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Summary. Definitions of complex sequence and operations on sequences (multipli-
cation of sequences and multiplication by a complex number, addition, subtraction, division
and absolute value of sequence) are given. We folloied [4].

MML Identifier: COMSEQ_1.
WWW: http://mizar.org/JFM/Vol5/comseqg_1.html

The articles[[5],[[8],1[6], 8], [9], [1], [10], [2], [7], and[4] provide the notation and terminology for
this paper.

For simplicity, we use the following conventiorfi:is a function,n is a natural number, p are
elements ofC, andx is a set.

A complex sequence is a function frasinto C.

In the sequesy, s, 3, &4, S}, S, denote complex sequences.

One can prove the following two propositions:

(1) fis a complex sequence iff dofm= N and for everyx such thatx € N holds f (x) is an
element ofC.

(2) fisacomplex sequence iff dom= N and for everyn holdsf(n) is an element of.

Let us consides;, n. Thens;(n) is an element of.
The schem&xComplexSedeals with a unary functof yielding an element of’, and states
that:
There exists; such that for every holdss; (n) = F(n)
for all values of the parameter.
Letl; be a complex sequence. We say thas non-zero if and only if:

(Def. 1) gy € C\ {Oc}.
We now state the proposition
(3) s1is non-zero iff for every such thak € N holdss; (x) # Oc.

Let us observe that there exists a complex sequence which is non-zero.
The following propositions are true:

(4) s is non-zero iff for everyn holdss; (n) # Oc.
(BE] For all s, s, such that for every holdss; (n) = s(n) holdss; = .

(7) Foreveryr there exists; such that rng; = {r}.

1 The proposition (5) has been removed.
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Let C be a non empty set and I€t, f» be partial functions fron€C to C. The functorf; 4 f;
yielding a partial function fron€ to C is defined by:

(Def. 2) domf;+ f2) =domfi; ndomf, and for every element of C such thatt € dom(f; + f7)
holds(f1 + f2)(c) = (f1)c+ (f2)c.

Let us note that the functdy + f, is commutative. The functoin f, yields a partial function from
Cto C and is defined by:

(Def. 3) donff; f,) = domf; ndomf, and for every elememtof C such that € dom(f; f,) holds
(f1 f2)(c) = (fa)c- (f2)c.

Let us observe that the functéy f, is commutative.
Let C be a non empty set and lé{, fo be functions fromC into C. Then f; + f, can be
characterized by the condition:

(Def. 4) domf;+ fz) =C and for every elementof C holds(f1 + f2)(c) = f1(c) + f2(c).
Thenf; f, can be characterized by the condition:
(Def.5) donfy f2) =C and for every elemertof C holds( f1 f2)(c) = fi(c) - f2(c).

LetC be a non empty set and Igt, s3 be functions fronC into C. Note thats, 4 s3 is total and
S sz is total.

Let C be a non empty set, Idt be a partial function fron€ to C, and let us considar. The
functorr f yielding a partial function fron€ to C is defined by:

(Def. 6) donir f) =domf and for every elemert of C such thatc € dom(r f) holds(r f)(c) =
r- fc.

LetC be a non empty set, Idtbe a function fronC into C, and let us consider. Thenr f can
be characterized by the condition:

(Def. 7) domir f) =C and for every element of C holds(r f)(n) =r- f(n).

LetC be a non empty set, Ist be a function fronC into C, and let us consider. Observe that
rs; is total.

LetC be a non empty set and létbe a partial function fron€ to C. The functor—f yielding a
partial function fronC to C is defined as follows:

(Def. 8) don{—f)=domf and for every elemert of C such that € dom(—f) holds(—f)(c) =

—fe.

LetC be a non empty set and létbe a function fronC into C. Then—f can be characterized
by the condition:

(Def. 9) dom{—f) =C and for every elementof C holds(—f)(n) = —f(n).

LetC be a non empty set and Igtbe a function fronC into C. Observe that-s; is total.
Let C be a non empty set and I&t, f> be partial functions fron€ to C. The functorf; — f;
yielding a partial function fron€ to C is defined by:

(Def. 10) f1—fo= f1+—fa.

LetC be a non empty set and I&t, f» be functions fronC into C. Observe thaf; — f; is total.
Let us consides;. The functors; ~* yielding a complex sequence is defined by:

(Def. 11) For everyr holdss; ~(n) = s;(n) 2.
Let us consides, s1. The functorsy/s; yielding a complex sequence is defined by:
(Def. 12) s/s1 =551

Let C be a non empty set and létbe a partial function fron€ to C. The functor| f| yielding a
partial function fromC to R is defined by:
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(Def. 13) domf|=domf and for every elemerttof C such that € dom|f| holds|f|(c) = |f¢|.

LetC be a non empty set and Igtbe a function fronC into C. Then|s;| can be characterized
by the condition:

(Def. 14) donis;| = C and for every element of C holds|s;|(n) = |s1(n)].

Let C be a non empty set and Igtbe a function fronC into C. Observe thals; | is total.
We now state a number of propositions:

OF (2+%)+s1=%+(S3+%4).
1L (2s)u=s(s%).
(12) (ets)u=u+s%
(13) u(nt+ts)=u2t+uss.
14) —-s1=(-1¢) s
(15) r(s2ss) =(rs2)ss.
(16) r(s2s3) =2 (rsa).
17) (e-s)u=u—Su.
(18) i -sus3=su(S2—Sg).
(19) r(s2+s3)=rsy+rsa.
(20) (r-p)si=r(ps)
(21) r(sp—s3)=rsy—rss.
(22) r(s/s1)=(rsz)/s1-
(23) 2—(s+s4)=2—S3— %4
(24) Lksi=s.
(25) ——s1=s1.
(26) - —ss=%+s.
@27 - (ss—)=(2—%) +%.
(28) 2+ (3—4) = (S2+%8) — .
(29) (-%)ss=-spands —3=-5 5.
(30) If s; is non-zero, thes; 1 is non-zero.
Bl (1 Ht=¢.
(32) s is non-zero and; is non-zero iffs; s, is non-zero.
(33) If 51 is non-zero and; is non-zero, thes; 1,71 = (51 5) 2.
(34) If 51 is non-zero, thelis;/s1) $1 = .
(85) If 51 is non-zero and; is non-zero, thef(s, /s1) (S,/S2) = (S, S,)/(S1 S2)-

(36) If 51 is non-zero and, is non-zero, thes; /s, is hon-zero.

2 The proposition (8) has been removed.
3 The proposition (10) has been removed.
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(387) If s is non-zero and, is non-zero, thetfs; /s;) ™t = /5.

(38) s3(s2/s1) = (83%2)/s1-

(39) If s is non-zero andy is non-zero, thesz/(s1/9) = (3 )/S1-

(40) If 51 is non-zero andy is non-zero, thess/s; = (S3S)/(S1 9)-

(41) Ifr #£ O¢ ands; is non-zero, thens; is non-zero.

(42) If 1 is non-zero, ther-s; is non-zero.

(43) Ifr #Oc ands; is non-zero, theifr ;)™ =r—1g 1

(44) If 5 is non-zero, theti—s;) ™t = (—1¢) 572

(45) If s is non-zero, ther-s/s1 = (—S)/s1 andsy/—s1 = —S/s1.
(46) s2/s1t+S/s1=(2+%)/s1ands/s1—S,/s1 = (22— )/t
(47) If sy is non-zero and,; is non-zero, thesy/s1 +5,/S) = (525, + S, 51)/(s1°S;) andsp /sy —

S/ = (25 -55)/(s15).

(48) If s1is non-zero and] is non-zero and; is non-zero, thes, /s1/(s) /%) = (S, %) /(51 9))-
(49) [s1sy|=s1][sy]-

(50) If s1 is non-zero, thets; | is non-zero.

(51) If s is non-zero, thetsy |2 = |s; 1.
(52) If sy is non-zero, thefs, /s1| =[S} |/|st]-
(53) [rsif=r[|sl-
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