Trigonometric Form of Complex Numbers

Robert Milewski University of Białystok

MML Identifier: COMPTRIG.

WWW: http://mizar.org/JFM/Vol12/comptrig.html

The articles [16], [21], [1], [17], [6], [18], [12], [13], [19], [9], [2], [22], [3], [8], [14], [7], [4], [5], [15], [20], [23], [10], and [11] provide the notation and terminology for this paper.

1. Preliminaries

The scheme Regr without 0 concerns a unary predicate \mathcal{P} , and states that:

 $\mathcal{P}[1]$

provided the parameters meet the following requirements:

- There exists a non empty natural number k such that $\mathcal{P}[k]$, and
- For every non empty natural number k such that $k \neq 1$ and $\mathcal{P}[k]$ there exists a non empty natural number n such that n < k and $\mathcal{P}[n]$.

The following propositions are true:

- (3)¹ For every element z of \mathbb{C} holds $\Re(z) \ge -|z|$.
- (4) For every element z of \mathbb{C} holds $\Im(z) \ge -|z|$.
- (5) For every element z of \mathbb{C}_F holds $\Re(z) \ge -|z|$.
- (6) For every element z of \mathbb{C}_F holds $\mathfrak{I}(z) \geq -|z|$.
- (7) For every element z of \mathbb{C}_F holds $|z|^2 = \Re(z)^2 + \Im(z)^2$.
- (8) For all real numbers x_1 , x_2 , y_1 , y_2 such that $x_1 + x_2i_{\mathbb{C}_F} = y_1 + y_2i_{\mathbb{C}_F}$ holds $x_1 = y_1$ and $x_2 = y_2$.
- (9) For every element z of \mathbb{C}_F holds $z = \Re(z) + \Im(z)i_{\mathbb{C}_F}$.
- $(10) \quad 0_{\mathbb{C}_{\mathsf{F}}} = 0 + 0i_{\mathbb{C}_{\mathsf{F}}}.$
- $(12)^2$ For every unital non empty groupoid L and for every element x of L holds power_L(x, 1) = x.
- (13) For every unital non empty groupoid L and for every element x of L holds power $_L(x, 2) = x \cdot x$.
- (14) Let L be an add-associative right zeroed right complementable right distributive unital non empty double loop structure and n be a natural number. If n > 0, then power $_L(0_L, n) = 0_L$.

¹ The propositions (1) and (2) have been removed.

² The proposition (11) has been removed.

- (15) Let *L* be an associative commutative unital non empty groupoid, x, y be elements of *L*, and n be a natural number. Then $power_L(x \cdot y, n) = power_L(x, n) \cdot power_L(y, n)$.
- (16) For every real number x such that x > 0 and for every natural number n holds power $_{\mathbb{C}_F}(x + 0i_{\mathbb{C}_F}, n) = x^n + 0i_{\mathbb{C}_F}$.
- (17) For every real number x and for every natural number n such that $x \ge 0$ and $n \ne 0$ holds $\sqrt[n]{x}^n = x$.

2. SINUS AND COSINUS PROPERTIES

Next we state several propositions:

- $(20)^3 \quad \pi + \frac{\pi}{2} = \frac{3}{2} \cdot \pi \text{ and } \frac{3}{2} \cdot \pi + \frac{\pi}{2} = 2 \cdot \pi \text{ and } \frac{3}{2} \cdot \pi \pi = \frac{\pi}{2}.$
- $(21) \quad 0<\frac{\pi}{2} \text{ and } \frac{\pi}{2}<\pi \text{ and } 0<\pi \text{ and } -\frac{\pi}{2}<\frac{\pi}{2} \text{ and } \pi<2\cdot\pi \text{ and } \frac{\pi}{2}<\frac{3}{2}\cdot\pi \text{ and } -\frac{\pi}{2}<0 \text{ and } 0<2\cdot\pi \text{ and } \pi<\frac{3}{2}\cdot\pi \text{ and } \frac{3}{2}\cdot\pi<2\cdot\pi \text{ and } 0<\frac{3}{2}\cdot\pi.$
- (22) For all real numbers a, b, c, x such that $x \in]a, c[$ holds $x \in]a, b[$ or x = b or $x \in]b, c[$.
- (23) For every real number x such that $x \in]0,\pi[$ holds $\sin(x) > 0$.
- (24) For every real number x such that $x \in [0, \pi]$ holds $\sin(x) \ge 0$.
- (25) For every real number x such that $x \in]\pi, 2 \cdot \pi[$ holds $\sin(x) < 0$.
- (26) For every real number x such that $x \in [\pi, 2 \cdot \pi]$ holds $\sin(x) \le 0$.

In the sequel *x* is a real number.

One can prove the following propositions:

- (27) If $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, then $\cos(x) > 0$.
- (28) For every real number x such that $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ holds $\cos(x) \ge 0$.
- (29) If $x \in]\frac{\pi}{2}, \frac{3}{2} \cdot \pi[$, then $\cos(x) < 0$.
- (30) For every real number x such that $x \in \left[\frac{\pi}{2}, \frac{3}{2} \cdot \pi\right]$ holds $\cos(x) \le 0$.
- (31) If $x \in \frac{3}{2} \cdot \pi, 2 \cdot \pi$, then $\cos(x) > 0$.
- (32) For every real number x such that $x \in [\frac{3}{2} \cdot \pi, 2 \cdot \pi]$ holds $\cos(x) \ge 0$.
- (33) For every real number x such that $0 \le x$ and $x < 2 \cdot \pi$ and $\sin x = 0$ holds x = 0 or $x = \pi$.
- (34) For every real number x such that $0 \le x$ and $x < 2 \cdot \pi$ and $\cos x = 0$ holds $x = \frac{\pi}{2}$ or $x = \frac{3}{2} \cdot \pi$.
- (35) sin is increasing on $]-\frac{\pi}{2}, \frac{\pi}{2}[.$
- (36) sin is decreasing on $]\frac{\pi}{2}, \frac{3}{2} \cdot \pi[$.
- (37) cos is decreasing on $]0,\pi[$.
- (38) cos is increasing on $]\pi, 2 \cdot \pi[$.
- (39) sin is increasing on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- (40) sin is decreasing on $\left[\frac{\pi}{2}, \frac{3}{2} \cdot \pi\right]$.
- (41) cos is decreasing on $[0,\pi]$.
- (42) cos is increasing on $[\pi, 2 \cdot \pi]$.

³ The propositions (18) and (19) have been removed.

- (43) sin is continuous on \mathbb{R} and for all real numbers x, y holds sin is continuous on [x, y] and sin is continuous on [x, y].
- (44) cos is continuous on \mathbb{R} and for all real numbers x, y holds cos is continuous on [x,y] and cos is continuous on [x,y].
- (45) $\sin(x) \in [-1, 1]$ and $\cos(x) \in [-1, 1]$.
- (46) $\operatorname{rng} \sin = [-1, 1].$
- (47) $\operatorname{rng} \cos = [-1, 1].$
- (48) $\operatorname{rng}(\sin [-\frac{\pi}{2}, \frac{\pi}{2}]) = [-1, 1].$
- $(49)\quad rng(sin\!\upharpoonright\! [\tfrac{\pi}{2},\tfrac{3}{2}\cdot\pi])=[-1,1].$
- (50) $\operatorname{rng}(\cos [0, \pi]) = [-1, 1].$
- (51) $\operatorname{rng}(\cos [\pi, 2 \cdot \pi]) = [-1, 1].$

3. ARGUMENT OF COMPLEX NUMBER

Let z be an element of \mathbb{C}_F . The functor Arg z yields a real number and is defined by:

(Def. 1)(i)
$$z = |z| \cdot \cos \operatorname{Arg} z + (|z| \cdot \sin \operatorname{Arg} z) i_{\mathbb{C}_F}$$
 and $0 \le \operatorname{Arg} z$ and $\operatorname{Arg} z < 2 \cdot \pi$ if $z \ne 0_{\mathbb{C}_F}$,

(ii) Arg z = 0, otherwise.

One can prove the following propositions:

- (52) For every element z of \mathbb{C}_F holds $0 \le \operatorname{Arg} z$ and $\operatorname{Arg} z < 2 \cdot \pi$.
- (53) For every real number x such that $x \ge 0$ holds $Arg(x + 0i_{\mathbb{C}_F}) = 0$.
- (54) For every real number x such that x < 0 holds $Arg(x + 0i_{\mathbb{C}_F}) = \pi$.
- (55) For every real number x such that x > 0 holds $Arg(0 + xi_{\mathbb{C}_F}) = \frac{\pi}{2}$.
- (56) For every real number x such that x < 0 holds $Arg(0 + xi_{\mathbb{C}_F}) = \frac{3}{2} \cdot \pi$.
- (57) $Arg(\mathbf{1}_{\mathbb{C}_{F}}) = 0.$
- (58) Arg $i_{\mathbb{C}_{F}} = \frac{\pi}{2}$.
- (59) For every element z of \mathbb{C}_F holds $\operatorname{Arg} z \in]0, \frac{\pi}{2}[\inf \Re(z) > 0 \text{ and } \Im(z) > 0.$
- (60) For every element z of \mathbb{C}_F holds $\operatorname{Arg} z \in]\frac{\pi}{2}, \pi[\inf \Re(z) < 0 \text{ and } \Im(z) > 0.$
- (61) For every element z of \mathbb{C}_F holds $\operatorname{Arg} z \in]\pi, \frac{3}{2} \cdot \pi[\inf \Re(z) < 0 \text{ and } \Im(z) < 0.$
- (62) For every element z of \mathbb{C}_F holds $\operatorname{Arg} z \in \frac{3}{2} \cdot \pi, 2 \cdot \pi$ iff $\Re(z) > 0$ and $\Im(z) < 0$.
- (63) For every element z of \mathbb{C}_F such that $\Im(z) > 0$ holds $\sin \operatorname{Arg} z > 0$.
- (64) For every element z of \mathbb{C}_F such that $\Im(z) < 0$ holds $\sin \operatorname{Arg} z < 0$.
- (65) For every element z of \mathbb{C}_F such that $\Im(z) \ge 0$ holds $\sin \operatorname{Arg} z \ge 0$.
- (66) For every element z of \mathbb{C}_F such that $\Im(z) \leq 0$ holds $\sin \operatorname{Arg} z \leq 0$.
- (67) For every element z of \mathbb{C}_F such that $\Re(z) > 0$ holds $\cos \operatorname{Arg} z > 0$.
- (68) For every element z of \mathbb{C}_F such that $\Re(z) < 0$ holds $\cos \operatorname{Arg} z < 0$.
- (69) For every element z of \mathbb{C}_F such that $\Re(z) \ge 0$ holds $\cos \operatorname{Arg} z \ge 0$.

- (70) For every element z of \mathbb{C}_F such that $\Re(z) \leq 0$ and $z \neq 0_{\mathbb{C}_F}$ holds $\cos \operatorname{Arg} z \leq 0$.
- (71) For every natural number n holds power $_{\mathbb{C}_F}(\cos x + \sin x i_{\mathbb{C}_F}, n) = \cos(n \cdot x) + \sin(n \cdot x) i_{\mathbb{C}_F}$.
- (72) Let z be an element of \mathbb{C}_F and n be a natural number. If $z \neq 0_{\mathbb{C}_F}$ or $n \neq 0$, then power $_{\mathbb{C}_F}(z, n) = |z|^n \cdot \cos(n \cdot \operatorname{Arg} z) + (|z|^n \cdot \sin(n \cdot \operatorname{Arg} z))i_{\mathbb{C}_F}$.
- (73) For all natural numbers n, k such that $n \neq 0$ holds $\operatorname{power}_{\mathbb{C}_F}(\cos(\frac{x+2\cdot\pi \cdot k}{n}) + \sin(\frac{x+2\cdot\pi \cdot k}{n})i_{\mathbb{C}_F},$ $n) = \cos x + \sin x i_{\mathbb{C}_F}.$
- (74) Let z be an element of \mathbb{C}_F and n, k be natural numbers. If $n \neq 0$, then $z = \operatorname{power}_{\mathbb{C}_F}(\sqrt[n]{|z|} \cdot \cos(\frac{\operatorname{Arg} z + 2 \cdot \pi \cdot k}{n}) + (\sqrt[n]{|z|} \cdot \sin(\frac{\operatorname{Arg} z + 2 \cdot \pi \cdot k}{n})) i_{\mathbb{C}_F}, n)$.

Let x be an element of \mathbb{C}_F and let n be a non empty natural number. An element of \mathbb{C}_F is called a complex root of n, x if:

(Def. 2) $power_{\mathbb{C}_{\mathbf{F}}}(it, n) = x$.

One can prove the following four propositions:

- (75) Let x be an element of \mathbb{C}_F , n be a non empty natural number, and k be a natural number. Then $\sqrt[n]{|x|} \cdot \cos(\frac{\operatorname{Arg} x + 2 \cdot \pi \cdot k}{n}) + (\sqrt[n]{|x|} \cdot \sin(\frac{\operatorname{Arg} x + 2 \cdot \pi \cdot k}{n})) i_{\mathbb{C}_F}$ is a complex root of n, x.
- (76) For every element x of \mathbb{C}_F and for every complex root v of 1, x holds v = x.
- (77) For every non empty natural number n and for every complex root v of n, $0_{\mathbb{C}_F}$ holds $v = 0_{\mathbb{C}_F}$.
- (78) Let n be a non empty natural number, x be an element of \mathbb{C}_F , and v be a complex root of n, x. If $v = 0_{\mathbb{C}_F}$, then $x = 0_{\mathbb{C}_F}$.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [2] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [4] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [5] Czesław Byliński. The complex numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/complex1.
- [6] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [7] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/seg_1.html.
- [8] Jarosław Kotowicz. Properties of real functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_2.html.
- [9] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [10] Anna Justyna Milewska. The field of complex numbers. Journal of Formalized Mathematics, 12, 2000. http://mizar.org/JFM/Vol12/complfid.html.
- [11] Anna Justyna Milewska. The Hahn Banach theorem in the vector space over the field of complex numbers. *Journal of Formalized Mathematics*, 12, 2000. http://mizar.org/JFM/Vol12/hahnban1.html.
- [12] Jan Popiotek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/absvalue.html.
- [13] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/power.html.
- [14] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/fcont_1.html.

- [15] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [17] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/square_1.html.
- [19] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [20] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [21] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [22] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat 1.html.
- [23] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. *Journal of Formalized Mathematics*, 10, 1998. http://mizar.org/JFM/Vol10/sin_cos.html.

Received July 21, 2000

Published January 2, 2004