Complex Sequences

Agnieszka Banachowicz Warsaw University Białystok Anna Winnicka Warsaw University Białystok

Summary. Definitions of complex sequence and operations on sequences (multiplication of sequences and multiplication by a complex number, addition, subtraction, division and absolute value of sequence) are given. We followed [4].

MML Identifier: COMSEQ_1.

WWW: http://mizar.org/JFM/Vol5/comseq_1.html

The articles [5], [8], [6], [3], [9], [1], [10], [2], [7], and [4] provide the notation and terminology for this paper.

For simplicity, we use the following convention: f is a function, n is a natural number, r, p are elements of \mathbb{C} , and x is a set.

A complex sequence is a function from \mathbb{N} into \mathbb{C} .

In the sequel s_1 , s_2 , s_3 , s_4 , s'_1 , s'_2 denote complex sequences.

One can prove the following two propositions:

- (1) f is a complex sequence iff dom $f = \mathbb{N}$ and for every x such that $x \in \mathbb{N}$ holds f(x) is an element of \mathbb{C} .
- (2) f is a complex sequence iff dom $f = \mathbb{N}$ and for every n holds f(n) is an element of \mathbb{C} .

Let us consider s_1 , n. Then $s_1(n)$ is an element of \mathbb{C} .

The scheme ExComplexSeq deals with a unary functor $\mathcal F$ yielding an element of $\mathbb C$, and states that:

There exists s_1 such that for every n holds $s_1(n) = \mathcal{F}(n)$

for all values of the parameter.

Let I_1 be a complex sequence. We say that I_1 is non-zero if and only if:

(Def. 1) $\operatorname{rng} I_1 \subseteq \mathbb{C} \setminus \{0_{\mathbb{C}}\}.$

We now state the proposition

(3) s_1 is non-zero iff for every x such that $x \in \mathbb{N}$ holds $s_1(x) \neq 0_{\mathbb{C}}$.

Let us observe that there exists a complex sequence which is non-zero.

The following propositions are true:

- (4) s_1 is non-zero iff for every n holds $s_1(n) \neq 0_{\mathbb{C}}$.
- (6)¹ For all s_1 , s_2 such that for every n holds $s_1(n) = s_2(n)$ holds $s_1 = s_2$.
- (7) For every r there exists s_1 such that $rng s_1 = \{r\}$.

1

¹ The proposition (5) has been removed.

Let C be a non empty set and let f_1 , f_2 be partial functions from C to \mathbb{C} . The functor $f_1 + f_2$ yielding a partial function from C to \mathbb{C} is defined by:

(Def. 2) $\operatorname{dom}(f_1 + f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2$ and for every element c of C such that $c \in \operatorname{dom}(f_1 + f_2)$ holds $(f_1 + f_2)(c) = (f_1)_c + (f_2)_c$.

Let us note that the functor $f_1 + f_2$ is commutative. The functor f_1 f_2 yields a partial function from C to \mathbb{C} and is defined by:

(Def. 3) $\operatorname{dom}(f_1 f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2$ and for every element c of C such that $c \in \operatorname{dom}(f_1 f_2)$ holds $(f_1 f_2)(c) = (f_1)_c \cdot (f_2)_c$.

Let us observe that the functor f_1 f_2 is commutative.

Let C be a non empty set and let f_1 , f_2 be functions from C into \mathbb{C} . Then $f_1 + f_2$ can be characterized by the condition:

(Def. 4) $\operatorname{dom}(f_1 + f_2) = C$ and for every element c of C holds $(f_1 + f_2)(c) = f_1(c) + f_2(c)$.

Then f_1 f_2 can be characterized by the condition:

(Def. 5) $\operatorname{dom}(f_1 f_2) = C$ and for every element c of C holds $(f_1 f_2)(c) = f_1(c) \cdot f_2(c)$.

Let C be a non empty set and let s_2 , s_3 be functions from C into \mathbb{C} . Note that $s_2 + s_3$ is total and s_2 s_3 is total.

Let C be a non empty set, let f be a partial function from C to \mathbb{C} , and let us consider r. The functor r f yielding a partial function from C to \mathbb{C} is defined by:

(Def. 6) $\operatorname{dom}(rf) = \operatorname{dom} f$ and for every element c of C such that $c \in \operatorname{dom}(rf)$ holds $(rf)(c) = r \cdot f_c$.

Let C be a non empty set, let f be a function from C into \mathbb{C} , and let us consider r. Then r f can be characterized by the condition:

(Def. 7) $\operatorname{dom}(r f) = C$ and for every element n of C holds $(r f)(n) = r \cdot f(n)$.

Let C be a non empty set, let s_1 be a function from C into \mathbb{C} , and let us consider r. Observe that $r s_1$ is total.

Let C be a non empty set and let f be a partial function from C to \mathbb{C} . The functor -f yielding a partial function from C to \mathbb{C} is defined as follows:

(Def. 8) dom(-f) = dom f and for every element c of C such that $c \in dom(-f)$ holds $(-f)(c) = -f_c$.

Let C be a non empty set and let f be a function from C into \mathbb{C} . Then -f can be characterized by the condition:

(Def. 9) dom(-f) = C and for every element n of C holds (-f)(n) = -f(n).

Let C be a non empty set and let s_1 be a function from C into \mathbb{C} . Observe that $-s_1$ is total.

Let C be a non empty set and let f_1 , f_2 be partial functions from C to \mathbb{C} . The functor $f_1 - f_2$ yielding a partial function from C to \mathbb{C} is defined by:

(Def. 10) $f_1 - f_2 = f_1 + -f_2$.

Let C be a non empty set and let f_1 , f_2 be functions from C into \mathbb{C} . Observe that $f_1 - f_2$ is total. Let us consider s_1 . The functor s_1^{-1} yielding a complex sequence is defined by:

(Def. 11) For every *n* holds $s_1^{-1}(n) = s_1(n)^{-1}$.

Let us consider s_2 , s_1 . The functor s_2/s_1 yielding a complex sequence is defined by:

(Def. 12) $s_2/s_1 = s_2 s_1^{-1}$.

Let C be a non empty set and let f be a partial function from C to \mathbb{C} . The functor |f| yielding a partial function from C to \mathbb{R} is defined by:

(Def. 13) $\operatorname{dom} |f| = \operatorname{dom} f$ and for every element c of C such that $c \in \operatorname{dom} |f|$ holds $|f|(c) = |f_c|$.

Let C be a non empty set and let s_1 be a function from C into \mathbb{C} . Then $|s_1|$ can be characterized by the condition:

(Def. 14) $\operatorname{dom} |s_1| = C$ and for every element n of C holds $|s_1|(n) = |s_1(n)|$.

Let *C* be a non empty set and let s_1 be a function from *C* into \mathbb{C} . Observe that $|s_1|$ is total. We now state a number of propositions:

$$(9)^2 (s_2 + s_3) + s_4 = s_2 + (s_3 + s_4).$$

$$(11)^3$$
 $(s_2 s_3) s_4 = s_2 (s_3 s_4).$

$$(12) \quad (s_2 + s_3) \ s_4 = s_2 \ s_4 + s_3 \ s_4.$$

(13)
$$s_4(s_2+s_3) = s_4 s_2 + s_4 s_3$$
.

(14)
$$-s_1 = (-1_{\mathbb{C}}) s_1$$
.

(15)
$$r(s_2 s_3) = (r s_2) s_3$$
.

(16)
$$r(s_2 s_3) = s_2 (r s_3).$$

(17)
$$(s_2 - s_3) s_4 = s_2 s_4 - s_3 s_4$$
.

(18)
$$s_4 s_2 - s_4 s_3 = s_4 (s_2 - s_3).$$

(19)
$$r(s_2+s_3)=rs_2+rs_3$$
.

(20)
$$(r \cdot p) s_1 = r (p s_1).$$

(21)
$$r(s_2-s_3)=rs_2-rs_3$$
.

(22)
$$r(s_2/s_1) = (r s_2)/s_1$$
.

(23)
$$s_2 - (s_3 + s_4) = s_2 - s_3 - s_4$$
.

(24)
$$1_{\mathbb{C}} s_1 = s_1$$
.

(25)
$$--s_1 = s_1$$
.

(26)
$$s_2 - -s_3 = s_2 + s_3$$
.

(27)
$$s_2 - (s_3 - s_4) = (s_2 - s_3) + s_4$$
.

(28)
$$s_2 + (s_3 - s_4) = (s_2 + s_3) - s_4$$
.

(29)
$$(-s_2) s_3 = -s_2 s_3$$
 and $s_2 - s_3 = -s_2 s_3$.

(30) If s_1 is non-zero, then s_1^{-1} is non-zero.

(31)
$$(s_1^{-1})^{-1} = s_1$$
.

- (32) s_1 is non-zero and s_2 is non-zero iff s_1 s_2 is non-zero.
- (33) If s_1 is non-zero and s_2 is non-zero, then $s_1^{-1} s_2^{-1} = (s_1 s_2)^{-1}$.
- (34) If s_1 is non-zero, then $(s_2/s_1) s_1 = s_2$.
- (35) If s_1 is non-zero and s_2 is non-zero, then $(s_1'/s_1)(s_2'/s_2) = (s_1's_2')/(s_1s_2)$.
- (36) If s_1 is non-zero and s_2 is non-zero, then s_1/s_2 is non-zero.

² The proposition (8) has been removed.

³ The proposition (10) has been removed.

- (37) If s_1 is non-zero and s_2 is non-zero, then $(s_1/s_2)^{-1} = s_2/s_1$.
- (38) $s_3(s_2/s_1) = (s_3 s_2)/s_1$.
- (39) If s_1 is non-zero and s_2 is non-zero, then $s_3/(s_1/s_2) = (s_3 s_2)/s_1$.
- (40) If s_1 is non-zero and s_2 is non-zero, then $s_3/s_1 = (s_3 s_2)/(s_1 s_2)$.
- (41) If $r \neq 0_{\mathbb{C}}$ and s_1 is non-zero, then $r s_1$ is non-zero.
- (42) If s_1 is non-zero, then $-s_1$ is non-zero.
- (43) If $r \neq 0_{\mathbb{C}}$ and s_1 is non-zero, then $(r s_1)^{-1} = r^{-1} s_1^{-1}$.
- (44) If s_1 is non-zero, then $(-s_1)^{-1} = (-1_{\mathbb{C}}) s_1^{-1}$.
- (45) If s_1 is non-zero, then $-s_2/s_1 = (-s_2)/s_1$ and $s_2/-s_1 = -s_2/s_1$.
- (46) $s_2/s_1 + s_2'/s_1 = (s_2 + s_2')/s_1$ and $s_2/s_1 s_2'/s_1 = (s_2 s_2')/s_1$.
- (47) If s_1 is non-zero and s'_1 is non-zero, then $s_2/s_1 + s'_2/s'_1 = (s_2 s'_1 + s'_2 s_1)/(s_1 s'_1)$ and $s_2/s_1 s'_2/s'_1 = (s_2 s'_1 s'_2 s_1)/(s_1 s'_1)$.
- (48) If s_1 is non-zero and s'_1 is non-zero and s_2 is non-zero, then $s'_2/s_1/(s'_1/s_2) = (s'_2 s_2)/(s_1 s'_1)$.
- $(49) |s_1 s_1'| = |s_1| |s_1'|.$
- (50) If s_1 is non-zero, then $|s_1|$ is non-zero.
- (51) If s_1 is non-zero, then $|s_1|^{-1} = |s_1|^{-1}$.
- (52) If s_1 is non-zero, then $|s'_1/s_1| = |s'_1|/|s_1|$.
- (53) $|r s_1| = |r| |s_1|$.

REFERENCES

- [1] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [3] Czesław Byliński. The complex numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/complex1.
- [4] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seq_1.html.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [6] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [7] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_
- $[8] \begin{tabular}{ll} {\bf Zinaida\ Trybulec.\ Properties\ of\ subsets.\ \it Journal\ of\ Formalized\ Mathematics, 1, 1989.\ http://mizar.org/JFM/Voll/subset_1.html. \end{tabular}$
- [9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html.

[10] Edmund Woronowicz. Relations defined on sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relset_l.html.

Received November 5, 1993

Published January 2, 2004
