Complex Spaces¹

Czesław Byliński Warsaw University Białystok Andrzej Trybulec Warsaw University Białystok

Summary. We introduce the concept of *n*-dimensional complex space. We prove a number of simple but useful propositions concerning addition, nultiplication by scalars and similar basic concepts. We introduce metric and topology. We prove that *n*-dimensional complex space is a Hausdorff space and that it is regular.

MML Identifier: COMPLSP1.

WWW: http://mizar.org/JFM/Vol2/complsp1.html

The articles [19], [7], [22], [1], [20], [15], [13], [21], [9], [4], [6], [5], [3], [16], [12], [2], [17], [18], [10], [8], [11], and [14] provide the notation and terminology for this paper.

We adopt the following rules: k, n are natural numbers, r, r', r_1 are real numbers, and c, c', c_1 , c_2 are elements of \mathbb{C} .

In this article we present several logical schemes. The scheme FuncDefUniq deals with non empty sets \mathcal{A} , \mathcal{B} and a unary functor \mathcal{F} yielding a set, and states that:

Let f_1 , f_2 be functions from \mathcal{A} into \mathcal{B} . Suppose for every element x of \mathcal{A} holds

 $f_1(x) = \mathcal{F}(x)$ and for every element x of \mathcal{A} holds $f_2(x) = \mathcal{F}(x)$. Then $f_1 = f_2$ for all values of the parameters.

The scheme BinOpDefuniq deals with a non empty set $\mathcal A$ and a binary functor $\mathcal F$ yielding a set, and states that:

Let o_1, o_2 be binary operations on \mathcal{A} . Suppose for all elements a, b of \mathcal{A} holds $o_1(a, b)$

 $b) = \mathcal{F}(a,b)$ and for all elements a,b of \mathcal{A} holds $o_2(a,b) = \mathcal{F}(a,b)$. Then $o_1 = o_2$ for all values of the parameters.

The binary operation $+_{\mathbb{C}}$ on \mathbb{C} is defined as follows:

(Def. 1) For all
$$c_1$$
, c_2 holds $+_{\mathbb{C}}(c_1, c_2) = c_1 + c_2$.

Next we state several propositions:

- (1) $+_{\mathbb{C}}$ is commutative.
- (2) $+_{\mathbb{C}}$ is associative.
- (3) $0_{\mathbb{C}}$ is a unity w.r.t. $+_{\mathbb{C}}$.
- (4) $\mathbf{1}_{+_{\mathbb{C}}} = 0_{\mathbb{C}}$.
- (5) $+_{\mathbb{C}}$ has a unity.

The unary operation $-\mathbb{C}$ on \mathbb{C} is defined by:

(Def. 2) For every c holds $-\mathbb{C}(c) = -c$.

¹Supported by RPBP.III-24.C1.

One can prove the following three propositions:

- (6) $-\mathbb{C}$ is an inverse operation w.r.t. $+\mathbb{C}$.
- (7) $+_{\mathbb{C}}$ has an inverse operation.
- (8) The inverse operation w.r.t. $+_{\mathbb{C}} = -_{\mathbb{C}}$.

The binary operation $-\mathbb{C}$ on \mathbb{C} is defined by:

(Def. 3)
$$-\mathbb{C} = +\mathbb{C} \circ (id\mathbb{C}, -\mathbb{C}).$$

The following proposition is true

(9)
$$-\mathbb{C}(c_1, c_2) = c_1 - c_2$$
.

The binary operation $\cdot_{\mathbb{C}}$ on \mathbb{C} is defined as follows:

(Def. 4) For all
$$c_1, c_2$$
 holds $\cdot_{\mathbb{C}}(c_1, c_2) = c_1 \cdot c_2$.

Next we state several propositions:

- (10) $\cdot_{\mathbb{C}}$ is commutative.
- (11) $\cdot_{\mathbb{C}}$ is associative.
- (12) $1_{\mathbb{C}}$ is a unity w.r.t. $\cdot_{\mathbb{C}}$.
- (13) $\mathbf{1}_{\cdot_{\mathbb{C}}} = 1_{\mathbb{C}}.$
- (14) $\cdot_{\mathbb{C}}$ has a unity.
- (15) $\cdot_{\mathbb{C}}$ is distributive w.r.t. $+_{\mathbb{C}}$.

Let us consider c. The functor $\cdot_{\mathbb{C}}^c$ yields a unary operation on \mathbb{C} and is defined by:

(Def. 5)
$$\cdot_{\mathbb{C}}^{c} = (\cdot_{\mathbb{C}})^{\circ}(c, \mathrm{id}_{\mathbb{C}}).$$

One can prove the following propositions:

- (16) $\cdot_{\mathbb{C}}^{c}(c') = c \cdot c'.$
- (17) $\cdot_{\mathbb{C}}^{c}$ is distributive w.r.t. $+_{\mathbb{C}}$.

The function $|\cdot|_{\mathbb{C}}$ from \mathbb{C} into \mathbb{R} is defined as follows:

(Def. 6) For every
$$c$$
 holds $|\cdot|_{\mathbb{C}}(c) = |c|$.

In the sequel z, z_1 , z_2 denote finite sequences of elements of \mathbb{C} .

Let us consider z_1, z_2 . The functor $z_1 + z_2$ yields a finite sequence of elements of \mathbb{C} and is defined by:

(Def. 7)
$$z_1 + z_2 = (+_{\mathbb{C}})^{\circ}(z_1, z_2).$$

The functor $z_1 - z_2$ yields a finite sequence of elements of $\mathbb C$ and is defined as follows:

(Def. 8)
$$z_1 - z_2 = (-\mathbb{C})^{\circ}(z_1, z_2).$$

Let us consider z. The functor -z yields a finite sequence of elements of $\mathbb C$ and is defined as follows:

(Def. 9)
$$-z = -\mathbb{C} \cdot z$$
.

Let us consider c, z. The functor $c \cdot z$ yields a finite sequence of elements of $\mathbb C$ and is defined by:

(Def. 10)
$$c \cdot z = \frac{c}{\mathbb{C}} \cdot z$$
.

Let us consider z. The functor |z| yielding a finite sequence of elements of $\mathbb R$ is defined as follows:

(Def. 11)
$$|z| = |\cdot|_{\mathbb{C}} \cdot z$$
.

Let us consider n. The functor \mathbb{C}^n yields a non empty set of finite sequences of \mathbb{C} and is defined by:

(Def. 12)
$$\mathbb{C}^n = \mathbb{C}^n$$
.

Let us consider n. Note that \mathbb{C}^n is non empty.

We adopt the following convention: x, z, z_1 , z_2 , z_3 are elements of \mathbb{C}^n and A, B are subsets of \mathbb{C}^n .

Next we state several propositions:

- (18) len z = n.
- (19) For every element z of \mathbb{C}^0 holds $z = \varepsilon_{\mathbb{C}}$.
- (20) $\varepsilon_{\mathbb{C}}$ is an element of \mathbb{C}^0 .
- (21) If $k \in \operatorname{Seg} n$, then $z(k) \in \mathbb{C}$.
- (23)¹ If for every k such that $k \in \operatorname{Seg} n$ holds $z_1(k) = z_2(k)$, then $z_1 = z_2$.

Let us consider n, z_1 , z_2 . Then $z_1 + z_2$ is an element of \mathbb{C}^n .

The following three propositions are true:

- (24) If $k \in \text{Seg } n$ and $c_1 = z_1(k)$ and $c_2 = z_2(k)$, then $(z_1 + z_2)(k) = c_1 + c_2$.
- $(25) \quad z_1 + z_2 = z_2 + z_1.$
- (26) $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$.

Let us consider n. The functor $0^n_{\mathbb{C}}$ yielding a finite sequence of elements of \mathbb{C} is defined as follows:

(Def. 13)
$$0^n_{\mathbb{C}} = n \mapsto 0_{\mathbb{C}}$$
.

Let us consider n. Then $0^n_{\mathbb{C}}$ is an element of \mathbb{C}^n .

The following two propositions are true:

- (27) If $k \in \operatorname{Seg} n$, then $0^n_{\mathbb{C}}(k) = 0_{\mathbb{C}}$.
- (28) $z + 0^n_{\mathbb{C}} = z \text{ and } z = 0^n_{\mathbb{C}} + z.$

Let us consider n, z. Then -z is an element of \mathbb{C}^n .

We now state several propositions:

- (29) If $k \in \operatorname{Seg} n$ and c = z(k), then (-z)(k) = -c.
- (30) $z + -z = 0^n_{\mathbb{C}}$ and $-z + z = 0^n_{\mathbb{C}}$.
- (31) If $z_1 + z_2 = 0^n_{\mathbb{C}}$, then $z_1 = -z_2$ and $z_2 = -z_1$.
- (32) --z = z.
- (33) If $-z_1 = -z_2$, then $z_1 = z_2$.
- (34) If $z_1 + z = z_2 + z$ or $z_1 + z = z + z_2$, then $z_1 = z_2$.
- (35) $-(z_1+z_2)=-z_1+-z_2$.

¹ The proposition (22) has been removed.

Let us consider n, z_1 , z_2 . Then $z_1 - z_2$ is an element of \mathbb{C}^n . One can prove the following propositions:

- (36) If $k \in \text{Seg } n$ and $c_1 = z_1(k)$ and $c_2 = z_2(k)$, then $(z_1 z_2)(k) = c_1 c_2$.
- (37) $z_1 z_2 = z_1 + -z_2$.
- (38) $z 0^n_{\mathbb{C}} = z$.
- (39) $0^n_{\mathbb{C}} z = -z$.
- $(40) z_1 -z_2 = z_1 + z_2.$
- (41) $-(z_1-z_2)=z_2-z_1$.
- $(42) \quad -(z_1-z_2)=-z_1+z_2.$
- (43) $z z = 0^n_{\mathbb{C}}$.
- (44) If $z_1 z_2 = 0_{\mathbb{C}}^n$, then $z_1 = z_2$.
- (45) $z_1 z_2 z_3 = z_1 (z_2 + z_3)$.
- (46) $z_1 + (z_2 z_3) = (z_1 + z_2) z_3$.
- (47) $z_1 (z_2 z_3) = (z_1 z_2) + z_3$.
- (48) $(z_1-z_2)+z_3=(z_1+z_3)-z_2$.
- (49) $z_1 = (z_1 + z) z$.
- (50) $z_1 + (z_2 z_1) = z_2$.
- (51) $z_1 = (z_1 z) + z$.

Let us consider n, c, z. Then $c \cdot z$ is an element of \mathbb{C}^n . The following propositions are true:

- (52) If $k \in \operatorname{Seg} n$ and c' = z(k), then $(c \cdot z)(k) = c \cdot c'$.
- $(53) \quad c_1 \cdot (c_2 \cdot z) = (c_1 \cdot c_2) \cdot z.$
- (54) $(c_1 + c_2) \cdot z = c_1 \cdot z + c_2 \cdot z$.
- (55) $c \cdot (z_1 + z_2) = c \cdot z_1 + c \cdot z_2$.
- $(56) \quad 1_{\mathbb{C}} \cdot z = z.$
- $(57) \quad 0_{\mathbb{C}} \cdot z = 0_{\mathbb{C}}^{n}.$
- $(58) \quad (-1_{\mathbb{C}}) \cdot z = -z.$

Let us consider n, z. Then |z| is an element of \mathbb{R}^n .

The following four propositions are true:

- (59) If $k \in \operatorname{Seg} n$ and c = z(k), then |z|(k) = |c|.
- $(60) \quad |0^n_{\mathbb{C}}| = n \mapsto 0.$
- (61) |-z| = |z|.
- $(62) \quad |c \cdot z| = |c| \cdot |z|.$

Let z be a finite sequence of elements of \mathbb{C} . The functor |z| yields a real number and is defined by:

(Def. 14) $|z| = \sqrt{\sum^2 |z|}$.

Next we state a number of propositions:

- (63) $|0^n_{\mathbb{C}}| = 0.$
- (64) If |z| = 0, then $z = 0^n_{\mathbb{C}}$.
- (65) $0 \le |z|$.
- (66) |-z| = |z|.
- $(67) \quad |c \cdot z| = |c| \cdot |z|.$
- (68) $|z_1 + z_2| \le |z_1| + |z_2|$.
- (69) $|z_1 z_2| \le |z_1| + |z_2|$.
- $(70) |z_1| |z_2| \le |z_1 + z_2|.$
- $(71) |z_1| |z_2| \le |z_1 z_2|.$
- (72) $|z_1 z_2| = 0$ iff $z_1 = z_2$.
- (73) If $z_1 \neq z_2$, then $0 < |z_1 z_2|$.
- (74) $|z_1-z_2|=|z_2-z_1|$.
- (75) $|z_1-z_2| \le |z_1-z|+|z-z_2|$.

Let us consider n and let A be an element of $2^{\mathbb{C}^n}$. We say that A is open if and only if:

(Def. 15) For every x such that $x \in A$ there exists r such that 0 < r and for every z such that |z| < r holds $x + z \in A$.

Let us consider n and let A be an element of $2^{\mathbb{C}^n}$. We say that A is closed if and only if:

(Def. 16) For every x such that for every r such that r > 0 there exists z such that |z| < r and $x + z \in A$ holds $x \in A$.

Next we state four propositions:

- (76) For every element *A* of $2^{\mathbb{C}^n}$ such that $A = \emptyset$ holds *A* is open.
- (77) For every element *A* of $2^{\mathbb{C}^n}$ such that $A = \mathbb{C}^n$ holds *A* is open.
- (78) Let A_1 be a family of subsets of \mathbb{C}^n . Suppose that for every element A of $2^{\mathbb{C}^n}$ such that $A \in A_1$ holds A is open. Let A be an element of $2^{\mathbb{C}^n}$. If $A = \bigcup A_1$, then A is open.
- (79) Let A, B be subsets of \mathbb{C}^n . Suppose A is open and B is open. Let C be an element of $2^{\mathbb{C}^n}$. If $C = A \cap B$, then C is open.

Let us consider n, x, r. The functor Ball(x,r) yields a subset of \mathbb{C}^n and is defined by:

(Def. 17) Ball $(x, r) = \{z : |z - x| < r\}.$

The following three propositions are true:

- (80) $z \in \text{Ball}(x, r) \text{ iff } |x z| < r.$
- (81) If 0 < r, then $x \in Ball(x, r)$.
- (82) Ball (z_1, r_1) is open.

Now we present two schemes. The scheme SubsetFD deals with non empty sets \mathcal{A} , \mathcal{B} , a unary functor \mathcal{F} yielding an element of \mathcal{B} , and a unary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(x); x \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[x]\}$ is a subset of \mathcal{B} for all values of the parameters.

The scheme SubsetFD2 deals with non empty sets \mathcal{A} , \mathcal{B} , \mathcal{C} , a binary functor \mathcal{F} yielding an element of \mathcal{C} , and a binary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(x,y); x \text{ ranges over elements of } \mathcal{A}, y \text{ ranges over elements of } \mathcal{B}: \mathcal{P}[x,y]\}$ is a subset of \mathcal{C}

for all values of the parameters.

Let us consider n, x, A. The functor $\rho(x, A)$ yields a real number and is defined as follows:

(Def. 18) For every subset *X* of \mathbb{R} such that $X = \{|x - z| : z \in A\}$ holds $\rho(x, A) = \inf X$.

Let us consider n, A, r. The functor Ball(A, r) yielding a subset of \mathbb{C}^n is defined by:

(Def. 19) Ball $(A, r) = \{z : \rho(z, A) < r\}.$

We now state a number of propositions:

- (83) If for every r' such that r' > 0 holds $r + r' > r_1$, then $r \ge r_1$.
- (84) For every subset X of \mathbb{R} and for every r such that $X \neq \emptyset$ and for every r' such that $r' \in X$ holds $r \leq r'$ holds $\inf X \geq r$.
- (85) If $A \neq \emptyset$, then $\rho(x,A) \geq 0$.
- (86) If $A \neq \emptyset$, then $\rho(x+z,A) \leq \rho(x,A) + |z|$.
- (87) If $x \in A$, then $\rho(x,A) = 0$.
- (88) If $x \notin A$ and $A \neq \emptyset$ and A is closed, then $\rho(x,A) > 0$.
- (89) If $A \neq \emptyset$, then $|z_1 x| + \rho(x, A) \ge \rho(z_1, A)$.
- (90) $z \in Ball(A, r)$ iff $\rho(z, A) < r$.
- (91) If 0 < r and $x \in A$, then $x \in Ball(A, r)$.
- (92) If 0 < r, then $A \subseteq Ball(A, r)$.
- (93) If $A \neq \emptyset$, then Ball (A, r_1) is open.

Let us consider n, A, B. The functor $\rho(A,B)$ yielding a real number is defined by:

(Def. 20) For every subset *X* of \mathbb{R} such that $X = \{|x-z| : x \in A \land z \in B\}$ holds $\rho(A,B) = \inf X$.

Let X, Y be subsets of \mathbb{R} . The functor X + Y yielding a subset of \mathbb{R} is defined as follows:

(Def. 21) $X + Y = \{r + r_1 : r \in X \land r_1 \in Y\}.$

We now state several propositions:

- (94) For all subsets X, Y of \mathbb{R} such that $X \neq \emptyset$ and $Y \neq \emptyset$ holds $X + Y \neq \emptyset$.
- (95) For all subsets X, Y of \mathbb{R} such that X is lower bounded and Y is lower bounded holds X + Y is lower bounded.
- (96) For all subsets X, Y of \mathbb{R} such that $X \neq \emptyset$ and X is lower bounded and $Y \neq \emptyset$ and Y is lower bounded holds $\inf(X + Y) = \inf X + \inf Y$.
- (97) Let X, Y be subsets of \mathbb{R} . Suppose Y is lower bounded and $X \neq \emptyset$ and for every r such that $r \in X$ there exists r_1 such that $r_1 \in Y$ and $r_1 \leq r$. Then $\inf X \geq \inf Y$.
- (98) If $A \neq \emptyset$ and $B \neq \emptyset$, then $\rho(A, B) \geq 0$.

- (99) $\rho(A,B) = \rho(B,A)$.
- (100) If $A \neq \emptyset$ and $B \neq \emptyset$, then $\rho(x,A) + \rho(x,B) \geq \rho(A,B)$.
- (101) If A meets B, then $\rho(A, B) = 0$.

Let us consider n. The open subsets of \mathbb{C}^n constitute a family of subsets of \mathbb{C}^n defined by:

(Def. 22) The open subsets of $\mathbb{C}^n = \{A; A \text{ ranges over elements of } 2^{\mathbb{C}^n} : A \text{ is open} \}.$

The following proposition is true

(102) For every element A of $2^{\mathbb{C}^n}$ holds $A \in \text{the open subsets of } \mathbb{C}^n$ iff A is open.

Let A be a non empty set and let t be a family of subsets of A. One can check that $\langle A, t \rangle$ is non empty.

Let us consider n. The n -dimensional complex space is a strict topological space and is defined by:

(Def. 23) The *n*-dimensional complex space = $\langle \mathbb{C}^n$, the open subsets of $\mathbb{C}^n \rangle$.

Let us consider n. Note that the n -dimensional complex space is non empty. The following two propositions are true:

- (103) The topology of (the *n*-dimensional complex space) = the open subsets of \mathbb{C}^n .
- (104) The carrier of (the *n*-dimensional complex space) = \mathbb{C}^n .

In the sequel p is a point of the n-dimensional complex space and V is a subset of the n-dimensional complex space.

We now state several propositions:

- (105) p is an element of \mathbb{C}^n .
- (108)² For every subset A of \mathbb{C}^n such that A = V holds A is open iff V is open.
- (109) For every subset A of \mathbb{C}^n holds A is closed iff A^c is open.
- (110) For every subset A of \mathbb{C}^n such that A = V holds A is closed iff V is closed.
- (111) The *n*-dimensional complex space is a T_2 space.
- (112) The n-dimensional complex space is a T_3 space.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/finseq_l.html.
- $[3] \begin{tabular}{ll} Czesław Byliński. Binary operations. {\it Journal of Formalized Mathematics}, 1, 1989. $$http://mizar.org/JFM/Vol1/binop_1.html. \\ \end{tabular}$
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_2.html.
- [6] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [7] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_l.html.
- [8] Czesław Byliński. Binary operations applied to finite sequences. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/finseqop.html.

² The propositions (106) and (107) have been removed.

- [9] Czesław Byliński. The complex numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/complex1. html.
- [10] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [11] Czesław Byliński. The sum and product of finite sequences of real numbers. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rvsum_1.html.
- [12] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [13] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/real_1.html.
- [14] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/seg_4.html.
- [15] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [17] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funcop_1.html.
- [18] Andrzej Trybulec. Semilattice operations on finite subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/setwiseo.html.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [20] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [21] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/square_1.html.
- [22] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received September 27, 1990

Published January 2, 2004
