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Summary. First, we generalizedskl function for a subset of topological spaces the
value of which is the component including the set. Second, we introduced a concept of union
of components a family of which has good algebraic properties. At the end, we discuss re-
lationship between connectivity of a set as a subset in the whole space and as a subset of a
subspace.
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The articles [5], [1], [3], [4], and [2] provide the notation and terminology for this paper.

1. THE COMPONENT OF ASUBSET IN A TOPOLOGICAL SPACE

In this paperG1 is a non empty topological space.
Let G1 be a topological structure and letV be a subset ofG1. The functor Component(V)

yielding a subset ofG1 is defined by the condition (Def. 1).

(Def. 1) There exists a familyF of subsets ofG1 such that for every subsetA of G1 holdsA∈ F iff
A is connected andV ⊆ A and

⋃
F = Component(V).

One can prove the following propositions:

(1) LetG1 be a topological space andV be a subset ofG1. If there exists a subsetA of G1 such
thatA is connected andV ⊆ A, thenV ⊆ Component(V).

(2) Let G1 be a topological space andV be a subset ofG1. If it is not true that there exists a
subsetA of G1 such thatA is connected andV ⊆ A, then Component(V) = /0.

(3) Component( /0(G1)) = the carrier ofG1.

(4) For every subsetV of G1 such thatV is connected holds Component(V) 6= /0.

(5) For every topological spaceG1 and for every subsetV of G1 such thatV is connected and
V 6= /0 holds Component(V) is connected.

(6) For all subsetsV, C of G1 such thatV is connected andC is connected holds if
Component(V)⊆C, thenC = Component(V).

(7) For every subsetA of G1 such thatA is a component ofG1 holds Component(A) = A.

(8) LetA be a subset ofG1. ThenA is a component ofG1 if and only if there exists a subsetV
of G1 such thatV is connected andV 6= /0 andA = Component(V).
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(9) For every subsetV of G1 such thatV is connected andV 6= /0 holds Component(V) is a
component ofG1.

(10) For all subsetsA, V of G1 such thatA is a component ofG1 andV is connected andV ⊆ A
andV 6= /0 holdsA = Component(V).

(11) For every subsetV of G1 such thatV is connected andV 6= /0 holds Component(Component(V))=
Component(V).

(12) For all subsetsA, B of G1 such thatA is connected andB is connected andA 6= /0 andA⊆ B
holds Component(A) = Component(B).

(13) For all subsetsA, B of G1 such thatA is connected andB is connected andA 6= /0 andA⊆ B
holdsB⊆ Component(A).

(14) LetA be a subset ofG1 andB be a subset ofG1. If A is connected andA∪B is connected
andA 6= /0, thenA∪B⊆ Component(A).

(15) For every subsetA of G1 and for every pointp of G1 such thatA is connected andp∈ A
holds Component(p) = Component(A).

(16) Let A, B be subsets ofG1. SupposeA is connected andB is connected andA meetsB.
ThenA∪B⊆ Component(A) andA∪B⊆ Component(B) andA⊆ Component(B) andB⊆
Component(A).

(17) For every subsetA of G1 such thatA is connected andA 6= /0 holdsA⊆ Component(A).

(18) LetA, B be subsets ofG1. SupposeA is a component ofG1 andB is connected andB 6= /0
andA missesB. ThenA misses Component(B).

2. ON UNIONS OFCOMPONENTS

Let G1 be a topological structure. A subset ofG1 is called a union of components ofG1 if it satisfies
the condition (Def. 2).

(Def. 2) There exists a familyF of subsets ofG1 such that for every subsetB of G1 such thatB∈ F
holdsB is a component ofG1 and it=

⋃
F.

The following propositions are true:

(19) /0(G1) is a union of components ofG1.

(20) For every subsetA of G1 such thatA = the carrier ofG1 holdsA is a union of components
of G1.

(21) LetA be a subset ofG1 andp be a point ofG1. If p∈ A andA is a union of components of
G1, then Component(p)⊆ A.

(22) Let A, B be subsets ofG1. SupposeA is a union of components ofG1 andB is a union
of components ofG1. ThenA∪B is a union of components ofG1 andA∩B is a union of
components ofG1.

(23) LetF1 be a family of subsets ofG1. Suppose that for every subsetA of G1 such thatA∈ F1

holdsA is a union of components ofG1. Then
⋃

F1 is a union of components ofG1.

(24) LetF1 be a family of subsets ofG1. Suppose that for every subsetA of G1 such thatA∈ F1

holdsA is a union of components ofG1. Then
⋂

F1 is a union of components ofG1.

(25) LetA, B be subsets ofG1. SupposeA is a union of components ofG1 andB is a union of
components ofG1. ThenA\B is a union of components ofG1.
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3. OPERATIONSDOWN AND UP

Let G1 be a topological structure, letB be a subset ofG1, and letp be a point ofG1. Let us assume
that p∈ B. The functor Down(p,B) yields a point ofG1�B and is defined as follows:

(Def. 3) Down(p,B) = p.

Let G1 be a topological structure, letB be a subset ofG1, and letp be a point ofG1�B. Let us
assume thatB 6= /0. The functor Up(p) yielding a point ofG1 is defined as follows:

(Def. 4) Up(p) = p.

Let G1 be a topological structure and letV, B be subsets ofG1. The functor Down(V,B) yielding
a subset ofG1�B is defined by:

(Def. 5) Down(V,B) = V ∩B.

Let G1 be a topological structure, letB be a subset ofG1, and letV be a subset ofG1�B. The
functor Up(V) yields a subset ofG1 and is defined by:

(Def. 6) Up(V) = V.

Let G1 be a topological structure, letB be a subset ofG1, and letp be a point ofG1. Let us
assume thatp∈ B. The functor skl(p,B) yielding a subset ofG1 is defined as follows:

(Def. 7) For every pointq of G1�B such thatq = p holds skl(p,B) = Component(q).

The following propositions are true:

(26) For every subsetB of G1 and for every pointp of G1 such thatp∈ B holds skl(p,B) 6= /0.

(27) For every subsetB of G1 and for every pointp of G1 such thatp ∈ B holds skl(p,B) =
Component(Down(p,B)).

(28) For all subsetsV, B of G1 such thatV ⊆ B holds Down(V,B) = V.

(29) For every topological spaceG1 and for all subsetsV, B of G1 such thatV is open holds
Down(V,B) is open.

(30) For all subsetsV, B of G1 such thatV ⊆ B holdsDown(V,B) = V ∩B.

(31) For every subsetB of G1 and for every subsetV of G1�B holdsV = Up(V)∩B.

(32) For all subsetsV, B of G1 such thatV ⊆ B holdsDown(V,B)⊆V.

(33) For every subsetB of G1 and for every subsetV of G1�B such thatV ⊆ B holds
Down(Up(V),B) = V.

(34) LetG1 be a topological space,V, B be subsets ofG1, andW be a subset ofG1�B. If V = W
andW is connected, thenV is connected.

(35) For every subsetB of G1 and for every pointp of G1 such thatp ∈ B holds skl(p,B) is
connected.
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