The Field of Complex Numbers

Anna Justyna Milewska University of Białystok

Summary. This article contains the definition and many facts about the field of complex numbers.

MML Identifier: COMPLFLD.

WWW: http://mizar.org/JFM/Vol12/complfld.html

The articles [9], [12], [1], [10], [5], [6], [8], [11], [7], [4], [3], and [2] provide the notation and terminology for this paper.

One can prove the following proposition

(2)¹ For all elements x_1, y_1, x_2, y_2 of \mathbb{R} holds $(x_1 + y_1 i) + (x_2 + y_2 i) = (x_1 + x_2) + (y_1 + y_2)i$.

The strict double loop structure \mathbb{C}_F is defined by the conditions (Def. 1).

(Def. 1)(i) The carrier of $\mathbb{C}_F = \mathbb{C}$,

- (ii) the addition of $\mathbb{C}_F = +_{\mathbb{C}}$,
- (iii) the multiplication of $\mathbb{C}_{F} = \cdot_{\mathbb{C}}$,
- (iv) the unity of $\mathbb{C}_F = 1_{\mathbb{C}}$, and
- (v) the zero of $\mathbb{C}_F = 0_{\mathbb{C}}$.

Let us mention that \mathbb{C}_F is non empty.

Let us mention that every element of \mathbb{C}_F is complex.

One can verify that \mathbb{C}_F is add-associative, right zeroed, right complementable, Abelian, commutative, associative, left unital, right unital, distributive, field-like, and non degenerated.

Next we state several propositions:

- (3) For all elements x_1 , y_1 of \mathbb{C}_F and for all elements x_2 , y_2 of \mathbb{C} such that $x_1 = x_2$ and $y_1 = y_2$ holds $x_1 + y_1 = x_2 + y_2$.
- (4) For every element x_1 of \mathbb{C}_F and for every element x_2 of \mathbb{C} such that $x_1 = x_2$ holds $-x_1 = -x_2$.
- (5) For all elements x_1 , y_1 of \mathbb{C}_F and for all elements x_2 , y_2 of \mathbb{C} such that $x_1 = x_2$ and $y_1 = y_2$ holds $x_1 y_1 = x_2 y_2$.
- (6) For all elements x_1 , y_1 of \mathbb{C}_F and for all elements x_2 , y_2 of \mathbb{C} such that $x_1 = x_2$ and $y_1 = y_2$ holds $x_1 \cdot y_1 = x_2 \cdot y_2$.
- (7) For every element x_1 of \mathbb{C}_F and for every element x_2 of \mathbb{C} such that $x_1 = x_2$ and $x_1 \neq 0_{\mathbb{C}_F}$ holds $x_1^{-1} = x_2^{-1}$.

1

¹ The proposition (1) has been removed.

- (8) For all elements x_1 , y_1 of \mathbb{C}_F and for all elements x_2 , y_2 of \mathbb{C} such that $x_1 = x_2$ and $y_1 = y_2$ and $y_1 \neq 0_{\mathbb{C}_F}$ holds $\frac{x_1}{y_1} = \frac{x_2}{y_2}$.
- $(9) \quad 0_{\mathbb{C}_F} = 0_{\mathbb{C}}.$
- $\mathbf{1}_{\mathbb{C}_{F}}=1_{\mathbb{C}}.$
- (11) $\mathbf{1}_{\mathbb{C}_{F}} + \mathbf{1}_{\mathbb{C}_{F}} \neq 0_{\mathbb{C}_{F}}$.

Let z be an element of \mathbb{C}_F . The functor \overline{z} yielding an element of \mathbb{C}_F is defined as follows:

(Def. 2) There exists an element z' of \mathbb{C} such that z = z' and $\overline{z} = \overline{z'}$.

Let z be an element of \mathbb{C}_F . The functor |z| yields a real number and is defined as follows:

(Def. 3) There exists an element z' of \mathbb{C} such that z = z' and |z| = |z'|.

Let z be an element of \mathbb{C}_F . Then |z| is an element of \mathbb{R} .

The following proposition is true

(12) For every element x_1 of \mathbb{C}_F and for every element x_2 of \mathbb{C} such that $x_1 = x_2$ holds $\overline{x_1} = \overline{x_2}$.

In the sequel z, z_1 , z_2 , z_3 , z_4 are elements of \mathbb{C}_F .

Next we state a number of propositions:

- $(29)^2 \quad -z = (-\mathbf{1}_{\mathbb{C}_{\mathrm{F}}}) \cdot z.$
- $(35)^3$ $z_1 -z_2 = z_1 + z_2$.
- $(41)^4$ $z_1 = (z_1 + z) z$.
- (42) $z_1 = (z_1 z) + z$.
- $(47)^5$ If $z_1 \neq 0_{\mathbb{C}_F}$ and $z_2 \neq 0_{\mathbb{C}_F}$ and $z_1^{-1} = z_2^{-1}$, then $z_1 = z_2$.
- (48) If $z_2 \neq 0_{\mathbb{C}_F}$ and if $z_1 \cdot z_2 =$ the unity of \mathbb{C}_F or $z_2 \cdot z_1 =$ the unity of \mathbb{C}_F , then $z_1 = z_2^{-1}$.
- (49) If $z_2 \neq 0_{\mathbb{C}_{\mathbb{F}}}$ and if $z_1 \cdot z_2 = z_3$ or $z_2 \cdot z_1 = z_3$, then $z_1 = z_3 \cdot z_2^{-1}$ and $z_1 = z_2^{-1} \cdot z_3$.
- (50) (The unity of \mathbb{C}_F)⁻¹ = the unity of \mathbb{C}_F .
- (51) If $z_1 \neq 0_{\mathbb{C}_F}$ and $z_2 \neq 0_{\mathbb{C}_F}$, then $(z_1 \cdot z_2)^{-1} = z_1^{-1} \cdot z_2^{-1}$.
- $(53)^6$ If $z \neq 0_{\mathbb{C}_{\mathbb{F}}}$, then $(-z)^{-1} = -z^{-1}$.
- $(55)^7$ If $z_1 \neq 0_{\mathbb{C}_E}$ and $z_2 \neq 0_{\mathbb{C}_E}$, then $z_1^{-1} + z_2^{-1} = (z_1 + z_2) \cdot (z_1 \cdot z_2)^{-1}$.
- (56) If $z_1 \neq 0_{\mathbb{C}_E}$ and $z_2 \neq 0_{\mathbb{C}_E}$, then $z_1^{-1} z_2^{-1} = (z_2 z_1) \cdot (z_1 \cdot z_2)^{-1}$.
- (58)⁸ If $z \neq 0_{\mathbb{C}_F}$, then $z^{-1} = \frac{\text{the unity of } \mathbb{C}_F}{z}$.
- (59) $\frac{z}{\text{the unity of } \mathbb{C}_F} = z.$
- (60) If $z \neq 0_{\mathbb{C}_F}$, then $\frac{z}{z}$ = the unity of \mathbb{C}_F .
- (61) If $z \neq 0_{\mathbb{C}_F}$, then $\frac{0_{\mathbb{C}_F}}{z} = 0_{\mathbb{C}_F}$.
- (62) If $z_2 \neq 0_{\mathbb{C}_F}$ and $\frac{z_1}{z_2} = 0_{\mathbb{C}_F}$, then $z_1 = 0_{\mathbb{C}_F}$.

² The propositions (13)–(28) have been removed.

³ The propositions (30)–(34) have been removed.

⁴ The propositions (36)–(40) have been removed.

⁵ The propositions (43)–(46) have been removed.

⁶ The proposition (52) has been removed.

⁷ The proposition (54) has been removed.

⁸ The proposition (57) has been removed.

- (63) If $z_2 \neq 0_{\mathbb{C}_F}$ and $z_4 \neq 0_{\mathbb{C}_F}$, then $\frac{z_1}{z_2} \cdot \frac{z_3}{z_4} = \frac{z_1 \cdot z_3}{z_2 \cdot z_4}$.
- (64) If $z_2 \neq 0_{\mathbb{C}_F}$, then $z \cdot \frac{z_1}{z_2} = \frac{z \cdot z_1}{z_2}$.
- (65) If $z_2 \neq 0_{\mathbb{C}_F}$ and $\frac{z_1}{z_2}$ = the unity of \mathbb{C}_F , then $z_1 = z_2$.
- (66) If $z \neq 0_{\mathbb{C}_F}$, then $z_1 = \frac{z_1 \cdot z}{z}$.
- (67) If $z_1 \neq 0_{\mathbb{C}_F}$ and $z_2 \neq 0_{\mathbb{C}_F}$, then $(\frac{z_1}{z_2})^{-1} = \frac{z_2}{z_1}$.
- (68) If $z_1 \neq 0_{\mathbb{C}_F}$ and $z_2 \neq 0_{\mathbb{C}_F}$, then $\frac{z_1^{-1}}{z_2^{-1}} = \frac{z_2}{z_1}$.
- (69) If $z_2 \neq 0_{\mathbb{C}_F}$, then $\frac{z_1}{z_2-1} = z_1 \cdot z_2$.
- (70) If $z_1 \neq 0_{\mathbb{C}_F}$ and $z_2 \neq 0_{\mathbb{C}_F}$, then $\frac{z_1^{-1}}{z_2} = (z_1 \cdot z_2)^{-1}$.
- (71) If $z_1 \neq 0_{\mathbb{C}_F}$ and $z_2 \neq 0_{\mathbb{C}_F}$, then $z_1^{-1} \cdot \frac{z}{z_2} = \frac{z}{z_1 \cdot z_2}$.
- (72) If $z \neq 0_{\mathbb{C}_F}$ and $z_2 \neq 0_{\mathbb{C}_F}$, then $\frac{z_1}{z_2} = \frac{z_1 \cdot z}{z_2 \cdot z}$ and $\frac{z_1}{z_2} = \frac{z \cdot z_1}{z \cdot z_2}$.
- (73) If $z_2 \neq 0_{\mathbb{C}_F}$ and $z_3 \neq 0_{\mathbb{C}_F}$, then $\frac{z_1}{z_2 \cdot z_3} = \frac{\overline{z_1}}{z_3}$.
- (74) If $z_2 \neq 0_{\mathbb{C}_F}$ and $z_3 \neq 0_{\mathbb{C}_F}$, then $\frac{z_1 \cdot z_3}{z_2} = \frac{z_1}{z_3}$.
- (75) If $z_2 \neq 0_{\mathbb{C}_F}$ and $z_3 \neq 0_{\mathbb{C}_F}$ and $z_4 \neq 0_{\mathbb{C}_F}$, then $\frac{z_1}{z_2} = \frac{z_1 \cdot z_4}{z_2 \cdot z_3}$.
- (76) If $z_2 \neq 0_{\mathbb{C}_F}$ and $z_4 \neq 0_{\mathbb{C}_F}$, then $\frac{z_1}{z_2} + \frac{z_3}{z_4} = \frac{z_1 \cdot z_4 + z_3 \cdot z_2}{z_2 \cdot z_4}$.
- (77) If $z \neq 0_{\mathbb{C}_F}$, then $\frac{z_1}{z} + \frac{z_2}{z} = \frac{z_1 + z_2}{z}$.
- (78) If $z_2 \neq 0_{\mathbb{C}_F}$, then $-\frac{z_1}{z_2} = \frac{-z_1}{z_2}$ and $-\frac{z_1}{z_2} = \frac{z_1}{-z_2}$.
- (79) If $z_2 \neq 0_{\mathbb{C}_F}$, then $\frac{z_1}{z_2} = \frac{-z_1}{-z_2}$.
- (80) If $z_2 \neq 0_{\mathbb{C}_F}$ and $z_4 \neq 0_{\mathbb{C}_F}$, then $\frac{z_1}{z_2} \frac{z_3}{z_4} = \frac{z_1 \cdot z_4 z_3 \cdot z_2}{z_2 \cdot z_4}$.
- (81) If $z \neq 0_{\mathbb{C}_F}$, then $\frac{z_1}{z} \frac{z_2}{z} = \frac{z_1 z_2}{z}$.
- (82) If $z_2 \neq 0_{\mathbb{C}_F}$ and if $z_1 \cdot z_2 = z_3$ or $z_2 \cdot z_1 = z_3$, then $z_1 = \frac{z_3}{z_2}$.
- (83) the zero of \mathbb{C}_F = the zero of \mathbb{C}_F .
- (84) If \overline{z} = the zero of \mathbb{C}_F , then z = the zero of \mathbb{C}_F .
- (85) the unity of \mathbb{C}_F = the unity of \mathbb{C}_F .
- (86) $\overline{\overline{z}} = z$.
- $(87) \quad \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}.$
- (88) $\overline{-z} = -\overline{z}$.
- $(89) \quad \overline{z_1 z_2} = \overline{z_1} \overline{z_2}.$
- (90) $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$.
- (91) If $z \neq$ the zero of \mathbb{C}_F , then $\overline{z^{-1}} = \overline{z}^{-1}$.
- (92) If $z_2 \neq$ the zero of \mathbb{C}_F , then $\frac{\overline{z_1}}{\overline{z_2}} = \frac{\overline{z_1}}{\overline{z_2}}$.

- (93) | the zero of \mathbb{C}_F | = 0.
- (94) If |z| = 0, then $z = 0_{\mathbb{C}_F}$.
- (95) $0 \le |z|$.
- (96) $z \neq 0_{\mathbb{C}_F} \text{ iff } 0 < |z|.$
- (97) | the unity of \mathbb{C}_F | = 1.
- (98) |-z| = |z|.
- $(99) \quad |\overline{z}| = |z|.$
- $(100) |z_1 + z_2| \le |z_1| + |z_2|.$
- $(101) \quad |z_1 z_2| \le |z_1| + |z_2|.$
- $(102) |z_1| |z_2| \le |z_1 + z_2|.$
- $(103) |z_1| |z_2| \le |z_1 z_2|.$
- (104) $|z_1 z_2| = |z_2 z_1|$.
- (105) $|z_1 z_2| = 0$ iff $z_1 = z_2$.
- (106) $z_1 \neq z_2 \text{ iff } 0 < |z_1 z_2|.$
- $(107) |z_1 z_2| \le |z_1 z| + |z z_2|.$
- $(108) \quad ||z_1| |z_2|| \le |z_1 z_2|.$
- $(109) |z_1 \cdot z_2| = |z_1| \cdot |z_2|.$
- (110) If $z \neq$ the zero of \mathbb{C}_F , then $|z^{-1}| = |z|^{-1}$.
- (111) If $z_2 \neq$ the zero of \mathbb{C}_F , then $\frac{|z_1|}{|z_2|} = |\frac{z_1}{z_2}|$.
- $(112) \quad |z \cdot z| = |z \cdot \overline{z}|.$

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinall.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [3] Czesław Byliński. The complex numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/complex1. html.
- [4] Czesław Byliński and Andrzej Trybulec. Complex spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/complsp1.html.
- [5] Library Committee. Introduction to arithmetic. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/arytm_0.html.
- [6] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [8] Jan Popiołek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [10] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.

- [11] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$

Received January 18, 2000

Published January 2, 2004