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Summary. We introduce the concept ofn-dimensional complex space. We prove a
number of simple but useful propositions concerning addition, nultiplication by scalars and
similar basic concepts. We introduce metric and topology. We prove thatn-dimensional com-
plex space is a Hausdorff space and that it is regular.
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The articles [19], [7], [22], [1], [20], [15], [13], [21], [9], [4], [6], [5], [3], [16], [12], [2], [17], [18],
[10], [8], [11], and [14] provide the notation and terminology for this paper.

We adopt the following rules:k, n are natural numbers,r, r ′, r1 are real numbers, andc, c′, c1,
c2 are elements ofC.

In this article we present several logical schemes. The schemeFuncDefUniqdeals with non
empty setsA , B and a unary functorF yielding a set, and states that:

Let f1, f2 be functions fromA into B. Suppose for every elementx of A holds
f1(x) = F (x) and for every elementx of A holds f2(x) = F (x). Then f1 = f2

for all values of the parameters.
The schemeBinOpDefuniqdeals with a non empty setA and a binary functorF yielding a set,

and states that:
Let o1, o2 be binary operations onA . Suppose for all elementsa, b of A holdso1(a,
b) = F (a,b) and for all elementsa, b of A holdso2(a, b) = F (a,b). Theno1 = o2

for all values of the parameters.
The binary operation+C onC is defined as follows:

(Def. 1) For allc1, c2 holds+C(c1, c2) = c1 +c2.

Next we state several propositions:

(1) +C is commutative.

(2) +C is associative.

(3) 0C is a unity w.r.t.+C.

(4) 1+C = 0C.

(5) +C has a unity.

The unary operation−C onC is defined by:

(Def. 2) For everyc holds−C(c) =−c.
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One can prove the following three propositions:

(6) −C is an inverse operation w.r.t.+C.

(7) +C has an inverse operation.

(8) The inverse operation w.r.t.+C =−C.

The binary operation−C onC is defined by:

(Def. 3) −C = +C ◦ (idC,−C).

The following proposition is true

(9) −C(c1, c2) = c1−c2.

The binary operation·C onC is defined as follows:

(Def. 4) For allc1, c2 holds·C(c1, c2) = c1 ·c2.

Next we state several propositions:

(10) ·C is commutative.

(11) ·C is associative.

(12) 1C is a unity w.r.t.·C.

(13) 1·C = 1C.

(14) ·C has a unity.

(15) ·C is distributive w.r.t.+C.

Let us considerc. The functor·cC yields a unary operation onC and is defined by:

(Def. 5) ·cC = (·C)◦(c, idC).

One can prove the following propositions:

(16) ·cC(c′) = c·c′.

(17) ·cC is distributive w.r.t.+C.

The function| · |C from C into R is defined as follows:

(Def. 6) For everyc holds| · |C(c) = |c|.

In the sequelz, z1, z2 denote finite sequences of elements ofC.
Let us considerz1, z2. The functorz1+z2 yields a finite sequence of elements ofC and is defined

by:

(Def. 7) z1 +z2 = (+C)◦(z1, z2).

The functorz1−z2 yields a finite sequence of elements ofC and is defined as follows:

(Def. 8) z1−z2 = (−C)◦(z1, z2).

Let us considerz. The functor−z yields a finite sequence of elements ofC and is defined as
follows:

(Def. 9) −z=−C ·z.

Let us considerc, z. The functorc·zyields a finite sequence of elements ofC and is defined by:

(Def. 10) c·z= ·cC ·z.
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Let us considerz. The functor|z| yielding a finite sequence of elements ofR is defined as
follows:

(Def. 11) |z|= | · |C ·z.

Let us considern. The functorCn yields a non empty set of finite sequences ofC and is defined
by:

(Def. 12) Cn = Cn.

Let us considern. Note thatCn is non empty.
We adopt the following convention:x, z, z1, z2, z3 are elements ofCn andA, B are subsets of

Cn.
Next we state several propositions:

(18) lenz= n.

(19) For every elementz of C0 holdsz= εC.

(20) εC is an element ofC0.

(21) If k∈ Segn, thenz(k) ∈ C.

(23)1 If for everyk such thatk∈ Segn holdsz1(k) = z2(k), thenz1 = z2.

Let us considern, z1, z2. Thenz1 +z2 is an element ofCn.
The following three propositions are true:

(24) If k∈ Segn andc1 = z1(k) andc2 = z2(k), then(z1 +z2)(k) = c1 +c2.

(25) z1 +z2 = z2 +z1.

(26) z1 +(z2 +z3) = (z1 +z2)+z3.

Let us considern. The functor 0nC yielding a finite sequence of elements ofC is defined as
follows:

(Def. 13) 0nC = n 7→ 0C.

Let us considern. Then 0nC is an element ofCn.
The following two propositions are true:

(27) If k∈ Segn, then 0nC(k) = 0C.

(28) z+0n
C = z andz= 0n

C +z.

Let us considern, z. Then−z is an element ofCn.
We now state several propositions:

(29) If k∈ Segn andc = z(k), then(−z)(k) =−c.

(30) z+−z= 0n
C and−z+z= 0n

C.

(31) If z1 +z2 = 0n
C, thenz1 =−z2 andz2 =−z1.

(32) −−z= z.

(33) If −z1 =−z2, thenz1 = z2.

(34) If z1 +z= z2 +z or z1 +z= z+z2, thenz1 = z2.

(35) −(z1 +z2) =−z1 +−z2.

1 The proposition (22) has been removed.
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Let us considern, z1, z2. Thenz1−z2 is an element ofCn.
One can prove the following propositions:

(36) If k∈ Segn andc1 = z1(k) andc2 = z2(k), then(z1−z2)(k) = c1−c2.

(37) z1−z2 = z1 +−z2.

(38) z−0n
C = z.

(39) 0n
C−z=−z.

(40) z1−−z2 = z1 +z2.

(41) −(z1−z2) = z2−z1.

(42) −(z1−z2) =−z1 +z2.

(43) z−z= 0n
C.

(44) If z1−z2 = 0n
C, thenz1 = z2.

(45) z1−z2−z3 = z1− (z2 +z3).

(46) z1 +(z2−z3) = (z1 +z2)−z3.

(47) z1− (z2−z3) = (z1−z2)+z3.

(48) (z1−z2)+z3 = (z1 +z3)−z2.

(49) z1 = (z1 +z)−z.

(50) z1 +(z2−z1) = z2.

(51) z1 = (z1−z)+z.

Let us considern, c, z. Thenc·z is an element ofCn.
The following propositions are true:

(52) If k∈ Segn andc′ = z(k), then(c·z)(k) = c·c′.

(53) c1 · (c2 ·z) = (c1 ·c2) ·z.

(54) (c1 +c2) ·z= c1 ·z+c2 ·z.

(55) c· (z1 +z2) = c·z1 +c·z2.

(56) 1C ·z= z.

(57) 0C ·z= 0n
C.

(58) (−1C) ·z=−z.

Let us considern, z. Then|z| is an element ofRn.
The following four propositions are true:

(59) If k∈ Segn andc = z(k), then|z|(k) = |c|.

(60) |0n
C|= n 7→ 0.

(61) |−z|= |z|.

(62) |c·z|= |c| · |z|.

Let z be a finite sequence of elements ofC. The functor|z| yields a real number and is defined
by:
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(Def. 14) |z|=
√

∑2|z|.

Next we state a number of propositions:

(63) |0n
C|= 0.

(64) If |z|= 0, thenz= 0n
C.

(65) 0≤ |z|.

(66) |−z|= |z|.

(67) |c·z|= |c| · |z|.

(68) |z1 +z2| ≤ |z1|+ |z2|.

(69) |z1−z2| ≤ |z1|+ |z2|.

(70) |z1|− |z2| ≤ |z1 +z2|.

(71) |z1|− |z2| ≤ |z1−z2|.

(72) |z1−z2|= 0 iff z1 = z2.

(73) If z1 6= z2, then 0< |z1−z2|.

(74) |z1−z2|= |z2−z1|.

(75) |z1−z2| ≤ |z1−z|+ |z−z2|.

Let us considern and letA be an element of 2C
n
. We say thatA is open if and only if:

(Def. 15) For everyx such thatx∈ A there existsr such that 0< r and for everyz such that|z| < r
holdsx+z∈ A.

Let us considern and letA be an element of 2C
n
. We say thatA is closed if and only if:

(Def. 16) For everyx such that for everyr such thatr > 0 there existszsuch that|z|< r andx+z∈ A
holdsx∈ A.

Next we state four propositions:

(76) For every elementA of 2Cn
such thatA = /0 holdsA is open.

(77) For every elementA of 2Cn
such thatA = Cn holdsA is open.

(78) Let A1 be a family of subsets ofCn. Suppose that for every elementA of 2Cn
such that

A∈ A1 holdsA is open. LetA be an element of 2C
n
. If A =

⋃
A1, thenA is open.

(79) LetA, B be subsets ofCn. SupposeA is open andB is open. LetC be an element of 2C
n
. If

C = A∩B, thenC is open.

Let us considern, x, r. The functor Ball(x, r) yields a subset ofCn and is defined by:

(Def. 17) Ball(x, r) = {z : |z−x|< r}.

The following three propositions are true:

(80) z∈ Ball(x, r) iff |x−z|< r.

(81) If 0 < r, thenx∈ Ball(x, r).

(82) Ball(z1, r1) is open.
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Now we present two schemes. The schemeSubsetFDdeals with non empty setsA , B, a unary
functorF yielding an element ofB, and a unary predicateP , and states that:

{F (x);x ranges over elements ofA : P [x]} is a subset ofB
for all values of the parameters.

The schemeSubsetFD2deals with non empty setsA , B, C , a binary functorF yielding an
element ofC , and a binary predicateP , and states that:

{F (x,y);x ranges over elements ofA ,y ranges over elements ofB : P [x,y]} is a
subset ofC

for all values of the parameters.
Let us considern, x, A. The functorρ(x,A) yields a real number and is defined as follows:

(Def. 18) For every subsetX of R such thatX = {|x−z| : z∈ A} holdsρ(x,A) = inf X.

Let us considern, A, r. The functor Ball(A, r) yielding a subset ofCn is defined by:

(Def. 19) Ball(A, r) = {z : ρ(z,A) < r}.

We now state a number of propositions:

(83) If for everyr ′ such thatr ′ > 0 holdsr + r ′ > r1, thenr ≥ r1.

(84) For every subsetX of R and for everyr such thatX 6= /0 and for everyr ′ such thatr ′ ∈ X
holdsr ≤ r ′ holds infX ≥ r.

(85) If A 6= /0, thenρ(x,A)≥ 0.

(86) If A 6= /0, thenρ(x+z,A)≤ ρ(x,A)+ |z|.

(87) If x∈ A, thenρ(x,A) = 0.

(88) If x /∈ A andA 6= /0 andA is closed, thenρ(x,A) > 0.

(89) If A 6= /0, then|z1−x|+ρ(x,A)≥ ρ(z1,A).

(90) z∈ Ball(A, r) iff ρ(z,A) < r.

(91) If 0 < r andx∈ A, thenx∈ Ball(A, r).

(92) If 0 < r, thenA⊆ Ball(A, r).

(93) If A 6= /0, then Ball(A, r1) is open.

Let us considern, A, B. The functorρ(A,B) yielding a real number is defined by:

(Def. 20) For every subsetX of R such thatX = {|x−z| : x∈ A ∧ z∈ B} holdsρ(A,B) = inf X.

Let X, Y be subsets ofR. The functorX +Y yielding a subset ofR is defined as follows:

(Def. 21) X +Y = {r + r1 : r ∈ X ∧ r1 ∈Y}.

We now state several propositions:

(94) For all subsetsX, Y of R such thatX 6= /0 andY 6= /0 holdsX +Y 6= /0.

(95) For all subsetsX, Y of R such thatX is lower bounded andY is lower bounded holdsX +Y
is lower bounded.

(96) For all subsetsX, Y of R such thatX 6= /0 andX is lower bounded andY 6= /0 andY is lower
bounded holds inf(X +Y) = inf X + infY.

(97) LetX, Y be subsets ofR. SupposeY is lower bounded andX 6= /0 and for everyr such that
r ∈ X there existsr1 such thatr1 ∈Y andr1 ≤ r. Then infX ≥ infY.

(98) If A 6= /0 andB 6= /0, thenρ(A,B)≥ 0.
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(99) ρ(A,B) = ρ(B,A).

(100) If A 6= /0 andB 6= /0, thenρ(x,A)+ρ(x,B)≥ ρ(A,B).

(101) If A meetsB, thenρ(A,B) = 0.

Let us considern. The open subsets ofCn constitute a family of subsets ofCn defined by:

(Def. 22) The open subsets ofCn = {A;A ranges over elements of 2Cn
: A is open}.

The following proposition is true

(102) For every elementA of 2Cn
holdsA∈ the open subsets ofCn iff A is open.

Let A be a non empty set and lett be a family of subsets ofA. One can check that〈A, t〉 is non
empty.

Let us considern. Then -dimensional complex space is a strict topological space and is defined
by:

(Def. 23) Then-dimensional complex space= 〈Cn, the open subsets ofCn〉.

Let us considern. Note that then -dimensional complex space is non empty.
The following two propositions are true:

(103) The topology of (then-dimensional complex space)= the open subsets ofCn.

(104) The carrier of (then-dimensional complex space)= Cn.

In the sequelp is a point of then-dimensional complex space andV is a subset of then-dimensional
complex space.

We now state several propositions:

(105) p is an element ofCn.

(108)2 For every subsetA of Cn such thatA = V holdsA is open iffV is open.

(109) For every subsetA of Cn holdsA is closed iffAc is open.

(110) For every subsetA of Cn such thatA = V holdsA is closed iffV is closed.

(111) Then-dimensional complex space is aT2 space.

(112) Then-dimensional complex space is aT3 space.
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