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Summary. First, we generalizegkl function for a subset of topological spaces the
value of which is the component including the set. Second, we introduced a concept of union
of components a family of which has good algebraic properties. At the end, we discuss re-
lationship between connectivity of a set as a subset in the whole space and as a subset of a
subspace.

MML Identifier: CONNSP_ 3.

WWW: http://mizar.org/JFM/Vol8/connsp_3.html

The articlesl[5],[[1],3],[[4], and 2] provide the notation and terminology for this paper.

1. THE COMPONENT OF ASUBSET IN A TOPOLOGICAL SPACE

In this papeiG; is a non empty topological space.
Let G; be a topological structure and ¢t be a subset 06;. The functor Compone(\)
yielding a subset 06, is defined by the condition (Def. 1).

(Def. 1) There exists a famillf of subsets 051 such that for every subsétof G; holdsA € F iff
Ais connected and C Aand|JF = Componen().

One can prove the following propositions:

(1) LetG; be atopological space ahdbe a subset dB;. If there exists a subsétof G; such
thatA is connected and C A, thenV C ComponentV).

(2) LetGy be a topological space aMibe a subset oB;. If it is not true that there exists a
subsefA of G1 such thatA is connected and C A, then ComponeiV/) = 0.

(3) Componer(®g,)) = the carrier ofG;.
(4) For every subsat of G; such thaW is connected holds Componévi) # 0.

(5) For every topological space; and for every subsét of G; such thaV is connected and
V = 0 holds Componei(¥) is connected.

(6) For all subsets/, C of Gy such thatV is connected andC is connected holds if
ComponentV) C C, thenC = ComponentV).

(7) For every subsek of G; such thatA is a component 06, holds Componeiff) = A.

(8) LetAbe asubset db;. ThenAis a component o if and only if there exists a subsét
of G1 such thaV is connected and # 0 andA = ComponendV).
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(9) For every subset of G; such thal is connected an¥ = 0 holds ComponeiV) is a
component of5;.

(10) For all subsets, V of G; such thatA is a component ofs; andV is connected and C A
andV # 0 holdsA = ComponentV).

(11) Forevery subs&t of G; such thaV is connected and - 0 holds Componeri€omponentV)) =
ComponenV).

(12) For all subsets, B of G; such that is connected anB is connected and # 0 andA C B
holds Componeiif) = Componen(B).

(13) For all subset8, B of G; such that is connected anB is connected and # 0 andA C B
holdsB C Componert(A).

(14) LetAbe asubset oB; andB be a subset oB;. If Ais connected andUB is connected
andA # 0, thenAUB C Componen(tA).

(15) For every subsek of G; and for every poinp of G; such thatA is connected ang € A
holds Componeiip) = Componen(A).

(16) LetA, B be subsets o65;. SupposeA is connected an@ is connected anéd meetsB.
ThenAUB C ComponentA) andAUB C ComponeniB) andA C ComponeniB) andB C
Componen(A).

(17) For every subset of G; such thatA is connected and # 0 holdsA C ComponentA).
(18) LetA, Bbe subsets 0B;. Supposé is a component 06, andB is connected anB #£ 0

andA missesB. ThenA misses Compone(i).

2. ON UNIONS OFCOMPONENTS

Let G; be atopological structure. A subset®f is called a union of components @f if it satisfies
the condition (Def. 2).

(Def. 2) There exists a familly of subsets 06, such that for every subsBtof G; such thaB € F
holdsB is a component 061 and it= JF.

The following propositions are true:

(19) 0, is a union of components @;.

(20) For every subseét of G; such thatA = the carrier 0fG; holdsA is a union of components
of G;.

(21) LetAbe asubset dB; andp be a point ofG;. If p € AandA is a union of components of
Gi, then Componelip) C A.

(22) LetA, B be subsets of5;. SupposéA is a union of components @, andB is a union
of components of5;. ThenAUB is a union of components @; andANB is a union of
components o6;.

(23) LetF; be a family of subsets @&;. Suppose that for every subgebf G; such thatA € F;
holdsA is a union of components &;. ThenlJ F; is a union of components @3;.

(24) LetF; be a family of subsets @;. Suppose that for every subgeof G; such thatA € F;
holdsA is a union of components &;. Then Fy is a union of components &3;.

(25) LetA, B be subsets oB;. Supposé is a union of components @, andB is a union of
components 06;. ThenA\ B is a union of components @;.
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3. OPERATIONSDOWN AND UP

Let G; be a topological structure, |8be a subset 0B, and letp be a point 0fG;. Let us assume
thatp € B. The functor Dowiip, B) yields a point ofG; [B and is defined as follows:

(Def. 3) Dowr(p,B) = p.

Let G; be a topological structure, I& be a subset 061, and letp be a point ofG; [B. Let us
assume thaB # 0. The functor Ugp) yielding a point ofG; is defined as follows:

(Def. 4) Up(p)=p.

Let G; be a topological structure and ¥t B be subsets db;. The functor Dow(\V, B) yielding
a subset of51[B is defined by:

(Def.5) Down(V,B)=VNB.

Let G; be a topological structure, I& be a subset 061, and letV be a subset 061 [B. The
functor UpV) yields a subset 0B, and is defined by:

(Def. 6) UpV)=V.

Let G; be a topological structure, I& be a subset of5;, and letp be a point ofG;. Let us
assume thap € B. The functor skip, B) yielding a subset oB; is defined as follows:

(Def. 7)  For every poing of G1|B such thay = p holds sk{p,B) = Component).

The following propositions are true:

(26) For every subs@ of G; and for every poinp of G; such thatp € B holds sk(p,B) # 0.

(27) For every subsé of G; and for every poinip of G; such thatp € B holds sk{p,B) =
ComponentDown(p, B)).

(28) For all subset¥, B of G; such tha¥ C B holds Dowr{V,B) = V.

(29) For every topological spadg; and for all subset¥, B of G; such thatv is open holds
Down(V, B) is open.

(30) For all subset¥, B of G; such that/ C B holdsDown(V,B) =V NB.

(31) For every subsd of G; and for every subsat of G [B holdsV = Up(V)NB.

(32) For all subset¥, B of G; such that/ C B holdsDown(V,B) C V.

(33) For every subseB of G; and for every subse¥ of G1[B such thatV C B holds
Down(Up(V),B) = V.

(34) LetGs be atopological spac¥, B be subsets dB;, andW be a subset dB; [B. If V =W
andW is connected, theYl is connected.

(35) For every subse® of G; and for every pointp of G; such thatp € B holds skip,B) is
connected.
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