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Summary. We introduce the concept ofdimensional complex space. We prove a
number of simple but useful propositions concerning addition, nultiplication by scalars and
similar basic concepts. We introduce metric and topology. We proventtieensional com-
plex space is a Hausdorff space and that it is regular.
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The articles([19],[[7],[[2R],[[1],[[20],[115],[[13],.121],[[9],[[4],[16],[16],L[8],[1B],[112].[12],[1i7],[118],
[10], [8], [11], and [14] provide the notation and terminology for this paper.
We adopt the following rulesk, n are natural numbers, r’, r1 are real numbers, angi c/, cj,
c are elements of.
In this article we present several logical schemes. The scliemeDefUniqdeals with non
empty setsq, B and a unary functof yielding a set, and states that:
Let f;, fo be functions from4 into B. Suppose for every elemertof 2 holds
f1(x) = F(x) and for every elementof 4 holds fo(x) = F(x). Thenfy = f,
for all values of the parameters.
The schem@inOpDefunigdeals with a non empty set and a binary functofF yielding a set,
and states that:
Let oy, 02 be binary operations oA. Suppose for all elements b of 4 holdso; (a,
b) = ¥ (a,b) and for all elements, b of 4 holdsoy(a, b) = ¥ (a,b). Theno; =02
for all values of the parameters.
The binary operatior-¢ onC is defined as follows:

(Def. 1) For allcy, ¢, holds+¢(c1, ¢2) = €1+ Co.
Next we state several propositions:
(1) +c is commutative.
(2) +c is associative.
(3) Ocis aunity w.r.t.4+c.
4 1..=0c.
(5) +c has a unity.
The unary operation-¢ onC is defined by:

(Def. 2) For evenc holds—¢(c) = —c.
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One can prove the following three propositions:
(6) —c is aninverse operation w.rd:c.
(7) -+c has an inverse operation.
(8) The inverse operation W.rtec = —¢.
The binary operatior-¢ onC is defined by:
(Def. 3) —¢ =+4co(idg,—c).
The following proposition is true
9) —c(c,c2)=c—cCo
The binary operation: onC is defined as follows:
(Def. 4) For allcy, ¢z holds-¢(cy, ¢2) =1 - Cp.
Next we state several propositions:
(10) -¢ is commutative.
(11) -cis associative.
(12) 1 isaunity w.rt..c.
(13) 1.=1c.
(14) ¢ has a unity.
(15) -c is distributive w.r.t.+c.
Let us considec. The functor.¢ yields a unary operation ofi and is defined by:
(Def. 5) & = (-¢)°(c,idc).
One can prove the following propositions:
(16) -&(c¢)=c-C.
(17) -g is distributive w.r.t.+c.
The function| - |- from C into R is defined as follows:
(Def. 6) For evencholds|-|-(c) = |c|.

In the sequet, z;, z; denote finite sequences of element£of
Let us consider;, 2. The functorz; + 2 yields a finite sequence of elementgbénd is defined

by:
Def. 7) zn+2z=(+c)° (21, 2).

The functorz; — 2, yields a finite sequence of elements®and is defined as follows:
(Def. 8) z1—2=(—c)°(z1, 22).

Let us considee. The functor—z yields a finite sequence of elements®fand is defined as
follows:

(Def.9) —z=—¢-2z
Let us considec, z. The functorc- zyields a finite sequence of elementsand is defined by:

(Def. 10) c-z=¢-z
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Let us considez. The functor|z| yielding a finite sequence of elementsRfis defined as
follows:

(Def. 11) |z =] |c-2

Let us considen. The functorC" yields a non empty set of finite sequence€aind is defined
by:

(Def. 12) C"=C".

Let us considen. Note thatC" is non empty.

We adopt the following conventiorx, z, z1, z,, z3 are elements of" andA, B are subsets of
cn.

Next we state several propositions:

(18) lenz=n.

(19) For every elemerttof C holdsz = ¢.

(20) & is an element of .

(21) Ifke Seq, thenz(k) € C.

(ZSE] If for every k such thak € Segn holdsz; (k) = z(k), thenz; = z,.

Let us considen, z;, z,. Thenz; + 7, is an element of".
The following three propositions are true:

(24) Ifke Segnandc; = z1(k) andcy = z(Kk), then(z + ) (k) = ¢ + Cp.
25) znt+zn=n+z7.
(26) zn+(z2+z3) = (a1 +2)+2.

Let us considen. The functor @ yielding a finite sequence of elements ©fis defined as
follows:

(Def. 13) @ =n+ 0Oc.

Let us considen. Then @ is an element of".
The following two propositions are true:

(27) Ifke Sem, then @ (k) = Oc.
(28) z+0%=zandz=0¢ +z

Let us considen, z. Then—zis an element of".
We now state several propositions:

(29) Ifke Segandc=zk), then(—z)(k) = —c.
(30) z+—z=0¢ and—z+z=0¢.

(31) Ifz+2 =0, thenzy = —z andz = —2z;.
B2) ——z=12z

(33) If —z = —2, thenzy = 7.

(34) fz+z=z+zorzg+z2=2+2,thenzy = 2.

(35 —(za+zm)=—-z+-2.

1 The proposition (22) has been removed.
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Let us considen, z;, . Thenz; — z is an element of".
One can prove the following propositions:

(36) Ifke Segnandc; =z (k) andcy = z(k), then(z; — z) (k) = ¢1 — Cp.
B7) zn—zn=z1+-2.

(38) z—0 =z

39 R-z=-z

(40) z——zn=zn+2.

41) —(z-n)=—27.

(42) —(a-z)=-n+2.

(43) z—z=0p.

(44) Ifz1—2 =0, thenzy = 2.
(45) a-zn-n=20—(2+2n).
(46) a+(z-z)=(n+2)-z.
47 an—(z-z)=(n-2)+z.
(48) (n-z)+n=(a+2)-2
49) zn=@=z+2-2

50) z+(—7n)=2.

Bl an=@z-2+2

Let us considen, ¢, z. Thenc- zis an element of".
The following propositions are true:

(52) Ifke Segnandc =z(k), then(c-z)(k) =c-c.
(53) ci1-(cz-z)=(c1:Cp) 2

(54) (c1+c¢)-z=cC1-2+Cp-2

(55) c-(m+z)=czn+c 2.

56) k-z=z

(57) Q:-z=0D.

(58) (-1¢)-z=-z

Let us considen, z. Then|Z| is an element oR".
The following four propositions are true:

(59) Ifke Segandc=zk), then|z(k) = |c|.
(60) [0%|=n—0.

(61) |-Z=|2.

(62) [c-2=]c|-|2.

Let z be a finite sequence of elements®f The functor|z| yields a real number and is defined
by:
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(Def. 14) |7/ =+/32|Z.

Next we state a number of propositions:

(63) 02 =0.
(64) If|z1 =0, thenz=0g.
(65) 0<|z.

(66) -7 =2

(67) [c-Z=|c-|2.
(68) |z1+2|<|z]+|z|.
(69) |z1—2|<|z|+|z|
(70) |za|-z|<|za+2]
(7)) |zl-lz| <|za-2).
(72) |z1—20| =0iff 1 = 2.
(73) Ifz1 # 25, then 0< |21 — 27|
(74) |za—2z|=|—2z|.
(75) |-z <|lzn—-27+|z—2z).
Let us considen and letA be an element ofZ. We say thaf\ is open if and only if:

(Def. 15) For every such thatx € A there exists such that 0< r and for everyz such thatz] <r
holdsx+z € A

Let us considen and letA be an element ofZ. We say thaf is closed if and only if:

(Def. 16) For everk such that for every such that > 0 there existz such thatz] < r andx+ze€ A
holdsx € A.

Next we state four propositions:
(76) For every elemer# of 2¢" such thatA = 0 holdsA is open.
(77) For every elemerh of 2°" such thatA = C" holdsA is open.

(78) LetA; be a family of subsets of". Suppose that for every elemehtof 25" such that
A € A holdsAis open. LetA be an element of 2. If A= UA1, thenAis open.

(79) LetA, B be subsets of". Supposé\ is open and is open. LeC be an element of 8. If
C=AnB, thenC is open.

Let us considen, x, r. The functor Bal{x, r) yields a subset of" and is defined by:
(Def. 17) Ballx,r) ={z:|z—x| <r}.
The following three propositions are true:
(80) zeBall(x,r)iff [x—2z <.
(81) If0o<r, thenxe Ball(x,r).

(82) Ball(z,r1) is open.
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Now we present two schemes. The sche@nbsetFDdeals with non empty setg, B, a unary
functor ¥ yielding an element of3, and a unary predicat®, and states that:
{F (x);xranges over elements &f: P[x]} is a subset of8
for all values of the parameters.
The schemeSubsetFD2leals with non empty setd, B, C, a binary functor¥ yielding an
element ofC, and a binary predicat®, and states that:
{F (x,y);x ranges over elements &,y ranges over elements @& : P[x,y|} is a
subset ofC
for all values of the parameters.
Let us considen, x, A. The functorp(x,A) yields a real number and is defined as follows:

(Def. 18) For every subset of R such thaiX = {|x—Z : z€ A} holdsp(x,A) = infX.
Let us considen, A, r. The functor Bal(A, r) yielding a subset of" is defined by:
(Def. 19) BallA;r) ={z:p(zA) <r}.
We now state a number of propositions:
(83) If for everyr’ such that’ > 0 holdsr +r’ > ry, thenr >ry.

(84) For every subseXt of R and for everyr such thaiX # 0 and for everyr’ such that’ € X
holdsr < r’ holds infX >r.

(85) If A#0, thenp(x,A) > 0.
(86) If A#0,thenp(x+2zA) <p(x,A)+]z.
(87) Ifxe A thenp(x,A) =0.
(88) If x¢ AandA+£0andAis closed, thep(x,A) > 0.
(89) IfA#0,then|zy — x|+ p(x,A) > p(z1,A).
(90) zeBall(Ar)iff p(z A) <.
(91) If0<randxe A thenxe Ball(Ar).
(92) If0<r,thenACBall(Ar).
(93) If A#£0,then Bal(A,r1) is open.
Let us considen, A, B. The functorp(A, B) yielding a real number is defined by:
(Def. 20) For every subsét of R such thaiX = {|x— 2z : x€ A A z€ B} holdsp(A,B) =infX.
Let X, Y be subsets dR. The functorX +Y yielding a subset oR is defined as follows:
(Def.21) X+Y={r+ri:reX ArieY}.
We now state several propositions:
(94) For all subsetX, Y of R such thafX # 0 andY # 0 holdsX +Y # 0.

(95) For all subsetX, Y of R such thai is lower bounded and is lower bounded holdX +Y
is lower bounded.

(96) For all subsetX, Y of R such thaiX - 0 andX is lower bounded and # 0 andY is lower
bounded holds iffi)X +Y) = inf X +infY.

(97) LetX,Y be subsets dR. Suppos¢ is lower bounded and # 0 and for every such that
r € X there existg, such thar, € Y andry; <r. Then infX > infY.

(98) If A#£0andB# 0, thenp(A B) > 0.
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(99) p(AB)=p(B,A).
(100) IfA+ 0andB# 0, thenp(x,A) +p(x,B) > p(A,B).
(101) If AmeetsB, thenp(A,B) =0.

Let us considen. The open subsets @' constitute a family of subsets 6" defined by:
(Def. 22) The open subsets 6f = {A; Aranges over elements of 2 A is oper}.

The following proposition is true
(102) For every elemem of 2C" holdsA € the open subsets Gf" iff Ais open.

Let A be a non empty set and lebe a family of subsets d&. One can check thgi,t) is non
empty.

Let us considen. Then -dimensional complex space is a strict topological space and is defined
by:

(Def. 23) Then-dimensional complex spaee (C", the open subsets 6").

Let us considen. Note that then -dimensional complex space is hon empty.
The following two propositions are true:

(103) The topology of (the-dimensional complex space)the open subsets af".

(104) The carrier of (the-dimensional complex space)C".

Inthe sequepis a point of then-dimensional complex space avids a subset of the-dimensional
complex space.
We now state several propositions:

(105) pis anelement of".

(108@ For every subseA of C" such thatA =V holdsA is open iffV is open.
(109) For every subsétof C" holdsA is closed iffA® is open.

(110) For every subsét of C" such thatA =V holdsA is closed iffV is closed.
(111) Then-dimensional complex space iSlaspace.

(112) Then-dimensional complex space iSaspace.
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