Components and Unions of Components

Yatsuka Nakamura Shinshu University Nagano Andrzej Trybulec Warsaw University Białystok

Summary. First, we generalized **skl** function for a subset of topological spaces the value of which is the component including the set. Second, we introduced a concept of union of components a family of which has good algebraic properties. At the end, we discuss relationship between connectivity of a set as a subset in the whole space and as a subset of a subspace.

MML Identifier: CONNSP_3.

WWW: http://mizar.org/JFM/Vol8/connsp_3.html

The articles [5], [1], [3], [4], and [2] provide the notation and terminology for this paper.

1. THE COMPONENT OF A SUBSET IN A TOPOLOGICAL SPACE

In this paper G_1 is a non empty topological space.

Let G_1 be a topological structure and let V be a subset of G_1 . The functor Component(V) yielding a subset of G_1 is defined by the condition (Def. 1).

(Def. 1) There exists a family F of subsets of G_1 such that for every subset A of G_1 holds $A \in F$ iff A is connected and $V \subseteq A$ and $\bigcup F = \text{Component}(V)$.

One can prove the following propositions:

- (1) Let G_1 be a topological space and V be a subset of G_1 . If there exists a subset A of G_1 such that A is connected and $V \subseteq A$, then $V \subseteq \text{Component}(V)$.
- (2) Let G_1 be a topological space and V be a subset of G_1 . If it is not true that there exists a subset A of G_1 such that A is connected and $V \subseteq A$, then Component $(V) = \emptyset$.
- (3) Component($\emptyset_{(G_1)}$) = the carrier of G_1 .
- (4) For every subset V of G_1 such that V is connected holds Component $(V) \neq \emptyset$.
- (5) For every topological space G_1 and for every subset V of G_1 such that V is connected and $V \neq \emptyset$ holds Component(V) is connected.
- (6) For all subsets V, C of G_1 such that V is connected and C is connected holds if Component(V) $\subseteq C$, then C = Component(V).
- (7) For every subset A of G_1 such that A is a component of G_1 holds Component(A) = A.
- (8) Let A be a subset of G_1 . Then A is a component of G_1 if and only if there exists a subset V of G_1 such that V is connected and $V \neq \emptyset$ and A = Component(V).

- (9) For every subset V of G_1 such that V is connected and $V \neq \emptyset$ holds Component(V) is a component of G_1 .
- (10) For all subsets A, V of G_1 such that A is a component of G_1 and V is connected and $V \subseteq A$ and $V \neq \emptyset$ holds A = Component(V).
- (11) For every subset V of G_1 such that V is connected and $V \neq \emptyset$ holds Component(Component(V)) = Component(V).
- (12) For all subsets A, B of G_1 such that A is connected and B is connected and $A \neq \emptyset$ and $A \subseteq B$ holds Component(A) = Component(B).
- (13) For all subsets A, B of G_1 such that A is connected and B is connected and $A \neq \emptyset$ and $A \subseteq B$ holds $B \subseteq \text{Component}(A)$.
- (14) Let A be a subset of G_1 and B be a subset of G_1 . If A is connected and $A \cup B$ is connected and $A \neq \emptyset$, then $A \cup B \subseteq \text{Component}(A)$.
- (15) For every subset A of G_1 and for every point p of G_1 such that A is connected and $p \in A$ holds Component(p) = Component(A).
- (16) Let A, B be subsets of G_1 . Suppose A is connected and B is connected and A meets B. Then $A \cup B \subseteq \text{Component}(A)$ and $A \cup B \subseteq \text{Component}(B)$ and $A \subseteq \text{Component}(B)$ and $A \subseteq \text{Component}(A)$.
- (17) For every subset A of G_1 such that A is connected and $A \neq \emptyset$ holds $\overline{A} \subseteq \text{Component}(A)$.
- (18) Let A, B be subsets of G_1 . Suppose A is a component of G_1 and B is connected and $B \neq \emptyset$ and A misses B. Then A misses Component(B).

2. ON UNIONS OF COMPONENTS

Let G_1 be a topological structure. A subset of G_1 is called a union of components of G_1 if it satisfies the condition (Def. 2).

(Def. 2) There exists a family F of subsets of G_1 such that for every subset B of G_1 such that $B \in F$ holds B is a component of G_1 and it $= \bigcup F$.

The following propositions are true:

- (19) $\emptyset_{(G_1)}$ is a union of components of G_1 .
- (20) For every subset A of G_1 such that A = the carrier of G_1 holds A is a union of components of G_1 .
- (21) Let A be a subset of G_1 and p be a point of G_1 . If $p \in A$ and A is a union of components of G_1 , then Component $(p) \subseteq A$.
- (22) Let A, B be subsets of G_1 . Suppose A is a union of components of G_1 and B is a union of components of G_1 . Then $A \cup B$ is a union of components of G_1 and $A \cap B$ is a union of components of G_1 .
- (23) Let F_1 be a family of subsets of G_1 . Suppose that for every subset A of G_1 such that $A \in F_1$ holds A is a union of components of G_1 . Then $\bigcup F_1$ is a union of components of G_1 .
- (24) Let F_1 be a family of subsets of G_1 . Suppose that for every subset A of G_1 such that $A \in F_1$ holds A is a union of components of G_1 . Then $\bigcap F_1$ is a union of components of G_1 .
- (25) Let A, B be subsets of G_1 . Suppose A is a union of components of G_1 and B is a union of components of G_1 . Then $A \setminus B$ is a union of components of G_1 .

3. OPERATIONS DOWN AND UP

Let G_1 be a topological structure, let B be a subset of G_1 , and let p be a point of G_1 . Let us assume that $p \in B$. The functor Down(p,B) yields a point of $G_1 \upharpoonright B$ and is defined as follows:

(Def. 3) Down(p, B) = p.

Let G_1 be a topological structure, let B be a subset of G_1 , and let p be a point of $G_1 \upharpoonright B$. Let us assume that $B \neq \emptyset$. The functor Up(p) yielding a point of G_1 is defined as follows:

(Def. 4) $\operatorname{Up}(p) = p$.

Let G_1 be a topological structure and let V, B be subsets of G_1 . The functor Down(V, B) yielding a subset of $G_1 \upharpoonright B$ is defined by:

(Def. 5) $Down(V, B) = V \cap B$.

Let G_1 be a topological structure, let B be a subset of G_1 , and let V be a subset of $G_1 \upharpoonright B$. The functor Up(V) yields a subset of G_1 and is defined by:

(Def. 6) Up(V) = V.

Let G_1 be a topological structure, let B be a subset of G_1 , and let p be a point of G_1 . Let us assume that $p \in B$. The functor skl(p,B) yielding a subset of G_1 is defined as follows:

(Def. 7) For every point q of $G_1 \upharpoonright B$ such that q = p holds skl(p, B) = Component(q).

The following propositions are true:

- (26) For every subset *B* of G_1 and for every point *p* of G_1 such that $p \in B$ holds $skl(p, B) \neq \emptyset$.
- (27) For every subset B of G_1 and for every point p of G_1 such that $p \in B$ holds skl(p,B) = Component(Down(p,B)).
- (28) For all subsets V, B of G_1 such that $V \subseteq B$ holds Down(V, B) = V.
- (29) For every topological space G_1 and for all subsets V, B of G_1 such that V is open holds Down(V,B) is open.
- (30) For all subsets V, B of G_1 such that $V \subseteq B$ holds $\overline{\text{Down}(V,B)} = \overline{V} \cap B$.
- (31) For every subset *B* of G_1 and for every subset *V* of $G_1 \upharpoonright B$ holds $\overline{V} = \overline{\operatorname{Up}(V)} \cap B$.
- (32) For all subsets V, B of G_1 such that $V \subseteq B$ holds $\overline{\text{Down}(V, B)} \subseteq \overline{V}$.
- (33) For every subset B of G_1 and for every subset V of $G_1 \upharpoonright B$ such that $V \subseteq B$ holds $\operatorname{Down}(\operatorname{Up}(V),B) = V$.
- (34) Let G_1 be a topological space, V, B be subsets of G_1 , and W be a subset of $G_1 \upharpoonright B$. If V = W and W is connected, then V is connected.
- (35) For every subset B of G_1 and for every point p of G_1 such that $p \in B$ holds skl(p,B) is connected.

REFERENCES

- Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [2] Beata Padlewska. Connected spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/connsp_1.html.
- [3] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [4] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.

[5] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.

Received February 5, 1996

Published January 2, 2004