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Summary. We follow [37] in defining the set of primitive recursive functions. The
important helper notion is the homogeneous function from finite sequences of natural numbers
into natural numbers where homogeneous means that all the sequences in the domain are
of the same length. The set of all such functions is then used to define the notion of a set
closed under composition of functions and under primitive recursion. We call a set primitively
recursively closed iff it contains the initial functions (nullary constant function returning O,
unary successor and projection functions for all arities) and is closed under composition and
primitive recursion. The set of primitive recursive functions is then defined as the smallest set
of functions which is primitive recursively closed. We show that this set can be obtained by
primitive recursive approximation. We finish with showing that some simple and well known
functions are primitive recursive.
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The articles[[25],[[11],[[30],[[27],[1],[[32],[133] [ [8] .[6] . [12], [24], [16], [26] 9], [13] 3] /[22],
[4], 1210, [29], [10], [19], [15], [18], [E], [7], [14], [2€], [20], [17], [23], and[]2] provide the notation
and terminology for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following rules; j, k, ¢, m, n denote natural numbera, x, y, z, X, Y
denote setd), E denote non empty setR denotes a binary relatiori, g denote functions, ang,
g denote finite sequences.

Let X be a non empty set, letbe a natural number, lgtbe an element ak", leti be a natural
number, and lex be an element oX. Thenp+- (i,X) is an element oK".

Let n be a natural number, Ietbe an element dR", and leti be a natural number. Thefi) is
an element oN.

The following propositions are true:

G (xy) + (1,2 = (zy) and(x,y) + (2,2 = (x,2).

(P If f+ (ax) =g+ (ay), thenf + (a,2) =g+ (a,2).

6) (p+-(i,%))1i = pyi-

(7) If p+(i,a) =q+-(i,a), thenp; = qji.

1This work has been supported by NSERC Grant OGP9207, NATO CRG 951368 and TYPES grant
IST-1999-29001.

1 The propositions (1) and (2) have been removed.
2 The proposition (4) has been removed.
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(8) X°={0}.
(9) Ifn#0,thend" = 0.
(10) If0erngf,then*f =0.
(11) Ifrngf =D, then rgq*(f) =D
(12) If1<iandi<n+1, then for every elemerg of D™ holdsp;; € D".

(13) For every seX and for every seY of finite sequences of holdsY C X*.

2. SETS OFCOMPATIBLE FUNCTIONS

Let X be a set. We say thatis compatible if and only if:
(Def. 1) For all functionsf, g such thatf € X andg € X holdsf ~ g.

Let us observe that there exists a set which is non empty, functional, and compatible.
Let X be a functional compatible set. One can check thAtis function-like and relation-like.
Next we state the proposition

(14) Xis functional and compatible iff) X is a function.

Let X, Y be sets. Note that there exists a non empty set of partial functionsXrtmY which
is non empty and compatible.
One can prove the following propositions:

(15) For every non empty functional compatible ¥eholds domJX = |J{domf : f ranges
over elements oX}.

(16) LetX be afunctional compatible set aficbe a function. Iff € X, then domf C dom(J X
and for every set such thai € domf holds(|JX)(x) = f(x).

(17) For every non empty functional compatible Xdtolds rnd X = J{rngf : f ranges over
elements o }.

Letus consideK, Y. Note that every non empty set of partial functions figno Y is functional.
The following proposition is true

(18) LetP be a compatible non empty set of partial functions foério Y. ThenJ P is a partial
function fromX toY.

3. HOMOGENEOUSRELATIONS

Let f be a binary relation. We introdudeis into N as a synonym of is natural-yielding.
Let f be a binary relation. We say thétis from tuples orN if and only if:

(Def. 2) domf C N*.

Let us note that there exists a function which is from tuple®i@and intoN.
Let f be a binary relation from tuples df. We say thaff is length total if and only if:

(Def. 3) For all finite sequences y of elements ofN such that lex = leny andx € domf holds
y € domf.

Let f be a binary relation. We say thais homogeneous if and only if:
(Def. 4) For all finite sequencesy such tha € domf andy € domf holds lerx = leny.

One can prove the following proposition
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(19) If domRC D", thenRis homogeneous.

One can check th&is homogeneous.

Let p be a finite sequence and lebe a set. Observe thp} — X is non empty and homoge-
neous.

One can verify that there exists a function which is non empty and homogeneous.

Let f be a homogeneous function and dgbe a function. One can verify thgt f is homoge-
neous.

Let X, Y be sets. One can check that there exists a partial function Xoro Y which is
homogeneous.

Let X, Y be non empty sets. One can check that there exists a partial functionframyY
which is non empty and homogeneous.

Let X be a non empty set. Observe that there exists a partial functionXfaimX which is non
empty, homogeneous, and quasi total.

Let us observe that there exists a function from tuple®arhich is non empty, homogeneous,
into N, and length total.

Let us mention that every partial function frdNf to N is intoN and from tuples oiN.

Let us observe that every partial function frd¥i to N which is quasi total is also length total.

Next we state the proposition

(20) Every length total function from tuples dWinto N is a quasi total partial function from
N*toN.

Let f be a homogeneous binary relation. The functor driyyelds a natural number and is
defined by:

(Def. 5)(i) For every finite sequencesuch thatx € domf holds arityf = lenx if there exists a
finite sequence such thak € domf,

(i) arity f =0, otherwise.

Next we state several propositions:
(21) arityd=0.
(22) For every homogeneous binary relatioauch that donfi = {0} holds arityf = 0.
(23) For every homogeneous partial functibfrom X* to'Y holds domf C X&'/,
(24) For every homogeneous functibrirom tuples onN holds domf C Nty f,

(25) Letf be ahomogeneous partial function frothto X. Thenf is quasi total and non empty
if and only if domf = X2,

(26) Letf be a homogeneous function imtband from tuples oN. Thenf is length total and
non empty if and only if doni = Naf

(27) For every non empty homogeneous partial funcfidnrom D* to D and for everyn such
that domf C D" holds arityf = n.

(28) For every homogeneous partial functibfrom D* to D and for everyn such that donfi =
D" holds arityf = n.

Let Rbe a binary relation. We say thRthas the same arity if and only if the condition (Def. 6)
is satisfied.
(Def. 6) Letf, gbe functions such thdt € rngRandg € rngR. Then
(i) if fisempty, thergis empty or dong = {0}, and

(i) if fisnonempty and is non empty, then there exists a natural numband there exists
a non empty seX such that doni C X" and dong C X".
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Let us mention thad has the same arity.

Observe that there exists a finite sequence which has the same arit§. beetd set. One can
check that there exists a finite sequence of elemen¥swafiich has the same arity and there exists
an element oK* which has the same arity.

Let F be a binary relation with the same arity. The functor &ityields a natural number and
is defined by:

(Def. 7)()) For every homogeneous functidrsuch thatf € rngF holds arityF- = arity f if there
exists a homogeneous functidérsuch thatf € rngF,

(i) arityF =0, otherwise.
The following proposition is true
(29) For every finite sequenéewith the same arity such that |€n= 0 holds arity- = 0.

Let X be a set. The functor HFunX¥syields a non empty set of partial functions frofi to X
and is defined as follows:

(Def. 8) HFuncX = {f; f ranges over elements ¥f X : f is homogeneouys
We now state the proposition
(30) 0 e HFuncsX.

Let X be a non empty set. Observe that there exists an element of HRwvidsh is non empty,
homogeneous, and quasi total.

Let X be a set. Observe that every element of HFhisshomogeneous.

Let X be a non empty set and I8be a non empty subset of HFuntsNote that every element
of Sis homogeneous.

The following propositions are true:

(31) Every homogeneous function irtband from tuples oiN is an element of HFun¢s$.

(32) Every length total homogeneous function from tuple&Ndnto N is a quasi total element
of HFuncsN.

(33) LetX be a non empty set arkélbe a binary relation such that regc HFuncsX and for all
homogeneous functiorfs g such thatf € rngF andg € rngF holds arityf = arityg. ThenF
has the same arity.

Let n, m be natural numbers. The functor caitst) yielding a homogeneous function inkd
and from tuples olN is defined by:

(Def.9) const(m) =N"—m.
One can prove the following proposition
(34) cons§(m) € HFuncsN.

Let n, mbe natural numbers. Note that caiist) is length total and non empty.
One can prove the following propositions:

(35) arityconst(m) =n.
(36) For every elementof N" holds(consh(m))(t) = m.

Let n, i be natural numbers. The functor sH@¢ yields a homogeneous function intband
from tuples orN and is defined as follows:

(Def. 10) domsucgi) = N" and for every elemerg of N" holds(sucg(i))(p) = pi + 1.

The following proposition is true
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(37) suca(i) € HFuncsN.

Letn, i be natural numbers. One can check that g{i¢és length total and non empty.
The following proposition is true

(38) aritysucg(i) =n.

Let n, i be natural numbers. The functor py@) yields a homogeneous function intband
from tuples onN and is defined as follows:

(Def. 11) proj(i) = proj(n+— N,i).
We now state two propositions:
(39) proj,(i) € HFuncsN.
(40) domproj(i) =N"and if 1<i andi < n, then rngpraj(i) = N.

Letn, i be natural numbers. Observe that p(djis length total and non empty.
One can prove the following two propositions:

(41) arityproj(i) =n.
(42) For every elemerttof N" holds(proj,(i))(t) =t(i).

Let X be a set. One can check that HFuKXds functional.
Next we state three propositions:

(43) LetF be a function fromD into HFunc€E. Suppose rn§ is compatible and for every
elementx of D holds donF (x) C E". Then there exists an elemehbf HFunc<E such that
f = JF and domf C E".

(44) For every functior from N into HFunc®D such that for every holdsF (i) C F(i + 1)
holds|UF € HFuncD.

(45) For every finite sequenéeof elements of HFund3 with the same arity holds dofj* F C
DarityF_

Let X be a non empty set and IEtbe a finite sequence of elements of HFuXagith the same
arity. Observe thaf]* F is homogeneous.
Next we state the proposition

(46) Letf be an element of HFun&sandF be a finite sequence of elements of HFuDasgith
the same arity. Then dofh-[1*F) € D¥WF and rnd f - []*F) C D andf - [1*F € HFuncD.

Let X, Y be non empty sets, |€ be a non empty set of partial functions frofrto Y, and letS
be a non empty subset Bf We see that the element 8fs an element oP.

Let f be a homogeneous function from tuplesinObserve thatf) has the same arity.

We now state several propositions:

(47) For every homogeneous functidrinto N and from tuples ofN holds arity f) = arity f.

(48) Letf, g be non empty elements of HFulésand F be a finite sequence of elements of
HFuncsN with the same arity. Iy = f - []*F, then arityg = arityF.

(49) Letf be a non empty quasi total element of HFuDcandF be a finite sequence of ele-
ments of HFuncP with the same arity. Suppose arfty= lenF andF is non empty and for
every elemenh of HFunc® such thah € rngF holdsh is quasi total and non empty. Then
f-[]*F is a non empty quasi total element of HFubBcand dongf - []*F) = D3WF.
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(50) Letf be a quasi total element of HFurigsand F be a finite sequence of elements of
HFuncd with the same arity. Suppose arity= lenF and for every elemerit of HFuncD
such thah € rngF holdsh is quasi total. Therf - [7*F is a quasi total element of HFuribs

(51) For all non empty quasi total elemeriitgy of HFunc< such that arityf =0 and arityg=0
andf(0) = g(0) holdsf =g.

(52) Letf, g be non empty length total homogeneous functions from tupleX amo N. If
arity f = 0 and arityg = 0 andf (0) = g(0), thenf = g.

4, PRIMITIVE RECURSIVENESS

We adopt the following conventionf;, f, denote non empty homogeneous functions i¥tand
from tuples orN, e, e, denote homogeneous functions itN@nd from tuples olN, andp denotes
an element ofNa"ty f1+1,

Let g, f1, f2 be homogeneous functions inkd and from tuples oN and leti be a natural

number. We say thatis primitive recursively expressed Wy, f, andi if and only if the condition
(Def. 12) is satisfied.

(Def. 12) There exists a natural numbyesuch that

() domgCN",
() i>1,
i) i<n,

(iv) arityfi+1=n,

(v) n+1=arityfs, and

(vi) for every finite sequencp of elements oN such that lep = n holdsp+- (i,0) € domg
iff p;i € domfy and if p+-(i,0) € domg, theng(p+- (i,0)) = f1(p;i) and for every natural
numbem holdsp+- (i,n+1) € domgiff p+-(i,n) e domgand(p+-(i,n)) "~ (9(p+-(i,n))) €
domf; and if p+- (i,n+1) € domg, theng(p+- (i,n+1)) = f2((p+-(i,n)) "~ (g(p+-(i,n))}).

Let f;, f be homogeneous functions intband from tuples omN, leti be a natural number,
and letp be a finite sequence of elementsMaf The functor primregfy, f2,i, p) yields an element
of HFuncN and is defined by the condition (Def. 13).

(Def. 13) There exists a functidh from N into HFuncsN such that
(i) primreq(fy, f2,i, p) = F(pi),
(i) if i e dompandp;i € domfy, thenF(0) = {p+-(i,0)} — f1(pyi),
(i) if i ¢ domp or p;i ¢ domfy, thenF(0) =0, and
(iv)  for every natural numbem holds if i € domp and p+- (i,m)
(i,m)) ~ (F(m)(p+- (i,m))) € domfy, then F(m+ 1) = F(m)+-
p+-

fa((p +- (i,m) = (F(m)(p +- (i,m))))) and if i ¢ domp or
(p+-(i,m)) = (F(M)(p+- (i,m))) ¢ domfy, thenF (m+1) = F(m).

The following propositions are true:

€ domF(m) and (p+-
{p+ (i,m+1)} —
(i,m) ¢ domF(m) o

(53) For all finite sequences g of elements ofN such thatg € domprimreces, 2,1, p) there
existsk such thag = p+- (i, k).

(54) Forevery finite sequengeof elements oN such that ¢ domp holds primre¢ey, e2,i, p) =
0.

(55) For all finite sequencesp, g of elements of N holds primre¢e;,e,i,p) ~
primreder, e,i,q).

(56) For every finite sequengeof elements ofN holds dom primregey, e, i, p) C N1*+aiyer,
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(57) For every finite sequengeof elements oN such thak; is empty holds primrees, e, i, p)
is empty.

(58) If f; is length total andf; is length total and arit§; + 2 = arityf, and 1< i andi <
1+ arity f1, thenp € domprimre¢fy, f2,i, p).

Let f;, fo be homogeneous functions irtband from tuples ofN and leti be a natural number.
The functor primre€fy, fo,i) yielding an element of HFuné$is defined as follows:

(Def. 14) There exists a functic@ from N2 f1+1 jnto HFuncN such that primredf, fo,i) = UG
and for every elemerp of N2 f1+1 holdsG(p) = primreq fy, f2,i, p).

We now state a number of propositions:
(59) If e is empty, then primrde;, e,i) is empty.
(60) domprimre¢fy, fp,i) C N3y fi+l,

(61) If fy is length total andf; is length total and arit; +2 = arityf and 1<i andi <
1+ arity f1, then dom primregfy, f2,i) = N2ty fi+1 and arity primre¢fy, f, i)=arity f1 + 1.

(62) Ifi € domp, thenp+-(i,0) € domprimre¢fy, f2,i) iff p;; € domf.

(63) Ifi e dompandp+-(i,0) € domprimre¢fy, f2,i), then(primreq fy, f2,i))(p+- (i,0)) =
f1(pyi)-

(64) Ifi € dompandfy is length total, theriprimred f1, f2,i))(p+- (i,0)) = f1(pyi)-

(65) Ifi e domp, thenp+-(i,m+1) € domprimre¢fy, f,i) iff p+-(i,m) € domprimre¢fy, fa,i)
and(p+- (i,m)) ™ ((primreq fy, f2,i))(p+- (i,m))) € domf,.

(66) Ifi edompandp+-(i,m+1) € domprimre¢fy, f2,1), then(primred fy, f2,i))(p+- (i,m+
1)) = fa((p+- (i,m) = ((primreqfy, f2,i))(p+- (i,m)))).

(67) Supposef; is length total andf, is length total and arityy + 2 = arityf, and
1<iandi <1+ arityfs. Then (primreqfq, f2,i))(p+- (i,m+ 1)) = fo((p+: (i,m)) "
((primreq(fy, f2,i))(p-+- (i,m)))).

(68) If arityf1 +2 = arityf, and 1<i andi < arity f; 4+ 1, then primre¢fy, f2,i) is primitive
recursively expressed by, f, andi.

(69) Suppose X i andi < arityfy + 1. Let g be an element of HFun&§ If g is primitive
recursively expressed by, f, andi, theng = primred fy, f2,i).

5. THE SET OF PRIMITIVE RECURSIVEFUNCTIONS

Let X be a set. We say thatis composition closed if and only if the condition (Def. 15) is satisfied.

(Def. 15) Letf be an element of HFunésandF be a finite sequence of elements of HFuUNagith
the same arity. Iff € X and arityf = lenF and rng~ C X, thenf -[]*F € X.

We say thakK is primitive recursion closed if and only if the condition (Def. 16) is satisfied.

(Def. 16) Letg, f1, f2 be elements of HFun®s andi be a natural number. Suppogés primitive
recursively expressed by, f, andi andf; € X andf, € X. Theng € X.

Let X be a set. We say th&tis primitive recursively closed if and only if the conditions (Def. 17)
are satisfied.
(Def. 17)()) conss(0) € X,
(i) succ(l) € X,
(iii)  for all natural numbers, i such that < i andi < n holds proj(i) € X, and
(iv) X is composition closed and primitive recursion closed.
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Next we state the proposition
(70) HFuncH is primitive recursively closed.

Let us note that there exists a subset of HFGhwaghich is primitive recursively closed and non
empty.

In the sequeP is a primitive recursively closed non empty subset of HFlvcs

The following propositions are true:

(71) For every elemerg of HFuncsN such thae; = 0 andg is primitive recursively expressed
by e1, & andi holdsg = 0.

(72) Letg be an element of HFund§g fi, f, be quasi total elements of HFuriésandi be a
natural number. Supposgs primitive recursively expressed Wy, f, andi. Theng is quasi
total and if f1 is non empty, thelg is non empty.

(73) consf(c) e P.
(74) If1<iandi <n,thensucg(i) e P.
(75) 0cP.

(76) Letf be an element d® andF be a finite sequence of elementsRolvith the same arity.
If arity f = lenF, thenf - []*F € P.

(77) Letfy, f be elements oP. Suppose arity; + 2 = arity f,. Leti be a natural number. If
1 <iandi <arity f1 + 1, then primre¢fy, fo,i) € P

The subset PrimRec of HFunds defined as follows:
(Def. 18) PrimRec= N{R;Rranges over elements off2"°S": Ris primitive recursively closed

One can prove the following proposition

(78) For every subsét of HFuncN such thak is primitive recursively closed holds PrimRé&c
X.

One can verify that PrimRec is non empty and primitive recursively closed.
Let us observe that every element of PrimRec is homogeneous.
Let x be a set. We say thatis primitive recursive if and only if:

(Def. 19) x e PrimRec

Let us observe that every set which is primitive recursive is also relation-like and function-like.

Let us observe that every binary relation which is primitive recursive is also homogeneous, into
N, and from tuples oiN.

Let us note that every element of PrimRec is primitive recursive.

One can check that there exists a function which is primitive recursive and there exists an ele-
ment of HFunc® which is primitive recursive.

The initial functions constitute a subset of HFuRcdefined by:

(Def. 20) The initial functions= {consp(0),suca (1)} U {proj,(i); n ranges over natural numbers,
ranges over natural numbers<li A i <n}.

Let Q be a subset of HFun&& The primitive recursion closure @ is a subset of HFund$ and is
defined by the condition (Def. 21).

(Def. 21) The primitive recursion closure @ = QU {g;g ranges over elements of HFul¢s

Vfl,fgzelement of HFuncsN Vi:natural number( f1 e QA fa e QA g is primitive recursively €X-
pressed byfy, o andi)}.

The composition closure @ is a subset of HFund$ and is defined by the condition (Def. 22).
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(Def. 22) The composition closure @ = QU {f - [1"F; f ranges over elements of HFul¢s~
ranges over elements @flFuncaN)* with the same arityf € Q A arity f =lenF A rgF C

Q}.
The function PrimR€€ from N into 2HFuncs¥ s defined by the conditions (Def. 23).

(Def. 23)()) PrimRe€(0) = the initial functions and

(i) for every natural numbem holds PrimRet (m+ 1) = (the primitive recursion closure of
PrimRe¢’(m)) U (the composition closure of PrimReéam)).

Next we state four propositions:
(79) If m< n, then PrimRet(m) C PrimRe¢(n).
(80) U(PrimRec¢’) is primitive recursively closed.
(81) PrimRec=J(PrimRec").
(82) For every elementt of HFuncsN such thatf € PrimRe¢’(m) holds f is quasi total.

One can verify that every element of PrimRec is quasi total and homogeneous.

One can verify that every element of HFubtg/hich is primitive recursive is also quasi total.

One can verify that every function from tuples Bnwhich is primitive recursive is also length
total and there exists an element of PrimRec which is non empty.

6. EXAMPLES

Let f be a homogeneous binary relation. We say thiatnullary if and only if:
(Def. 24) arityf =0.
We say thaff is unary if and only if:
(Def. 25) arityf = 1.
We say thaff is binary if and only if:
(Def. 26) arityf = 2.
We say thaff is ternary if and only if:
(Def. 27) arityf = 3.
One can verify the following observations:
x every homogeneous function which is unary is also non empty,
x every homogeneous function which is binary is also non empty, and
x every homogeneous function which is ternary is also non empty.
One can verify the following observations:
*  proj; (1) is primitive recursive,
% proj,(1) is primitive recursive,
%  proj,(2) is primitive recursive,
* sucq(1) is primitive recursive, and
* sucg(3) is primitive recursive.

Leti be a natural number. One can verify the following observations:
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* consp(i) is nullary,
x consi(i) is unary,

* consk(i) is binary,
* consg(i) is ternary,

*  projy(i) is unary,
*  proj,(i) is binary,
% Projg(i

)

)

) is ternary,

* sucq(i) is unary,
* suce(i) is binary, and
)

* sucg(i) is ternary.

Let j be a natural number. Note that cqqf} is primitive recursive.
One can check the following observations:

x there exists a homogeneous function which is nullary, primitive recursive, and non empty,
x there exists a homogeneous function which is unary and primitive recursive,
x there exists a homogeneous function which is binary and primitive recursive, and
x there exists a homogeneous function which is ternary and primitive recursive.
One can verify the following observations:

x there exists a homogeneous function from tuple§amhich is non empty, nullary, length
total, and intaN,

x there exists a homogeneous function from tupleNomhich is non empty, unary, length
total, and intaN,

x there exists a homogeneous function from tuple®Nomhich is non empty, binary, length
total, and intaN, and

x there exists a homogeneous function from tuple®awhich is non empty, ternary, length
total, and intaN.

Let f be a nullary non empty primitive recursive function andjlbe a binary primitive recursive
function. Observe that primré€, g, 1) is primitive recursive and unary.

Let f be a unary primitive recursive function and tgbe a ternary primitive recursive function.
One can check that primrét, g, 1) is primitive recursive and binary and primigcg, 2) is primitive
recursive and binary.

We now state four propositions:

(83) Letf; be a unary length total homogeneous function from tuple égmo N and f, be a
non empty homogeneous function ificand from tuples oN. Then(primred f1, f2,2))((i,

0)) = fa((i)).
(84) If f1is length total and arityy = 0, then(primreq f1, f2,1))((0)) = f1(0).

(85) Let f; be a unary length total homogeneous function from tuplesNomto N and
f, be a ternary length total homogeneous function from tuplesNomto N. Then

(primred(fy, £2,2))((i, j + 1)) = f2((i, , (primred fy, £2,2))((i, }))))-

(86) If fy is length total andf, is length total and aritfy = O and arityf, = 2, then
(primred(f1, f2,1))((i +1)) = f2((i, (primredfy, f2,1))((i)))).
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Let g be a function. The functd??2g yields a function and is defined as follows:

(Def. 28) ?%g = g- 1" (projs(1), projs(3)).
Let g be a function intdN and from tuples ofN. One can check that?2g is intoN and from
tuples onN.
Let g be a homogeneous function. Note tiat2g is homogeneous.
Let g be a binary length total homogeneous function from tupleNdnto N. Observe that
{122)g is non empty, ternary, and length total.
The following propositions are true:

(87) Letf be a binary length total homogeneous function from tupleNoimto N. Then
(E22)((0, k) = F((i,K)).-

(88) For every binary primitive recursive functigrholds(}?2g ¢ PrimRec

Let f be a binary primitive recursive homogeneous function. Note thatf is primitive

recursive and ternary.
The binary primitive recursive functiopr-] is defined by:

(Def. 29) [+] = primredproj;(1),sucg(3),2).

Next we state the proposition
®89) [+H((i,5) =i+].
The binary primitive recursive functiop] is defined by:
(Def. 30) [+] = primreqcons(0), (:?2)[+],2).
One can prove the following proposition
(90) For all natural numbeis j holds[«]({i, j)) =i-].

Let g, h be binary primitive recursive homogeneous functions. Note {hdt) has the same
arity.

Let f, g, h be binary primitive recursive functions. Note tHat[]*(g, h) is primitive recursive.

Let f, g, h be binary primitive recursive functions. Observe thaf]*(g, h) is binary.

Let f be a unary primitive recursive function and ggbe a primitive recursive function. One
can check thaf - [1*(g) is primitive recursive.

Let f be a unary primitive recursive function and ¢ebe a binary primitive recursive function.
Observe thaf - [17(g) is binary.

The unary primitive recursive functidh| is defined by:

(Def. 31) [!] = primreqconsp(1), [*] - [1*(suca(1) - [1*(proj,(1)),proj»(2)),1).

In this article we present several logical schemes. The sclitm@ecldeals with a unary
length total homogeneous functighfrom tuples onN into N, a binary length total homogeneous
function B from tuples onN into N, a unary functorf yielding a natural number, and a binary
functor G yielding a natural number, and states that:

For all natural numberss j holds(A4 - [1"(B))((i, j)) = F(G(i,]))
provided the parameters meet the following conditions:

e For every natural numbeholds4((i}) = ¥ (i), and

e For all natural numberss j holdsB((i, j)) = G(i, }).

The schem®@rimrec2deals with binary length total homogeneous functidnss, ¢ from tuples
onN into N and three binary functor§, G, and# yielding natural numbers, and states that:

For all natural numbers j holds(4-[1"(B,C))((i, ) = F(G(i, ), H(i,]))
provided the parameters meet the following conditions:
e For all natural numbers j holdsA((i, j)) = F (i, ]),
e For all natural numbers j holds3B((i, j)) = G(i, j), and
e For all natural numbers j holdsC({i, j)) = H (i, ).
The following proposition is true
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(91) [I(H) =it

The binary primitive recursive functioii] is defined by:

(Def. 32) ["] = primredconsi(1), (:?2)[x], 2).

One can prove the following proposition

©2) V(G i) =il.

The unary primitive recursive functigpred is defined by:

(Def. 33) [pred = primredconsp(0), proj,(1),1).

Next we state the proposition

(93) [pred((0)) = 0 andfpred (i +1)) = .

The binary primitive recursive functiopr-] is defined by:

(Def. 34) [~] = primredproj, (1), 2 ([pred - [1*(projy(2))), 2).

The following proposition is true

94 (L)) =i-"].
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