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Summary. A continuation of [7], with an axiom system of first-order predicate the-
ory. The consequence Cn of a set of formulasX is defined as the intersection of all theories
containingX and some basic properties of it has been proved (monotonicity, idempotency,
completeness etc.). The notion of a proof of given formula is also introduced and it is shown
that CnX = { p : p has a proof w.r.t.X}. First 14 theorems are rather simple facts. I just
wanted them to be included in the data base.
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The articles [10], [6], [12], [2], [13], [5], [3], [1], [8], [4], [11], [9], and [7] provide the notation and
terminology for this paper.

In this papern is a natural number.
Next we state several propositions:

(2)1 If n≤ 1, thenn = 0 orn = 1.

(3) If n≤ 2, thenn = 0 orn = 1 orn = 2.

(4) If n≤ 3, thenn = 0 orn = 1 orn = 2 orn = 3.

(5) If n≤ 4, thenn = 0 orn = 1 orn = 2 orn = 3 orn = 4.

(6) If n≤ 5, thenn = 0 orn = 1 orn = 2 orn = 3 orn = 4 orn = 5.

(7) If n≤ 6, thenn = 0 orn = 1 orn = 2 orn = 3 orn = 4 orn = 5 orn = 6.

(8) If n≤ 7, thenn = 0 orn = 1 orn = 2 orn = 3 orn = 4 orn = 5 orn = 6 orn = 7.

(9) If n≤ 8, thenn = 0 orn = 1 orn = 2 orn = 3 orn = 4 orn = 5 orn = 6 orn = 7 orn = 8.

(10) If n≤ 9, thenn = 0 orn = 1 orn = 2 orn = 3 orn = 4 orn = 5 orn = 6 orn = 7 orn = 8
or n = 9.

In the sequeli, j, n, k, l are natural numbers.
One can prove the following propositions:

(11) {k : k≤ n+1}= {i : i ≤ n}∪{n+1}.

(12) For everyn holds{k : k≤ n} is finite.

1 The proposition (1) has been removed.
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In the sequelX, Y, Z denote sets.
Next we state two propositions:

(13) If X is finite andX ⊆ [:Y, Z :], then there exist setsA, B such thatA is finite andA⊆Y and
B is finite andB⊆ Z andX ⊆ [:A, B:].

(14) If X is finite andZ is finite andX ⊆ [:Y, Z :], then there exists a setA such thatA is finite
andA⊆Y andX ⊆ [:A, Z :].

For simplicity, we adopt the following rules:T, S, X, Y denote subsets of CQC-WFF,p, q, r, t,
F denote elements of CQC-WFF,s denotes a formula, andx, y denote bound variables.

Let us considerT. We say thatT is a theory if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) VERUM∈ T, and

(ii) for all p, q, r, s, x, y holds(¬p⇒ p)⇒ p∈ T and p⇒ (¬p⇒ q) ∈ T and(p⇒ q)⇒
(¬(q∧ r)⇒¬(p∧ r)) ∈ T andp∧q⇒ q∧ p∈ T and if p∈ T andp⇒ q∈ T, thenq∈ T and
∀xp⇒ p∈ T and if p⇒ q∈ T andx /∈ snb(p), thenp⇒ ∀xq∈ T and if s(x) ∈ CQC-WFF
ands(y) ∈ CQC-WFF andx /∈ snb(s) ands(x) ∈ T, thens(y) ∈ T.

We introduceT is a theory as a synonym ofT is a theory.
We now state the proposition

(25)2 If T is a theory andS is a theory, thenT ∩S is a theory.

Let us considerX. The functor CnX yielding a subset of CQC-WFF is defined as follows:

(Def. 2) t ∈ CnX iff for every T such thatT is a theory andX ⊆ T holdst ∈ T.

Next we state a number of propositions:

(27)3 VERUM ∈ CnX.

(28) (¬p⇒ p)⇒ p∈ CnX.

(29) p⇒ (¬p⇒ q) ∈ CnX.

(30) (p⇒ q)⇒ (¬(q∧ r)⇒¬(p∧ r)) ∈ CnX.

(31) p∧q⇒ q∧ p∈ CnX.

(32) If p∈ CnX andp⇒ q∈ CnX, thenq∈ CnX.

(33) ∀xp⇒ p∈ CnX.

(34) If p⇒ q∈ CnX andx /∈ snb(p), thenp⇒∀xq∈ CnX.

(35) If s(x) ∈ CQC-WFF ands(y) ∈ CQC-WFF andx /∈ snb(s) ands(x) ∈ CnX, thens(y) ∈
CnX.

(36) CnX is a theory.

(37) If T is a theory andX ⊆ T, then CnX ⊆ T.

(38) X ⊆ CnX.

(39) If X ⊆Y, then CnX ⊆ CnY.

(40) CnCnX = CnX.

(41) T is a theory iff CnT = T.

2 The propositions (15)–(24) have been removed.
3 The proposition (26) has been removed.
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The setK is defined as follows:

(Def. 3) K = {k : k≤ 9}.

Let us observe thatK is non empty.
The following two propositions are true:

(43)4 0∈ K and 1∈ K and 2∈ K and 3∈ K and 4∈ K and 5∈ K and 6∈ K and 7∈ K and
8∈K and 9∈K.

(44) K is finite.

In the sequelf , g are finite sequences of elements of[:CQC-WFF, K :].
We now state the proposition

(45) Suppose 1≤ n andn≤ len f . Then f (n)2 = 0 or f (n)2 = 1 or f (n)2 = 2 or f (n)2 = 3 or
f (n)2 = 4 or f (n)2 = 5 or f (n)2 = 6 or f (n)2 = 7 or f (n)2 = 8 or f (n)2 = 9.

Let P1 be a finite sequence of elements of[:CQC-WFF, K :] and let us considern, X. We say that
P1 ( n ) is a correct proof step w.r.t.X if and only if:

(Def. 4)(i) P1(n)1 ∈ X if P1(n)2 = 0,

(ii) P1(n)1 = VERUM if P1(n)2 = 1,

(iii) there existsp such thatP1(n)1 = (¬p⇒ p)⇒ p if P1(n)2 = 2,

(iv) there existp, q such thatP1(n)1 = p⇒ (¬p⇒ q) if P1(n)2 = 3,

(v) there existp, q, r such thatP1(n)1 = (p⇒ q)⇒ (¬(q∧ r)⇒¬(p∧ r)) if P1(n)2 = 4,

(vi) there existp, q such thatP1(n)1 = p∧q⇒ q∧ p if P1(n)2 = 5,

(vii) there existp, x such thatP1(n)1 = ∀xp⇒ p if P1(n)2 = 6,

(viii) there existi, j, p, q such that 1≤ i and i < n and 1≤ j and j < i and p = P1( j)1 and
q = P1(n)1 andP1(i)1 = p⇒ q if P1(n)2 = 7,

(ix) there existi, p, q, x such that 1≤ i and i < n andP1(i)1 = p⇒ q andx /∈ snb(p) and
P1(n)1 = p⇒∀xq if P1(n)2 = 8,

(x) there existi, x, y, s such that 1≤ i andi < n ands(x) ∈ CQC-WFF ands(y) ∈ CQC-WFF
andx /∈ snb(s) ands(x) = P1(i)1 ands(y) = P1(n)1 if P1(n)2 = 9.

Let us considerX, f . We say thatf is a proof w.r.t.X if and only if:

(Def. 5) f 6= /0 and for everyn such that 1≤ n andn≤ len f holds f ( n ) is a correct proof step w.r.t.
X.

We now state several propositions:

(57)5 If f is a proof w.r.t.X, then rngf 6= /0.

(58) If f is a proof w.r.t.X, then 1≤ len f .

(59) If f is a proof w.r.t.X, then f (1)2 = 0 or f (1)2 = 1 or f (1)2 = 2 or f (1)2 = 3 or f (1)2 = 4
or f (1)2 = 5 or f (1)2 = 6.

(60) Suppose 1≤ n andn≤ len f . Then f ( n ) is a correct proof step w.r.t.X if and only if f a g
( n ) is a correct proof step w.r.t.X.

(61) Suppose 1≤ n andn≤ leng andg ( n ) is a correct proof step w.r.t.X. Then f a g ( n+ len f
) is a correct proof step w.r.t.X.

(62) If f is a proof w.r.t.X andg is a proof w.r.t.X, then f a g is a proof w.r.t.X.

4 The proposition (42) has been removed.
5 The propositions (46)–(56) have been removed.
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(63) If f is a proof w.r.t.X andX ⊆Y, then f is a proof w.r.t.Y.

(64) If f is a proof w.r.t.X and 1≤ l andl ≤ len f , then f (l)1 ∈ CnX.

Let us considerf . Let us assume thatf 6= /0. The functor Effectf yields an element of CQC-WFF
and is defined as follows:

(Def. 6) Effectf = f (len f )1.

Next we state several propositions:

(66)6 If f is a proof w.r.t.X, then Effectf ∈ CnX.

(67) X ⊆ {F :
∨

f ( f is a proof w.r.t.X ∧ Effect f = F)}.

(68) For everyX such thatY = {p :
∨

f ( f is a proof w.r.t. X ∧ Effect f = p)} holdsY is a
theory.

(69) For everyX holds{p :
∨

f ( f is a proof w.r.t.X ∧ Effect f = p)}= CnX.

(70) p∈ CnX iff there existsf such thatf is a proof w.r.t.X and Effectf = p.

(71) If p∈ CnX, then there existsY such thatY ⊆ X andY is finite andp∈ CnY.

The subset Taut of CQC-WFF is defined as follows:

(Def. 8)7 Taut= Cn( /0CQC-WFF).

We now state a number of propositions:

(74)8 If T is a theory, then Taut⊆ T.

(75) Taut⊆ CnX.

(76) Taut is a theory.

(77) VERUM∈ Taut.

(78) (¬p⇒ p)⇒ p∈ Taut.

(79) p⇒ (¬p⇒ q) ∈ Taut.

(80) (p⇒ q)⇒ (¬(q∧ r)⇒¬(p∧ r)) ∈ Taut.

(81) p∧q⇒ q∧ p∈ Taut.

(82) If p∈ Taut andp⇒ q∈ Taut, thenq∈ Taut.

(83) ∀xp⇒ p∈ Taut.

(84) If p⇒ q∈ Taut andx /∈ snb(p), thenp⇒∀xq∈ Taut.

(85) If s(x)∈CQC-WFF ands(y)∈CQC-WFF andx /∈ snb(s) ands(x)∈Taut, thens(y)∈Taut.

Let us considerX, s. The predicateX ` s is defined as follows:

(Def. 9) s∈ CnX.

One can prove the following propositions:

(87)9 X ` VERUM .

6 The proposition (65) has been removed.
7 The definition (Def. 7) has been removed.
8 The propositions (72) and (73) have been removed.
9 The proposition (86) has been removed.
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(88) X ` (¬p⇒ p)⇒ p.

(89) X ` p⇒ (¬p⇒ q).

(90) X ` (p⇒ q)⇒ (¬(q∧ r)⇒¬(p∧ r)).

(91) X ` p∧q⇒ q∧ p.

(92) If X ` p andX ` p⇒ q, thenX ` q.

(93) X ` ∀xp⇒ p.

(94) If X ` p⇒ q andx /∈ snb(p), thenX ` p⇒∀xq.

(95) If s(x) ∈ CQC-WFF ands(y) ∈ CQC-WFF andx /∈ snb(s) andX ` s(x), thenX ` s(y).

Let us considers. We say thats is valid if and only if:

(Def. 10) /0CQC-WFF ` s.

We introducè s as a synonym ofs is valid.
Let us considers. Let us observe thats is valid if and only if:

(Def. 11) s∈ Taut.

Next we state a number of propositions:

(98)10 If ` p, thenX ` p.

(99) ` VERUM .

(100) ` (¬p⇒ p)⇒ p.

(101) ` p⇒ (¬p⇒ q).

(102) ` (p⇒ q)⇒ (¬(q∧ r)⇒¬(p∧ r)).

(103) ` p∧q⇒ q∧ p.

(104) If ` p and` p⇒ q, then` q.

(105) ` ∀xp⇒ p.

(106) If ` p⇒ q andx /∈ snb(p), then` p⇒∀xq.

(107) If s(x) ∈ CQC-WFF ands(y) ∈ CQC-WFF andx /∈ snb(s) and` s(x), then` s(y).
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[5] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.

[6] Czesław Bylínski. Some basic properties of sets.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
zfmisc_1.html.

10 The propositions (96) and (97) have been removed.

http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol1/ordinal2.html
http://mizar.org/JFM/Vol1/ordinal2.html
http://mizar.org/JFM/Vol1/finseq_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html


A FIRST-ORDER PREDICATE CALCULUS 6
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