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Summary. This is a continuation of [6]. In this article, we proved that convex com-
bination on convex family is convex.
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The articles [12], [18], [13], [8], [2], [19], [3], [5], [1], [10], [4], [16], [15], [14], [17], [11], [7], [6],
and [9] provide the notation and terminology for this paper.

1. CONVEX COMBINATIONS ON CONVEX FAMILY

The following propositions are true:

(1) For every non empty RLS structureV and for all convex subsetsM, N of V holdsM∩N is
convex.

(2) LetV be a real unitary space-like non empty unitary space structure,M be a subset ofV,
F be a finite sequence of elements of the carrier ofV, andB be a finite sequence of elements
of R. SupposeM = {u;u ranges over vectors ofV:

∧
i :natural number(i ∈ domF ∩domB ⇒∨

v:vector ofV (v = F(i) ∧ (u|v)≤ B(i)))}. ThenM is convex.

(3) LetV be a real unitary space-like non empty unitary space structure,M be a subset ofV,
F be a finite sequence of elements of the carrier ofV, andB be a finite sequence of elements
of R. SupposeM = {u;u ranges over vectors ofV:

∧
i :natural number(i ∈ domF ∩domB ⇒∨

v:vector ofV (v = F(i) ∧ (u|v) < B(i)))}. ThenM is convex.

(4) LetV be a real unitary space-like non empty unitary space structure,M be a subset ofV,
F be a finite sequence of elements of the carrier ofV, andB be a finite sequence of elements
of R. SupposeM = {u;u ranges over vectors ofV:

∧
i :natural number(i ∈ domF ∩domB ⇒∨

v:vector ofV (v = F(i) ∧ (u|v)≥ B(i)))}. ThenM is convex.

(5) LetV be a real unitary space-like non empty unitary space structure,M be a subset ofV,
F be a finite sequence of elements of the carrier ofV, andB be a finite sequence of elements
of R. SupposeM = {u;u ranges over vectors ofV:

∧
i :natural number(i ∈ domF ∩domB ⇒∨

v:vector ofV (v = F(i) ∧ (u|v) > B(i)))}. ThenM is convex.

(6) LetV be a real linear space andM be a subset ofV. Then for every subsetN of V and for
every linear combinationL of N such thatL is convex andN ⊆M holds∑L ∈M if and only
if M is convex.
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LetV be a real linear space and letM be a subset ofV. The functor LCM yielding a set is defined
by:

(Def. 1) For every setL holdsL ∈ LCM iff L is a linear combination ofM.

Let V be a real linear space. One can verify that there exists a linear combination ofV which is
convex.

Let V be a real linear space. A convex combination ofV is a convex linear combination ofV.
Let V be a real linear space and letM be a non empty subset ofV. One can check that there

exists a linear combination ofM which is convex.
Let V be a real linear space and letM be a non empty subset ofV. A convex combination ofM

is a convex linear combination ofM.
One can prove the following propositions:

(7) For every real linear spaceV and for every subsetM of V holds Convex-FamilyM 6= /0.

(8) For every real linear spaceV and for every subsetM of V holdsM ⊆ convM.

(9) LetV be a real linear space,L1, L2 be convex combinations ofV, andr be a real number.
If 0 < r andr < 1, thenr ·L1 +(1− r) ·L2 is a convex combination ofV.

(10) LetV be a real linear space,M be a non empty subset ofV, L1, L2 be convex combinations
of M, and r be a real number. If 0< r and r < 1, then r · L1 + (1− r) · L2 is a convex
combination ofM.

(11) For every real linear spaceV holds there exists a linear combination ofV which is convex.

(12) For every real linear spaceV and for every non empty subsetM of V holds there exists a
linear combination ofM which is convex.

2. MISCELLANEOUS

The following propositions are true:

(13) For every real linear spaceV and for all subspacesW1, W2 of V holds Up(W1 +W2) =
Up(W1)+Up(W2).

(14) For every real linear spaceV and for all subspacesW1, W2 of V holds Up(W1∩W2) =
Up(W1)∩Up(W2).

(15) LetV be a real linear space,L1, L2 be convex combinations ofV, anda, b be real numbers.
Supposea·b > 0. Then the support ofa·L1 +b·L2 = (the support ofa·L1)∪ (the support of
b·L2).

(16) Let F , G be functions. SupposeF and G are fiberwise equipotent. Letx1, x2 be sets.
Supposex1 ∈ domF andx2 ∈ domF andx1 6= x2. Then there exist setsz1, z2 such thatz1 ∈
domG andz2 ∈ domG andz1 6= z2 andF(x1) = G(z1) andF(x2) = G(z2).

(17) LetV be a real linear space,L be a linear combination ofV, andA be a subset ofV. Suppose
A⊆ the support ofL. Then there exists a linear combinationL1 of V such that the support of
L1 = A.
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