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Summary. Definitions of complex sequence and operations on sequences (multipli-
cation of sequences and multiplication by a complex number, addition, subtraction, division
and absolute value of sequence) are given. We followed [4].
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The articles [5], [8], [6], [3], [9], [1], [10], [2], [7], and [4] provide the notation and terminology for
this paper.

For simplicity, we use the following convention:f is a function,n is a natural number,r, p are
elements ofC, andx is a set.

A complex sequence is a function fromN into C.
In the sequels1, s2, s3, s4, s′1, s′2 denote complex sequences.
One can prove the following two propositions:

(1) f is a complex sequence iff domf = N and for everyx such thatx ∈ N holds f (x) is an
element ofC.

(2) f is a complex sequence iff domf = N and for everyn holds f (n) is an element ofC.

Let us considers1, n. Thens1(n) is an element ofC.
The schemeExComplexSeqdeals with a unary functorF yielding an element ofC, and states

that:
There existss1 such that for everyn holdss1(n) = F (n)

for all values of the parameter.
Let I1 be a complex sequence. We say thatI1 is non-zero if and only if:

(Def. 1) rngI1 ⊆ C\{0C}.

We now state the proposition

(3) s1 is non-zero iff for everyx such thatx∈ N holdss1(x) 6= 0C.

Let us observe that there exists a complex sequence which is non-zero.
The following propositions are true:

(4) s1 is non-zero iff for everyn holdss1(n) 6= 0C.

(6)1 For alls1, s2 such that for everyn holdss1(n) = s2(n) holdss1 = s2.

(7) For everyr there existss1 such that rngs1 = {r}.
1 The proposition (5) has been removed.

1 c© Association of Mizar Users
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Let C be a non empty set and letf1, f2 be partial functions fromC to C. The functor f1 + f2
yielding a partial function fromC to C is defined by:

(Def. 2) dom( f1 + f2) = dom f1∩dom f2 and for every elementc of C such thatc∈ dom( f1 + f2)
holds( f1 + f2)(c) = ( f1)c +( f2)c.

Let us note that the functorf1 + f2 is commutative. The functorf1 f2 yields a partial function from
C to C and is defined by:

(Def. 3) dom( f1 f2) = dom f1∩dom f2 and for every elementc of C such thatc∈ dom( f1 f2) holds
( f1 f2)(c) = ( f1)c · ( f2)c.

Let us observe that the functorf1 f2 is commutative.
Let C be a non empty set and letf1, f2 be functions fromC into C. Then f1 + f2 can be

characterized by the condition:

(Def. 4) dom( f1 + f2) = C and for every elementc of C holds( f1 + f2)(c) = f1(c)+ f2(c).

Then f1 f2 can be characterized by the condition:

(Def. 5) dom( f1 f2) = C and for every elementc of C holds( f1 f2)(c) = f1(c) · f2(c).

Let C be a non empty set and lets2, s3 be functions fromC into C. Note thats2 +s3 is total and
s2 s3 is total.

Let C be a non empty set, letf be a partial function fromC to C, and let us considerr. The
functorr f yielding a partial function fromC to C is defined by:

(Def. 6) dom(r f ) = dom f and for every elementc of C such thatc∈ dom(r f ) holds(r f )(c) =
r · fc.

Let C be a non empty set, letf be a function fromC into C, and let us considerr. Thenr f can
be characterized by the condition:

(Def. 7) dom(r f ) = C and for every elementn of C holds(r f )(n) = r · f (n).

Let C be a non empty set, lets1 be a function fromC into C, and let us considerr. Observe that
r s1 is total.

Let C be a non empty set and letf be a partial function fromC to C. The functor− f yielding a
partial function fromC to C is defined as follows:

(Def. 8) dom(− f ) = dom f and for every elementc of C such thatc∈ dom(− f ) holds(− f )(c) =
− fc.

Let C be a non empty set and letf be a function fromC into C. Then− f can be characterized
by the condition:

(Def. 9) dom(− f ) = C and for every elementn of C holds(− f )(n) =− f (n).

Let C be a non empty set and lets1 be a function fromC into C. Observe that−s1 is total.
Let C be a non empty set and letf1, f2 be partial functions fromC to C. The functor f1− f2

yielding a partial function fromC to C is defined by:

(Def. 10) f1− f2 = f1 +− f2.

LetC be a non empty set and letf1, f2 be functions fromC into C. Observe thatf1− f2 is total.
Let us considers1. The functors1

−1 yielding a complex sequence is defined by:

(Def. 11) For everyn holdss1
−1(n) = s1(n)−1.

Let us considers2, s1. The functors2/s1 yielding a complex sequence is defined by:

(Def. 12) s2/s1 = s2 s1
−1.

Let C be a non empty set and letf be a partial function fromC to C. The functor| f | yielding a
partial function fromC to R is defined by:
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(Def. 13) dom| f |= dom f and for every elementc of C such thatc∈ dom| f | holds| f |(c) = | fc|.

Let C be a non empty set and lets1 be a function fromC into C. Then|s1| can be characterized
by the condition:

(Def. 14) dom|s1|= C and for every elementn of C holds|s1|(n) = |s1(n)|.

Let C be a non empty set and lets1 be a function fromC into C. Observe that|s1| is total.
We now state a number of propositions:

(9)2 (s2 +s3)+s4 = s2 +(s3 +s4).

(11)3 (s2 s3) s4 = s2 (s3 s4).

(12) (s2 +s3) s4 = s2 s4 +s3 s4.

(13) s4 (s2 +s3) = s4 s2 +s4 s3.

(14) −s1 = (−1C) s1.

(15) r (s2 s3) = (r s2) s3.

(16) r (s2 s3) = s2 (r s3).

(17) (s2−s3) s4 = s2 s4−s3 s4.

(18) s4 s2−s4 s3 = s4 (s2−s3).

(19) r (s2 +s3) = r s2 + r s3.

(20) (r · p) s1 = r (p s1).

(21) r (s2−s3) = r s2− r s3.

(22) r (s2/s1) = (r s2)/s1.

(23) s2− (s3 +s4) = s2−s3−s4.

(24) 1C s1 = s1.

(25) −−s1 = s1.

(26) s2−−s3 = s2 +s3.

(27) s2− (s3−s4) = (s2−s3)+s4.

(28) s2 +(s3−s4) = (s2 +s3)−s4.

(29) (−s2) s3 =−s2 s3 ands2 −s3 =−s2 s3.

(30) If s1 is non-zero, thens1
−1 is non-zero.

(31) (s1
−1)−1 = s1.

(32) s1 is non-zero ands2 is non-zero iffs1 s2 is non-zero.

(33) If s1 is non-zero ands2 is non-zero, thens1
−1 s2

−1 = (s1 s2)−1.

(34) If s1 is non-zero, then(s2/s1) s1 = s2.

(35) If s1 is non-zero ands2 is non-zero, then(s′1/s1) (s′2/s2) = (s′1 s′2)/(s1 s2).

(36) If s1 is non-zero ands2 is non-zero, thens1/s2 is non-zero.

2 The proposition (8) has been removed.
3 The proposition (10) has been removed.
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(37) If s1 is non-zero ands2 is non-zero, then(s1/s2)−1 = s2/s1.

(38) s3 (s2/s1) = (s3 s2)/s1.

(39) If s1 is non-zero ands2 is non-zero, thens3/(s1/s2) = (s3 s2)/s1.

(40) If s1 is non-zero ands2 is non-zero, thens3/s1 = (s3 s2)/(s1 s2).

(41) If r 6= 0C ands1 is non-zero, thenr s1 is non-zero.

(42) If s1 is non-zero, then−s1 is non-zero.

(43) If r 6= 0C ands1 is non-zero, then(r s1)−1 = r−1 s1
−1.

(44) If s1 is non-zero, then(−s1)−1 = (−1C) s1
−1.

(45) If s1 is non-zero, then−s2/s1 = (−s2)/s1 ands2/−s1 =−s2/s1.

(46) s2/s1 +s′2/s1 = (s2 +s′2)/s1 ands2/s1−s′2/s1 = (s2−s′2)/s1.

(47) If s1 is non-zero ands′1 is non-zero, thens2/s1+s′2/s′1 = (s2 s′1+s′2 s1)/(s1 s′1) ands2/s1−
s′2/s′1 = (s2 s′1−s′2 s1)/(s1 s′1).

(48) If s1 is non-zero ands′1 is non-zero ands2 is non-zero, thens′2/s1/(s′1/s2) = (s′2 s2)/(s1 s′1).

(49) |s1 s′1|= |s1| |s′1|.

(50) If s1 is non-zero, then|s1| is non-zero.

(51) If s1 is non-zero, then|s1|−1 = |s1
−1|.

(52) If s1 is non-zero, then|s′1/s1|= |s′1|/|s1|.

(53) |r s1|= |r| |s1|.
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