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Summary. We follow [31] in defining the set of primitive recursive functions. The
important helper notion is the homogeneous function from finite sequences of natural numbers
into natural numbers where homogeneous means that all the sequences in the domain are
of the same length. The set of all such functions is then used to define the notion of a set
closed under composition of functions and under primitive recursion. We call a set primitively
recursively closed iff it contains the initial functions (nullary constant function returning 0,
unary successor and projection functions for all arities) and is closed under composition and
primitive recursion. The set of primitive recursive functions is then defined as the smallest set
of functions which is primitive recursively closed. We show that this set can be obtained by
primitive recursive approximation. We finish with showing that some simple and well known
functions are primitive recursive.

MML Identifier: COMPUT_1.

WWW: http://mizar.org/JFM/Vol13/comput_1.html

The articles [25], [11], [30], [27], [1], [32], [33], [8], [6], [12], [24], [16], [26], [9], [13], [3], [22],
[4], [21], [29], [10], [19], [15], [18], [5], [7], [14], [28], [20], [17], [23], and [2] provide the notation
and terminology for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following rules:i, j, k, c, m, n denote natural numbers,a, x, y, z, X, Y
denote sets,D, E denote non empty sets,R denotes a binary relation,f , g denote functions, andp,
q denote finite sequences.

Let X be a non empty set, letn be a natural number, letp be an element ofXn, let i be a natural
number, and letx be an element ofX. Thenp+· (i,x) is an element ofXn.

Let n be a natural number, lett be an element ofNn, and leti be a natural number. Thent(i) is
an element ofN.

The following propositions are true:

(3)1 〈x,y〉+· (1,z) = 〈z,y〉 and〈x,y〉+· (2,z) = 〈x,z〉.

(5)2 If f +· (a,x) = g+· (a,y), then f +· (a,z) = g+· (a,z).

(6) (p+· (i,x))�i = p�i .

(7) If p+· (i,a) = q+· (i,a), thenp�i = q�i .

1This work has been supported by NSERC Grant OGP9207, NATO CRG 951368 and TYPES grant
IST-1999-29001.

1 The propositions (1) and (2) have been removed.
2 The proposition (4) has been removed.
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(8) X0 = { /0}.

(9) If n 6= 0, then /0n = /0.

(10) If /0 ∈ rng f , then∏∗ f = /0.

(11) If rng f = D, then rng∏∗〈 f 〉= D1.

(12) If 1≤ i andi ≤ n+1, then for every elementp of Dn+1 holdsp�i ∈ Dn.

(13) For every setX and for every setY of finite sequences ofX holdsY ⊆ X∗.

2. SETS OFCOMPATIBLE FUNCTIONS

Let X be a set. We say thatX is compatible if and only if:

(Def. 1) For all functionsf , g such thatf ∈ X andg∈ X holds f ≈ g.

Let us observe that there exists a set which is non empty, functional, and compatible.
Let X be a functional compatible set. One can check that

⋃
X is function-like and relation-like.

Next we state the proposition

(14) X is functional and compatible iff
⋃

X is a function.

Let X, Y be sets. Note that there exists a non empty set of partial functions fromX to Y which
is non empty and compatible.

One can prove the following propositions:

(15) For every non empty functional compatible setX holds dom
⋃

X =
⋃
{dom f : f ranges

over elements ofX}.

(16) LetX be a functional compatible set andf be a function. Iff ∈ X, then domf ⊆ dom
⋃

X
and for every setx such thatx∈ dom f holds(

⋃
X)(x) = f (x).

(17) For every non empty functional compatible setX holds rng
⋃

X =
⋃
{rng f : f ranges over

elements ofX}.

Let us considerX,Y. Note that every non empty set of partial functions fromX toY is functional.
The following proposition is true

(18) LetP be a compatible non empty set of partial functions fromX toY. Then
⋃

P is a partial
function fromX to Y.

3. HOMOGENEOUSRELATIONS

Let f be a binary relation. We introducef is intoN as a synonym off is natural-yielding.
Let f be a binary relation. We say thatf is from tuples onN if and only if:

(Def. 2) domf ⊆ N∗.

Let us note that there exists a function which is from tuples onN and intoN.
Let f be a binary relation from tuples onN. We say thatf is length total if and only if:

(Def. 3) For all finite sequencesx, y of elements ofN such that lenx = leny andx ∈ dom f holds
y∈ dom f .

Let f be a binary relation. We say thatf is homogeneous if and only if:

(Def. 4) For all finite sequencesx, y such thatx∈ dom f andy∈ dom f holds lenx = leny.

One can prove the following proposition
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(19) If domR⊆ Dn, thenR is homogeneous.

One can check that/0 is homogeneous.
Let p be a finite sequence and letx be a set. Observe that{p} 7−→ x is non empty and homoge-

neous.
One can verify that there exists a function which is non empty and homogeneous.
Let f be a homogeneous function and letg be a function. One can verify thatg · f is homoge-

neous.
Let X, Y be sets. One can check that there exists a partial function fromX∗ to Y which is

homogeneous.
Let X, Y be non empty sets. One can check that there exists a partial function fromX∗ to Y

which is non empty and homogeneous.
Let X be a non empty set. Observe that there exists a partial function fromX∗ to X which is non

empty, homogeneous, and quasi total.
Let us observe that there exists a function from tuples onN which is non empty, homogeneous,

into N, and length total.
Let us mention that every partial function fromN∗ to N is intoN and from tuples onN.
Let us observe that every partial function fromN∗ to N which is quasi total is also length total.
Next we state the proposition

(20) Every length total function from tuples onN into N is a quasi total partial function from
N∗ to N.

Let f be a homogeneous binary relation. The functor arityf yields a natural number and is
defined by:

(Def. 5)(i) For every finite sequencex such thatx ∈ dom f holds arityf = lenx if there exists a
finite sequencex such thatx∈ dom f ,

(ii) arity f = 0, otherwise.

Next we state several propositions:

(21) arity/0 = 0.

(22) For every homogeneous binary relationf such that domf = { /0} holds arityf = 0.

(23) For every homogeneous partial functionf from X∗ to Y holds domf ⊆ Xarity f .

(24) For every homogeneous functionf from tuples onN holds domf ⊆ Narity f .

(25) Let f be a homogeneous partial function fromX∗ to X. Then f is quasi total and non empty
if and only if domf = Xarity f .

(26) Let f be a homogeneous function intoN and from tuples onN. Then f is length total and
non empty if and only if domf = Narity f .

(27) For every non empty homogeneous partial functionf from D∗ to D and for everyn such
that domf ⊆ Dn holds arityf = n.

(28) For every homogeneous partial functionf from D∗ to D and for everyn such that domf =
Dn holds arityf = n.

Let R be a binary relation. We say thatR has the same arity if and only if the condition (Def. 6)
is satisfied.

(Def. 6) Let f , g be functions such thatf ∈ rngRandg∈ rngR. Then

(i) if f is empty, theng is empty or domg = { /0}, and

(ii) if f is non empty andg is non empty, then there exists a natural numbern and there exists
a non empty setX such that domf ⊆ Xn and domg⊆ Xn.
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Let us mention that/0 has the same arity.
Observe that there exists a finite sequence which has the same arity. LetX be a set. One can

check that there exists a finite sequence of elements ofX which has the same arity and there exists
an element ofX∗ which has the same arity.

Let F be a binary relation with the same arity. The functor arityF yields a natural number and
is defined by:

(Def. 7)(i) For every homogeneous functionf such thatf ∈ rngF holds arityF = arity f if there
exists a homogeneous functionf such thatf ∈ rngF,

(ii) arity F = 0, otherwise.

The following proposition is true

(29) For every finite sequenceF with the same arity such that lenF = 0 holds arityF = 0.

Let X be a set. The functor HFuncsX yields a non empty set of partial functions fromX∗ to X
and is defined as follows:

(Def. 8) HFuncsX = { f ; f ranges over elements ofX∗→̇X : f is homogeneous}.

We now state the proposition

(30) /0 ∈ HFuncsX.

Let X be a non empty set. Observe that there exists an element of HFuncsX which is non empty,
homogeneous, and quasi total.

Let X be a set. Observe that every element of HFuncsX is homogeneous.
Let X be a non empty set and letSbe a non empty subset of HFuncsX. Note that every element

of S is homogeneous.
The following propositions are true:

(31) Every homogeneous function intoN and from tuples onN is an element of HFuncsN.

(32) Every length total homogeneous function from tuples onN into N is a quasi total element
of HFuncsN.

(33) LetX be a non empty set andF be a binary relation such that rngF ⊆HFuncsX and for all
homogeneous functionsf , g such thatf ∈ rngF andg∈ rngF holds arityf = arityg. ThenF
has the same arity.

Let n, m be natural numbers. The functor constn(m) yielding a homogeneous function intoN
and from tuples onN is defined by:

(Def. 9) constn(m) = Nn 7−→m.

One can prove the following proposition

(34) constn(m) ∈ HFuncsN.

Let n, m be natural numbers. Note that constn(m) is length total and non empty.
One can prove the following propositions:

(35) arityconstn(m) = n.

(36) For every elementt of Nn holds(constn(m))(t) = m.

Let n, i be natural numbers. The functor succn(i) yields a homogeneous function intoN and
from tuples onN and is defined as follows:

(Def. 10) domsuccn(i) = Nn and for every elementp of Nn holds(succn(i))(p) = pi +1.

The following proposition is true
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(37) succn(i) ∈ HFuncsN.

Let n, i be natural numbers. One can check that succn(i) is length total and non empty.
The following proposition is true

(38) aritysuccn(i) = n.

Let n, i be natural numbers. The functor projn(i) yields a homogeneous function intoN and
from tuples onN and is defined as follows:

(Def. 11) projn(i) = proj(n 7→ N, i).

We now state two propositions:

(39) projn(i) ∈ HFuncsN.

(40) domprojn(i) = Nn and if 1≤ i andi ≤ n, then rngprojn(i) = N.

Let n, i be natural numbers. Observe that projn(i) is length total and non empty.
One can prove the following two propositions:

(41) arityprojn(i) = n.

(42) For every elementt of Nn holds(projn(i))(t) = t(i).

Let X be a set. One can check that HFuncsX is functional.
Next we state three propositions:

(43) Let F be a function fromD into HFuncsE. Suppose rngF is compatible and for every
elementx of D holds domF(x) ⊆ En. Then there exists an elementf of HFuncsE such that
f =

⋃
F and domf ⊆ En.

(44) For every functionF from N into HFuncsD such that for everyi holdsF(i) ⊆ F(i + 1)
holds

⋃
F ∈ HFuncsD.

(45) For every finite sequenceF of elements of HFuncsD with the same arity holds dom∏∗F ⊆
DarityF .

Let X be a non empty set and letF be a finite sequence of elements of HFuncsX with the same
arity. Observe that∏∗F is homogeneous.

Next we state the proposition

(46) Let f be an element of HFuncsD andF be a finite sequence of elements of HFuncsD with
the same arity. Then dom( f ·∏∗F)⊆DarityF and rng( f ·∏∗F)⊆D and f ·∏∗F ∈HFuncsD.

Let X, Y be non empty sets, letP be a non empty set of partial functions fromX to Y, and letS
be a non empty subset ofP. We see that the element ofS is an element ofP.

Let f be a homogeneous function from tuples onN. Observe that〈 f 〉 has the same arity.
We now state several propositions:

(47) For every homogeneous functionf into N and from tuples onN holds arity〈 f 〉= arity f .

(48) Let f , g be non empty elements of HFuncsN andF be a finite sequence of elements of
HFuncsN with the same arity. Ifg = f ·∏∗F, then arityg = arityF.

(49) Let f be a non empty quasi total element of HFuncsD andF be a finite sequence of ele-
ments of HFuncsD with the same arity. Suppose arityf = lenF andF is non empty and for
every elementh of HFuncsD such thath∈ rngF holdsh is quasi total and non empty. Then
f ·∏∗F is a non empty quasi total element of HFuncsD and dom( f ·∏∗F) = DarityF .
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(50) Let f be a quasi total element of HFuncsD and F be a finite sequence of elements of
HFuncsD with the same arity. Suppose arityf = lenF and for every elementh of HFuncsD
such thath∈ rngF holdsh is quasi total. Thenf ·∏∗F is a quasi total element of HFuncsD.

(51) For all non empty quasi total elementsf , g of HFuncsD such that arityf = 0 and arityg= 0
and f ( /0) = g( /0) holds f = g.

(52) Let f , g be non empty length total homogeneous functions from tuples onN into N. If
arity f = 0 and arityg = 0 and f ( /0) = g( /0), then f = g.

4. PRIMITIVE RECURSIVENESS

We adopt the following convention:f1, f2 denote non empty homogeneous functions intoN and
from tuples onN, e1, e2 denote homogeneous functions intoN and from tuples onN, andp denotes
an element ofNarity f1+1.

Let g, f1, f2 be homogeneous functions intoN and from tuples onN and let i be a natural
number. We say thatg is primitive recursively expressed byf1, f2 andi if and only if the condition
(Def. 12) is satisfied.

(Def. 12) There exists a natural numbern such that

(i) domg⊆ Nn,

(ii) i ≥ 1,

(iii) i ≤ n,

(iv) arity f1 +1 = n,

(v) n+1 = arity f2, and

(vi) for every finite sequencep of elements ofN such that lenp = n holdsp+· (i,0) ∈ domg
iff p�i ∈ dom f1 and if p+· (i,0) ∈ domg, theng(p+· (i,0)) = f1(p�i) and for every natural
numbernholdsp+·(i,n+1)∈domg iff p+·(i,n)∈domgand(p+·(i,n))a 〈g(p+·(i,n))〉 ∈
dom f2 and if p+·(i,n+1)∈ domg, theng(p+·(i,n+1)) = f2((p+·(i,n))a 〈g(p+·(i,n))〉).

Let f1, f2 be homogeneous functions intoN and from tuples onN, let i be a natural number,
and letp be a finite sequence of elements ofN. The functor primrec( f1, f2, i, p) yields an element
of HFuncsN and is defined by the condition (Def. 13).

(Def. 13) There exists a functionF from N into HFuncsN such that

(i) primrec( f1, f2, i, p) = F(pi),

(ii) if i ∈ domp andp�i ∈ dom f1, thenF(0) = {p+· (i,0)} 7−→ f1(p�i),

(iii) if i /∈ domp or p�i /∈ dom f1, thenF(0) = /0, and

(iv) for every natural numberm holds if i ∈ domp and p+· (i,m) ∈ domF(m) and (p+·
(i,m)) a 〈F(m)(p +· (i,m))〉 ∈ dom f2, then F(m+ 1) = F(m)+·({p +· (i,m+ 1)} 7−→
f2((p +· (i,m)) a 〈F(m)(p +· (i,m))〉)) and if i /∈ domp or p +· (i,m) /∈ domF(m) or
(p+· (i,m))a 〈F(m)(p+· (i,m))〉 /∈ dom f2, thenF(m+1) = F(m).

The following propositions are true:

(53) For all finite sequencesp, q of elements ofN such thatq∈ domprimrec(e1,e2, i, p) there
existsk such thatq = p+· (i,k).

(54) For every finite sequencepof elements ofN such thati /∈dompholds primrec(e1,e2, i, p) =
/0.

(55) For all finite sequencesp, q of elements of N holds primrec(e1,e2, i, p) ≈
primrec(e1,e2, i,q).

(56) For every finite sequencep of elements ofN holds domprimrec(e1,e2, i, p)⊆ N1+aritye1.
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(57) For every finite sequencep of elements ofN such thate1 is empty holds primrec(e1,e2, i, p)
is empty.

(58) If f1 is length total andf2 is length total and arityf1 + 2 = arity f2 and 1≤ i and i ≤
1+arity f1, thenp∈ domprimrec( f1, f2, i, p).

Let f1, f2 be homogeneous functions intoN and from tuples onN and leti be a natural number.
The functor primrec( f1, f2, i) yielding an element of HFuncsN is defined as follows:

(Def. 14) There exists a functionG from Narity f1+1 into HFuncsN such that primrec( f1, f2, i) =
⋃

G
and for every elementp of Narity f1+1 holdsG(p) = primrec( f1, f2, i, p).

We now state a number of propositions:

(59) If e1 is empty, then primrec(e1,e2, i) is empty.

(60) domprimrec( f1, f2, i)⊆ Narity f1+1.

(61) If f1 is length total andf2 is length total and arityf1 + 2 = arity f2 and 1≤ i and i ≤
1+arity f1, then domprimrec( f1, f2, i) = Narity f1+1 and arityprimrec( f1, f2, i) = arity f1 +1.

(62) If i ∈ domp, thenp+· (i,0) ∈ domprimrec( f1, f2, i) iff p�i ∈ dom f1.

(63) If i ∈ domp andp+· (i,0) ∈ domprimrec( f1, f2, i), then(primrec( f1, f2, i))(p+· (i,0)) =
f1(p�i).

(64) If i ∈ domp and f1 is length total, then(primrec( f1, f2, i))(p+· (i,0)) = f1(p�i).

(65) If i ∈domp, thenp+·(i,m+1)∈domprimrec( f1, f2, i) iff p+·(i,m)∈domprimrec( f1, f2, i)
and(p+· (i,m))a 〈(primrec( f1, f2, i))(p+· (i,m))〉 ∈ dom f2.

(66) If i ∈ dompandp+·(i,m+1)∈ domprimrec( f1, f2, i), then(primrec( f1, f2, i))(p+·(i,m+
1)) = f2((p+· (i,m))a 〈(primrec( f1, f2, i))(p+· (i,m))〉).

(67) Suppose f1 is length total and f2 is length total and arityf1 + 2 = arity f2 and
1 ≤ i and i ≤ 1 + arity f1. Then (primrec( f1, f2, i))(p +· (i,m+ 1)) = f2((p +· (i,m)) a

〈(primrec( f1, f2, i))(p+· (i,m))〉).

(68) If arity f1 + 2 = arity f2 and 1≤ i and i ≤ arity f1 + 1, then primrec( f1, f2, i) is primitive
recursively expressed byf1, f2 andi.

(69) Suppose 1≤ i and i ≤ arity f1 + 1. Let g be an element of HFuncsN. If g is primitive
recursively expressed byf1, f2 andi, theng = primrec( f1, f2, i).

5. THE SET OF PRIMITIVE RECURSIVEFUNCTIONS

Let X be a set. We say thatX is composition closed if and only if the condition (Def. 15) is satisfied.

(Def. 15) Let f be an element of HFuncsN andF be a finite sequence of elements of HFuncsN with
the same arity. Iff ∈ X and arityf = lenF and rngF ⊆ X, then f ·∏∗F ∈ X.

We say thatX is primitive recursion closed if and only if the condition (Def. 16) is satisfied.

(Def. 16) Letg, f1, f2 be elements of HFuncsN and i be a natural number. Supposeg is primitive
recursively expressed byf1, f2 andi and f1 ∈ X and f2 ∈ X. Theng∈ X.

LetX be a set. We say thatX is primitive recursively closed if and only if the conditions (Def. 17)
are satisfied.

(Def. 17)(i) const0(0) ∈ X,

(ii) succ1(1) ∈ X,

(iii) for all natural numbersn, i such that 1≤ i andi ≤ n holds projn(i) ∈ X, and

(iv) X is composition closed and primitive recursion closed.
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Next we state the proposition

(70) HFuncsN is primitive recursively closed.

Let us note that there exists a subset of HFuncsN which is primitive recursively closed and non
empty.

In the sequelP is a primitive recursively closed non empty subset of HFuncsN.
The following propositions are true:

(71) For every elementg of HFuncsN such thate1 = /0 andg is primitive recursively expressed
by e1, e2 andi holdsg = /0.

(72) Let g be an element of HFuncsN, f1, f2 be quasi total elements of HFuncsN, and i be a
natural number. Supposeg is primitive recursively expressed byf1, f2 andi. Theng is quasi
total and if f1 is non empty, theng is non empty.

(73) constn(c) ∈ P.

(74) If 1≤ i andi ≤ n, then succn(i) ∈ P.

(75) /0 ∈ P.

(76) Let f be an element ofP andF be a finite sequence of elements ofP with the same arity.
If arity f = lenF, then f ·∏∗F ∈ P.

(77) Let f1, f2 be elements ofP. Suppose arityf1 + 2 = arity f2. Let i be a natural number. If
1≤ i andi ≤ arity f1 +1, then primrec( f1, f2, i) ∈ P.

The subset PrimRec of HFuncsN is defined as follows:

(Def. 18) PrimRec=
⋂
{R;R ranges over elements of 2HFuncsN: R is primitive recursively closed}.

One can prove the following proposition

(78) For every subsetX of HFuncsN such thatX is primitive recursively closed holds PrimRec⊆
X.

One can verify that PrimRec is non empty and primitive recursively closed.
Let us observe that every element of PrimRec is homogeneous.
Let x be a set. We say thatx is primitive recursive if and only if:

(Def. 19) x∈ PrimRec.

Let us observe that every set which is primitive recursive is also relation-like and function-like.
Let us observe that every binary relation which is primitive recursive is also homogeneous, into

N, and from tuples onN.
Let us note that every element of PrimRec is primitive recursive.
One can check that there exists a function which is primitive recursive and there exists an ele-

ment of HFuncsN which is primitive recursive.
The initial functions constitute a subset of HFuncsN defined by:

(Def. 20) The initial functions= {const0(0),succ1(1)}∪{projn(i);n ranges over natural numbers,i
ranges over natural numbers: 1≤ i ∧ i ≤ n}.

Let Q be a subset of HFuncsN. The primitive recursion closure ofQ is a subset of HFuncsN and is
defined by the condition (Def. 21).

(Def. 21) The primitive recursion closure ofQ = Q∪ {g;g ranges over elements of HFuncsN :∨
f1, f2 :element ofHFuncsN

∨
i :natural number( f1 ∈ Q ∧ f2 ∈ Q ∧ g is primitive recursively ex-

pressed byf1, f2 andi)}.

The composition closure ofQ is a subset of HFuncsN and is defined by the condition (Def. 22).
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(Def. 22) The composition closure ofQ = Q∪ { f ·∏∗F ; f ranges over elements of HFuncsN,F
ranges over elements of(HFuncsN)∗ with the same arity:f ∈Q ∧ arity f = lenF ∧ rngF ⊆
Q}.

The function PrimRec≈ from N into 2HFuncsN is defined by the conditions (Def. 23).

(Def. 23)(i) PrimRec≈(0) = the initial functions, and

(ii) for every natural numberm holds PrimRec≈(m+1) = (the primitive recursion closure of
PrimRec≈(m))∪ (the composition closure of PrimRec≈(m)).

Next we state four propositions:

(79) If m≤ n, then PrimRec≈(m)⊆ PrimRec≈(n).

(80)
⋃

(PrimRec≈) is primitive recursively closed.

(81) PrimRec=
⋃

(PrimRec≈).

(82) For every elementf of HFuncsN such thatf ∈ PrimRec≈(m) holds f is quasi total.

One can verify that every element of PrimRec is quasi total and homogeneous.
One can verify that every element of HFuncsN which is primitive recursive is also quasi total.
One can verify that every function from tuples onN which is primitive recursive is also length

total and there exists an element of PrimRec which is non empty.

6. EXAMPLES

Let f be a homogeneous binary relation. We say thatf is nullary if and only if:

(Def. 24) arityf = 0.

We say thatf is unary if and only if:

(Def. 25) arityf = 1.

We say thatf is binary if and only if:

(Def. 26) arityf = 2.

We say thatf is ternary if and only if:

(Def. 27) arityf = 3.

One can verify the following observations:

∗ every homogeneous function which is unary is also non empty,

∗ every homogeneous function which is binary is also non empty, and

∗ every homogeneous function which is ternary is also non empty.

One can verify the following observations:

∗ proj1(1) is primitive recursive,

∗ proj2(1) is primitive recursive,

∗ proj2(2) is primitive recursive,

∗ succ1(1) is primitive recursive, and

∗ succ3(3) is primitive recursive.

Let i be a natural number. One can verify the following observations:
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∗ const0(i) is nullary,

∗ const1(i) is unary,

∗ const2(i) is binary,

∗ const3(i) is ternary,

∗ proj1(i) is unary,

∗ proj2(i) is binary,

∗ proj3(i) is ternary,

∗ succ1(i) is unary,

∗ succ2(i) is binary, and

∗ succ3(i) is ternary.

Let j be a natural number. Note that consti( j) is primitive recursive.
One can check the following observations:

∗ there exists a homogeneous function which is nullary, primitive recursive, and non empty,

∗ there exists a homogeneous function which is unary and primitive recursive,

∗ there exists a homogeneous function which is binary and primitive recursive, and

∗ there exists a homogeneous function which is ternary and primitive recursive.

One can verify the following observations:

∗ there exists a homogeneous function from tuples onN which is non empty, nullary, length
total, and intoN,

∗ there exists a homogeneous function from tuples onN which is non empty, unary, length
total, and intoN,

∗ there exists a homogeneous function from tuples onN which is non empty, binary, length
total, and intoN, and

∗ there exists a homogeneous function from tuples onN which is non empty, ternary, length
total, and intoN.

Let f be a nullary non empty primitive recursive function and letgbe a binary primitive recursive
function. Observe that primrec( f ,g,1) is primitive recursive and unary.

Let f be a unary primitive recursive function and letg be a ternary primitive recursive function.
One can check that primrec( f ,g,1) is primitive recursive and binary and primrec( f ,g,2) is primitive
recursive and binary.

We now state four propositions:

(83) Let f1 be a unary length total homogeneous function from tuples onN into N and f2 be a
non empty homogeneous function intoN and from tuples onN. Then(primrec( f1, f2,2))(〈i,
0〉) = f1(〈i〉).

(84) If f1 is length total and arityf1 = 0, then(primrec( f1, f2,1))(〈0〉) = f1( /0).

(85) Let f1 be a unary length total homogeneous function from tuples onN into N and
f2 be a ternary length total homogeneous function from tuples onN into N. Then
(primrec( f1, f2,2))(〈i, j +1〉) = f2(〈i, j,(primrec( f1, f2,2))(〈i, j〉)〉).

(86) If f1 is length total and f2 is length total and arityf1 = 0 and arityf2 = 2, then
(primrec( f1, f2,1))(〈i +1〉) = f2(〈i,(primrec( f1, f2,1))(〈i〉)〉).
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Let g be a function. The functor〈1,?,2〉g yields a function and is defined as follows:

(Def. 28) 〈1,?,2〉g = g·∏∗〈proj3(1),proj3(3)〉.

Let g be a function intoN and from tuples onN. One can check that〈1,?,2〉g is into N and from
tuples onN.

Let g be a homogeneous function. Note that〈1,?,2〉g is homogeneous.
Let g be a binary length total homogeneous function from tuples onN into N. Observe that

〈1,?,2〉g is non empty, ternary, and length total.
The following propositions are true:

(87) Let f be a binary length total homogeneous function from tuples onN into N. Then
(〈1,?,2〉 f )(〈i, j,k〉) = f (〈i,k〉).

(88) For every binary primitive recursive functiong holds〈1,?,2〉g∈ PrimRec.

Let f be a binary primitive recursive homogeneous function. Note that〈1,?,2〉 f is primitive
recursive and ternary.

The binary primitive recursive function[+] is defined by:

(Def. 29) [+] = primrec(proj1(1),succ3(3),2).

Next we state the proposition

(89) [+](〈i, j〉) = i + j.

The binary primitive recursive function[∗] is defined by:

(Def. 30) [∗] = primrec(const1(0), 〈1,?,2〉[+],2).

One can prove the following proposition

(90) For all natural numbersi, j holds[∗](〈i, j〉) = i · j.

Let g, h be binary primitive recursive homogeneous functions. Note that〈g,h〉 has the same
arity.

Let f , g, h be binary primitive recursive functions. Note thatf ·∏∗〈g,h〉 is primitive recursive.
Let f , g, h be binary primitive recursive functions. Observe thatf ·∏∗〈g,h〉 is binary.
Let f be a unary primitive recursive function and letg be a primitive recursive function. One

can check thatf ·∏∗〈g〉 is primitive recursive.
Let f be a unary primitive recursive function and letg be a binary primitive recursive function.

Observe thatf ·∏∗〈g〉 is binary.
The unary primitive recursive function[!] is defined by:

(Def. 31) [!] = primrec(const0(1), [∗] ·∏∗〈succ1(1) ·∏∗〈proj2(1)〉,proj2(2)〉,1).

In this article we present several logical schemes. The schemePrimrec1deals with a unary
length total homogeneous functionA from tuples onN into N, a binary length total homogeneous
function B from tuples onN into N, a unary functorF yielding a natural number, and a binary
functorG yielding a natural number, and states that:

For all natural numbersi, j holds(A ·∏∗〈B〉)(〈i, j〉) = F (G(i, j))
provided the parameters meet the following conditions:

• For every natural numberi holdsA(〈i〉) = F (i), and
• For all natural numbersi, j holdsB(〈i, j〉) = G(i, j).

The schemePrimrec2deals with binary length total homogeneous functionsA , B, C from tuples
onN into N and three binary functorsF , G , andH yielding natural numbers, and states that:

For all natural numbersi, j holds(A ·∏∗〈B,C 〉)(〈i, j〉) = F (G(i, j),H (i, j))
provided the parameters meet the following conditions:

• For all natural numbersi, j holdsA(〈i, j〉) = F (i, j),
• For all natural numbersi, j holdsB(〈i, j〉) = G(i, j), and
• For all natural numbersi, j holdsC (〈i, j〉) = H (i, j).

The following proposition is true
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(91) [!](〈i〉) = i!.

The binary primitive recursive function[∧] is defined by:

(Def. 32) [∧] = primrec(const1(1), 〈1,?,2〉[∗],2).

One can prove the following proposition

(92) [∧](〈i, j〉) = i j .

The unary primitive recursive function[pred] is defined by:

(Def. 33) [pred] = primrec(const0(0),proj2(1),1).

Next we state the proposition

(93) [pred](〈0〉) = 0 and[pred](〈i +1〉) = i.

The binary primitive recursive function[−] is defined by:

(Def. 34) [−] = primrec(proj1(1), 〈1,?,2〉([pred] ·∏∗〈proj2(2)〉),2).

The following proposition is true

(94) [−](〈i, j〉) = i−′ j.
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[22] Andrzej Nȩdzusiak.σ-fields and probability.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/prob_1.
html.

[23] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics.Journal of Formalized Mathematics, 5, 1993.http://mizar.org/JFM/
Vol5/binarith.html.

[24] Beata Padlewska. Families of sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/setfam_1.html.

[25] Andrzej Trybulec. Tarski Grothendieck set theory.Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/
Axiomatics/tarski.html.

[26] Andrzej Trybulec. Function domains and Frænkel operator.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/
Vol2/fraenkel.html.

[27] Andrzej Trybulec. Subsets of real numbers.Journal of Formalized Mathematics, Addenda, 2003.http://mizar.org/JFM/Addenda/
numbers.html.
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