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Summary. This article contains the definition and many facts about the field of com-
plex numbers.

MML Identifier: COMPLFLD.
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The articles|[9], [1P], [[1], [[10], [15], [16], 18], [[11], [I¥], 4], [[3], and[[2] provide the notation and
terminology for this paper.
One can prove the following proposition

(ZH For all elementsy, y1, X2, Y2 of R holds (X1 +y1i) + (X2 + Y2i) = (X1 + X2) + (Y1 + Y2)i.
The strict double loop structur@r is defined by the conditions (Def. 1).

(Def. 1)(i) The carrier ofCg = C,
(i) the addition ofCr = +¢,
(i)  the multiplication of Cg = ¢,
(iv)  the unity of Ck = 1¢, and
(v) the zero ofCg = 0c.
Let us mention thatr is non empty.
Let us mention that every element@g is complex.
One can verify thaCf is add-associative, right zeroed, right complementable, Abelian, com-

mutative, associative, left unital, right unital, distributive, field-like, and non degenerated.
Next we state several propositions:

(3) For all elementss, y; of Cg and for all elements;, y» of C such thaix; = x, andy; = y»
holdsxy +y1 = X2 + ya.

(4) For every element; of Cr and for every element; of C such thatx; = X holds—x; =
—X2.

(5) For all elementss, y; of Cg and for all elementg,, y» of C such thatx; = xp andy; = y»
holdsx; —y1 = X2 — yo.

(6) For all elementss, y; of Cg and for all elementg,, y» of C such thaix; = xp andy; =y»
holdsxy - y1 = X2 - Yo.

(7) For every element; of Cr and for every element; of C such thatx; = X andx; # O,
holdsx; 1 = x, 1.

1 The proposition (1) has been removed.
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(8) For all elementss, y; of Cg and for all elementg,, y» of C such thatx; = xp andy; = y»
andy; # Oc, holds% =X

=32
(9 O =0c.
(10) 1c = 1lc.
(11) 2cp+1cr # Oce-
Let zbe an element of . The functorz yielding an element of ¢ is defined as follows:
(Def. 2) There exists an elemezitof C such thaz =7 andz = 7.
Let zbe an element of . The functor|z| yields a real number and is defined as follows:
(Def. 3) There exists an elemezitof C such thaz = Z and|z| = |Z|.

Let zbe an element ofr. Then|z| is an element oR.
The following proposition is true

(12) For every elemeng of Cg and for every element of C such thak; = x, holdsXy = %X3.

In the sequet, z;, 75, 73, 24 are elements of .
Next we state a number of propositions:

Q| -z=(-1c) 2

(35 0——=71+2.

@] z=@+2-z

42) z1=(zn-2+2

(47F| If z1 # Oc, andz, # Ogp andzy L = 271, thenzy = 2.

(48) If 2o # Ocp and ifz; - o = the unity of Cg or 2> - 1 = the unity of Cg, thenz; = 2L
(49) Ifzp#0c. andifz;-zp=230r2-2 =2z, thenzy =2z3- 2" tandz =21 z.
(50) (The unity ofCg)~! = the unity ofCr.

(51) Ifz #0c, andz, # Ocy, then(zy-z0) 1 =271 71,

(53f] If z# O, then(—2) 1= -z L.

(55 If z1 # Ocp andz, # Oc,, thenzy 1+ 1= (z1+2) - (z1-22) L.

(56) Ifz # Oc andz # Ocg, thenzy 1 — 21 = (p—27) - (z1- ) L.

(58F] If 2+ Oc,, thenz t = theuny ofCe.

z

s -
the unity of Ck — =

(60) If z# Oc,, thenZ = the unity of Cr.

(61) Ifz# 0Oc,, thenE = O,
(62) Ifz# O(C,: and% = 0(C|:> thenz; = O(Cp

2 The propositions (13)—(28) have been removed.
3 The propositions (30)—(34) have been removed.
4 The propositions (36)—(40) have been removed.
5 The propositions (43)—(46) have been removed.
6 The proposition (52) has been removed.
" The proposition (54) has been removed.
8 The proposition (57) has been removed.
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If , # Oc, andzs # Ocg., then% . izi = %

1 _ ZZq
If 22 % OCF7 thenZ ?2 == z

If 2o # Oc, and% = the unity ofCf, thenz; = 2.
If 2+ Ocy, thenzy = 22,

If zz # Oc, andz, # Oc,, then(%)*1 =2

7

-1
If 2, # Ocy andz; # Ocy., then 2 = 2.

If , # Ocp., thenzzz—i1 =71 2.

If 21 # Oc, andz, # Oc,., thenZ ™ = (z-2) L.

-1 z __ y4
If z; # Oce andzy # Ogg, thenzy % = ngn

1 _ Z 1 _ ZZg

If z, # Oc, andzs # Oc,, thenzj—lk = %

If 2, # Oc, andzs # Ocg, then% = %L
3

a

If z, # Oc, andzs # Oc, andzs # Oc,, thenzz:%T =4,
73

Zp-7Z3

If 2, # Oc,. andzy # O, thenZ + ;—? = %.

Al L _ n+
If 2 Oc,, thenZ + 2 = 432

_a_ -2 _a_ 7
If z # Oc, then . and =5

P — A
If 22 % OCF7 theni == TZZ

If 2 # Ocp andzs # Ocg, then 2 — % = 22 &2,

If z# Ocg, thenZ — 2 = 42

If o # O and ifz; - 2, = 23 0r 2, - 7 = 73, thenzy = i—i
the zero ofCg = the zero ofCk.

If Z = the zero ofCg, thenz = the zero ofCg.

the unity of Cg = the unity ofCk.

Z=z

n—-=7-2.

=72

If z+ the zero ofCg, thenz-1 =z 1.
I _ &

If z, # the zero ofCg, then % =
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(93) |the zero ofCg| = 0.

(94) If |z =0, thenz=0c,.

(95) O< |z

(96) z#0c. iff0 < 7.
(97) [|the unity of Cg| = 1.
(98) |-Z=|2.

(99) |2 =2.

(100) |21—‘r22| < |Z]_| + |22|.

(101) |z -2l < |al+]z]|

(102) |z]-|z| <|z+2z|

(103) |Z;|_| — |22| < |Z]_ —22|.

(104) |zn—2|=|z2— 7).

(105) |Z]_—22| =0 iff VAR 2R

(106) 71 7522 iff 0 < ‘21—22|.

(107) |z -2z|<|a—-7Z+[z-2z|

(108) ||z| — |zl < |zr — 22|

(109) |z 2| = |za] |22

(110) Ifz+# the zero ofCg, then|z 1| = |7~2.

(111) Iz +# the zero ofCg, then!Zl = |% .

2]

(112) |z-4=|z-7Z|
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