ and $x \notin \text{snb}(p)$, then $p \Rightarrow \forall_x q \in \text{Taut}$.
- (85) If $s(x) \in CQC$ -WFF and $s(y) \in CQC$ -WFF and $x \notin snb(s)$ and $s(x) \in Taut$, then $s(y) \in Taut$.

Let us consider *X*, *s*. The predicate $X \vdash s$ is defined as follows:

(Def. 9) $s \in CnX$.

One can prove the following propositions:

 $(87)^9$ $X \vdash \text{VERUM}$.

⁶ The proposition (65) has been removed.

⁷ The definition (Def. 7) has been removed.

⁸ The propositions (72) and (73) have been removed.

⁹ The proposition (86) has been removed.

- (88) $X \vdash (\neg p \Rightarrow p) \Rightarrow p.$
- (89) $X \vdash p \Rightarrow (\neg p \Rightarrow q).$
- (90) $X \vdash (p \Rightarrow q) \Rightarrow (\neg (q \land r) \Rightarrow \neg (p \land r)).$
- (91) $X \vdash p \land q \Rightarrow q \land p$.
- (92) If $X \vdash p$ and $X \vdash p \Rightarrow q$, then $X \vdash q$.
- (93) $X \vdash \forall_x p \Rightarrow p$.
- (94) If $X \vdash p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$, then $X \vdash p \Rightarrow \forall_x q$.
- (95) If $s(x) \in CQC$ -WFF and $s(y) \in CQC$ -WFF and $x \notin snb(s)$ and $X \vdash s(x)$, then $X \vdash s(y)$.

Let us consider *s*. We say that *s* is valid if and only if:

(Def. 10) $\emptyset_{COC-WFF} \vdash s$.

We introduce $\vdash s$ as a synonym of *s* is valid. Let us consider *s*. Let us observe that *s* is valid if and only if:

(Def. 11) $s \in \text{Taut}$.

Next we state a number of propositions:

- $(98)^{10}$ If $\vdash p$, then $X \vdash p$.
- (99) \vdash VERUM.
- (100) $\vdash (\neg p \Rightarrow p) \Rightarrow p.$
- (101) $\vdash p \Rightarrow (\neg p \Rightarrow q).$
- (102) $\vdash (p \Rightarrow q) \Rightarrow (\neg (q \land r) \Rightarrow \neg (p \land r)).$
- (103) $\vdash p \land q \Rightarrow q \land p$.
- (104) If $\vdash p$ and $\vdash p \Rightarrow q$, then $\vdash q$.
- (105) $\vdash \forall_x p \Rightarrow p$.
- (106) If $\vdash p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$, then $\vdash p \Rightarrow \forall_x q$.
- (107) If $s(x) \in CQC$ -WFF and $s(y) \in CQC$ -WFF and $x \notin snb(s)$ and $\vdash s(x)$, then $\vdash s(y)$.

REFERENCES

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [3] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ ordinal2.html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.

¹⁰ The propositions (96) and (97) have been removed.

- [7] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [8] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [9] Piotr Rudnicki and Andrzej Trybulec. A first order language. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/qc_langl.html.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [11] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/mcart_1.html.
- [12] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [13] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received May 25, 1990

Published January 2, 2004