The Complex Numbers

Czesław Byliński Warsaw University Białystok

Summary. We define the set $\mathbb C$ of complex numbers as the set of all ordered pairs $z=\langle a,b\rangle$ where a and b are real numbers and where addition and multiplication are defined. We define the real and imaginary parts of z and denote this by $a=\Re(z)$, $b=\Im(z)$. These definitions satisfy all the axioms for a field. $0_{\mathbb C}=0+0i$ and $1_{\mathbb C}=1+0i$ are identities for addition and multiplication respectively, and there are multiplicative inverses for each non zero element in $\mathbb C$. The difference and division of complex numbers are also defined. We do not interpret the set of all real numbers $\mathbb R$ as a subset of $\mathbb C$. From here on we do not abandon the ordered pair notation for complex numbers. For example: $i^2=(0+1i)^2=-1+0i\neq -1$. We conclude this article by introducing two operations on $\mathbb C$ which are not field operations. We define the absolute value of z denoted by |z| and the conjugate of z denoted by z^* .

MML Identifier: COMPLEX1.

WWW: http://mizar.org/JFM/Vol2/complex1.html

The articles [8], [11], [1], [5], [9], [6], [7], [10], [12], [2], [3], and [4] provide the notation and terminology for this paper.

In this paper a, b denote elements of \mathbb{R} . One can prove the following proposition

(2)¹ For all real numbers a, b holds $a^2 + b^2 = 0$ iff a = 0 and b = 0.

Let us observe that every element of \mathbb{C} is complex.

Let z be a complex number. The functor $\Re(z)$ is defined by:

(Def. 2)²(i)
$$\Re(z) = z \text{ if } z \in \mathbb{R},$$

(ii) there exists a function f from 2 into \mathbb{R} such that z = f and $\Re(z) = f(0)$, otherwise.

The functor $\Im(z)$ is defined as follows:

(Def. 3)(i)
$$\Im(z) = 0$$
 if $z \in \mathbb{R}$,

(ii) there exists a function f from 2 into \mathbb{R} such that z = f and $\mathfrak{I}(z) = f(1)$, otherwise.

Let z be a complex number. One can check that $\Re(z)$ is real and $\Im(z)$ is real.

Let z be a complex number. Then $\Re(z)$ is a real number. Then $\Im(z)$ is a real number.

We now state four propositions:

(5)³ For every function f from 2 into \mathbb{R} there exist a, b such that $f = [0 \longmapsto a, 1 \longmapsto b]$.

¹ The proposition (1) has been removed.

² The definition (Def. 1) has been removed.

³ The propositions (3) and (4) have been removed.

- $(7)^4$ $\Re(a+bi) = a$ and $\Im(a+bi) = b$.
- (8) For every complex number z holds $\Re(z) + \Im(z)i = z$.
- (9) For all complex numbers z_1 , z_2 such that $\Re(z_1) = \Re(z_2)$ and $\Im(z_1) = \Im(z_2)$ holds $z_1 = z_2$.

Let z_1 , z_2 be complex numbers. Let us observe that $z_1 = z_2$ if and only if:

(Def. 5)⁵
$$\Re(z_1) = \Re(z_2)$$
 and $\Im(z_1) = \Im(z_2)$.

The element $0_{\mathbb{C}}$ of \mathbb{C} is defined as follows:

(Def. 6)
$$0_{\mathbb{C}} = 0$$
.

The element $1_{\mathbb{C}}$ of \mathbb{C} is defined as follows:

(Def. 7)
$$1_{\mathbb{C}} = 1$$
.

Then i is an element of \mathbb{C} and it can be characterized by the condition:

(Def. 8)
$$i = 0 + 1i$$
.

Let us note that $0_{\mathbb{C}}$ is zero.

One can prove the following propositions:

$$(12)^6$$
 $\Re(0_{\mathbb{C}}) = 0$ and $\Im(0_{\mathbb{C}}) = 0$.

- (13) For every complex number z holds $z = 0_{\mathbb{C}}$ iff $\Re(z)^2 + \Im(z)^2 = 0$.
- (14) $0 = 0_{\mathbb{C}}$.
- (15) $\Re(1_{\mathbb{C}}) = 1$ and $\Im(1_{\mathbb{C}}) = 0$.
- $(17)^7$ $\Re(i) = 0$ and $\Im(i) = 1$.

In the sequel z, z_1 , z_2 are elements of \mathbb{C} .

Let us consider z_1 , z_2 . Then $z_1 + z_2$ is an element of \mathbb{C} and it can be characterized by the condition:

(Def. 9)
$$z_1 + z_2 = (\Re(z_1) + \Re(z_2)) + (\Im(z_1) + \Im(z_2))i$$
.

One can prove the following propositions:

(19)⁸ For all complex numbers z_1 , z_2 holds $\Re(z_1+z_2) = \Re(z_1) + \Re(z_2)$ and $\Im(z_1+z_2) = \Im(z_1) + \Im(z_2)$.

$$(22)^9$$
 $0_{\mathbb{C}} + z = z$.

Let us consider z_1, z_2 . Then $z_1 \cdot z_2$ is an element of $\mathbb C$ and it can be characterized by the condition:

(Def. 10)
$$z_1 \cdot z_2 = (\Re(z_1) \cdot \Re(z_2) - \Im(z_1) \cdot \Im(z_2)) + (\Re(z_1) \cdot \Im(z_2) + \Re(z_2) \cdot \Im(z_1))i$$
.

Next we state several propositions:

(24)¹⁰ For all complex numbers
$$z_1$$
, z_2 holds $\Re(z_1 \cdot z_2) = \Re(z_1) \cdot \Re(z_2) - \Im(z_1) \cdot \Im(z_2)$ and $\Im(z_1 \cdot z_2) = \Re(z_1) \cdot \Im(z_2) + \Re(z_2) \cdot \Im(z_1)$.

⁴ The proposition (6) has been removed.

⁵ The definition (Def. 4) has been removed.

⁶ The propositions (10) and (11) have been removed.

⁷ The proposition (16) has been removed.

⁸ The proposition (18) has been removed.

⁹ The propositions (20) and (21) have been removed.

¹⁰ The proposition (23) has been removed.

$$(28)^{11}$$
 $0_{\mathbb{C}} \cdot z = 0_{\mathbb{C}}$.

$$(29) \quad 1_{\mathbb{C}} \cdot z = z.$$

(30) If
$$\Im(z_1) = 0$$
 and $\Im(z_2) = 0$, then $\Re(z_1 \cdot z_2) = \Re(z_1) \cdot \Re(z_2)$ and $\Im(z_1 \cdot z_2) = 0$.

(31) If
$$\Re(z_1) = 0$$
 and $\Re(z_2) = 0$, then $\Re(z_1 \cdot z_2) = -\Im(z_1) \cdot \Im(z_2)$ and $\Im(z_1 \cdot z_2) = 0$.

(32)
$$\Re(z \cdot z) = \Re(z)^2 - \Im(z)^2$$
 and $\Im(z \cdot z) = 2 \cdot (\Re(z) \cdot \Im(z))$.

Let us consider z. Then -z is an element of \mathbb{C} and it can be characterized by the condition:

(Def. 11)
$$-z = -\Re(z) + (-\Im(z))i$$
.

One can prove the following three propositions:

$$(34)^{12}$$
 For every complex number z holds $\Re(-z) = -\Re(z)$ and $\Im(-z) = -\Im(z)$.

$$(37)^{13}$$
 $i \cdot i = -1_{\mathbb{C}}$.

$$(46)^{14}$$
 $-z = (-1_{\mathbb{C}}) \cdot z$.

Let us consider z_1 , z_2 . Then $z_1 - z_2$ is an element of \mathbb{C} and it can be characterized by the condition:

(Def. 12)
$$z_1 - z_2 = (\Re(z_1) - \Re(z_2)) + (\Im(z_1) - \Im(z_2))i$$
.

The following two propositions are true:

$$(48)^{15} \quad \Re(z_1 - z_2) = \Re(z_1) - \Re(z_2) \text{ and } \Im(z_1 - z_2) = \Im(z_1) - \Im(z_2).$$

$$(52)^{16}$$
 $z - 0_{\mathbb{C}} = z$.

Let us consider z. Then z^{-1} is an element of \mathbb{C} and it can be characterized by the condition:

(Def. 13)
$$z^{-1} = \frac{\Re(z)}{\Re(z)^2 + \Im(z)^2} + \frac{-\Im(z)}{\Re(z)^2 + \Im(z)^2}i.$$

We now state several propositions:

(64)¹⁷ For every complex number z holds
$$\Re(z^{-1}) = \frac{\Re(z)}{\Re(z)^2 + \Im(z)^2}$$
 and $\Im(z^{-1}) = \frac{-\Im(z)}{\Re(z)^2 + \Im(z)^2}$.

(65) If
$$z \neq 0_{\mathbb{C}}$$
, then $z \cdot z^{-1} = 1_{\mathbb{C}}$.

$$(69)^{18}$$
 If $z_2 \neq 0_{\mathbb{C}}$ and $z_1 \cdot z_2 = 1_{\mathbb{C}}$, then $z_1 = z_2^{-1}$.

$$(71)^{19} (1_{\mathbb{C}})^{-1} = 1_{\mathbb{C}}.$$

(72)
$$(i)^{-1} = -i$$
.

$$(79)^{20}$$
 If $\Re(z) \neq 0$ and $\Im(z) = 0$, then $\Re(z^{-1}) = \Re(z)^{-1}$ and $\Im(z^{-1}) = 0$.

(80) If
$$\Re(z) = 0$$
 and $\Im(z) \neq 0$, then $\Re(z^{-1}) = 0$ and $\Im(z^{-1}) = -\Im(z)^{-1}$.

Let us consider z_1 , z_2 . Then $\frac{z_1}{z_2}$ is an element of $\mathbb C$ and it can be characterized by the condition:

¹¹ The propositions (25)–(27) have been removed.

¹² The proposition (33) has been removed.

¹³ The propositions (35) and (36) have been removed.

¹⁴ The propositions (38)–(45) have been removed.

¹⁵ The proposition (47) has been removed.

¹⁶ The propositions (49)–(51) have been removed.

¹⁷ The propositions (53)–(63) have been removed.

¹⁸ The propositions (66)–(68) have been removed.

¹⁹ The proposition (70) has been removed.

²⁰ The propositions (73)–(78) have been removed.

(Def. 14)
$$\frac{z_1}{z_2} = \frac{\Re(z_1) \cdot \Re(z_2) + \Im(z_1) \cdot \Im(z_2)}{\Re(z_2)^2 + \Im(z_2)^2} + \frac{\Re(z_2) \cdot \Im(z_1) - \Re(z_1) \cdot \Im(z_2)}{\Re(z_2)^2 + \Im(z_2)^2} i.$$

Next we state several propositions:

$$(82)^{21} \quad \Re(\tfrac{z_1}{z_2}) = \tfrac{\Re(z_1) \cdot \Re(z_2) + \Im(z_1) \cdot \Im(z_2)}{\Re(z_2)^2 + \Im(z_2)^2} \text{ and } \Im(\tfrac{z_1}{z_2}) = \tfrac{\Re(z_2) \cdot \Im(z_1) - \Re(z_1) \cdot \Im(z_2)}{\Re(z_2)^2 + \Im(z_2)^2}.$$

$$(84)^{22}$$
 If $z \neq 0_{\mathbb{C}}$, then $z^{-1} = \frac{1_{\mathbb{C}}}{z}$.

$$(85) \quad \frac{z}{1_{\mathbb{C}}} = z.$$

(86) If
$$z \neq 0_{\mathbb{C}}$$
, then $\frac{z}{z} = 1_{\mathbb{C}}$.

$$(87) \quad \frac{0_{\mathbb{C}}}{7} = 0_{\mathbb{C}}.$$

$$(91)^{23}$$
 If $z_2 \neq 0_{\mathbb{C}}$ and $\frac{z_1}{z_2} = 1_{\mathbb{C}}$, then $z_1 = z_2$.

$$(109)^{24} \quad \text{If } \Im(z_1) = 0 \text{ and } \Im(z_2) = 0 \text{ and } \Re(z_2) \neq 0, \text{ then } \Re(\frac{z_1}{z_2}) = \frac{\Re(z_1)}{\Re(z_2)} \text{ and } \Im(\frac{z_1}{z_2}) = 0.$$

(110) If
$$\Re(z_1) = 0$$
 and $\Re(z_2) = 0$ and $\Im(z_2) \neq 0$, then $\Re(\frac{z_1}{z_2}) = \frac{\Im(z_1)}{\Im(z_2)}$ and $\Im(\frac{z_1}{z_2}) = 0$.

Let z be a complex number. The functor \overline{z} yielding a complex number is defined by:

(Def. 15)
$$\overline{z} = \Re(z) + (-\Im(z))i$$
.

Let us notice that the functor \overline{z} is involutive.

Let z be a complex number. Then \overline{z} is an element of \mathbb{C} .

Next we state a number of propositions:

$$(112)^{25}$$
 For every complex number z holds $\Re(\overline{z}) = \Re(z)$ and $\Im(\overline{z}) = -\Im(z)$.

$$(113) \quad \overline{0_{\mathbb{C}}} = 0_{\mathbb{C}}.$$

(114) If
$$\overline{z} = 0_{\mathbb{C}}$$
, then $z = 0_{\mathbb{C}}$.

(115)
$$\overline{1_{\mathbb{C}}} = 1_{\mathbb{C}}$$
.

(116)
$$\bar{i} = -i$$
.

$$(118)^{26}$$
 $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$.

$$(119) \quad \overline{-z} = -\overline{z}.$$

$$(120) \quad \overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}.$$

(121)
$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$
.

$$(122) \quad \overline{z^{-1}} = \overline{z}^{-1}.$$

$$(123) \quad \overline{\frac{z_1}{z_2}} = \overline{\frac{z_1}{\overline{z_2}}}.$$

(124) If
$$\Im(z) = 0$$
, then $\overline{z} = z$.

(125) If
$$\Re(z) = 0$$
, then $\overline{z} = -z$.

(126)
$$\Re(z \cdot \overline{z}) = \Re(z)^2 + \Im(z)^2$$
 and $\Im(z \cdot \overline{z}) = 0$.

(127)
$$\Re(z+\overline{z}) = 2 \cdot \Re(z)$$
 and $\Im(z+\overline{z}) = 0$.

²¹ The proposition (81) has been removed.

²² The proposition (83) has been removed.

²³ The propositions (88)–(90) have been removed.

²⁴ The propositions (92)–(108) have been removed.

²⁵ The proposition (111) has been removed.

²⁶ The proposition (117) has been removed.

(128)
$$\Re(z-\overline{z}) = 0$$
 and $\Im(z-\overline{z}) = 2 \cdot \Im(z)$.

Let z be a complex number. The functor |z| is defined as follows:

(Def. 16)
$$|z| = \sqrt{\Re(z)^2 + \Im(z)^2}$$
.

Let z be a complex number. Note that |z| is real.

Let z be a complex number. Then |z| is a real number.

We now state several propositions:

$$(130)^{27}$$
 $|0_{\mathbb{C}}| = 0.$

- (131) For every complex number z such that |z| = 0 holds $z = 0_{\mathbb{C}}$.
- (132) For every complex number z holds $0 \le |z|$.
- (133) For every complex number z holds $z \neq 0_{\mathbb{C}}$ iff 0 < |z|.
- (134) $|1_{\mathbb{C}}| = 1$.
- (135) |i| = 1.
- (136) For every complex number z such that $\Im(z) = 0$ holds $|z| = |\Re(z)|$.
- (137) For every complex number z such that $\Re(z) = 0$ holds $|z| = |\Im(z)|$.
- (138) For every complex number z holds |-z| = |z|.

In the sequel *z* is a complex number.

We now state a number of propositions:

- $(139) \quad |\overline{z}| = |z|.$
- (140) $\Re(z) \le |z|$.
- (141) $\Im(z) \le |z|$.
- (142) For all complex numbers z_1, z_2 holds $|z_1 + z_2| \le |z_1| + |z_2|$.
- $(143) \quad |z_1 z_2| \le |z_1| + |z_2|.$
- $(144) \quad |z_1| |z_2| \le |z_1 + z_2|.$
- $(145) \quad |z_1| |z_2| \le |z_1 z_2|.$
- (146) $|z_1 z_2| = |z_2 z_1|$.
- (147) $|z_1 z_2| = 0$ iff $z_1 = z_2$.
- (148) $z_1 \neq z_2 \text{ iff } 0 < |z_1 z_2|.$
- $(149) \quad |z_1 z_2| \le |z_1 z| + |z z_2|.$
- $(150) \quad ||z_1| |z_2|| \le |z_1 z_2|.$
- (151) For all complex numbers z_1 , z_2 holds $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$.
- (152) If $z \neq 0_{\mathbb{C}}$, then $|z^{-1}| = |z|^{-1}$.
- (153) If $z_2 \neq 0_{\mathbb{C}}$, then $\frac{|z_1|}{|z_2|} = |\frac{z_1}{z_2}|$.
- (154) $|z \cdot z| = \Re(z)^2 + \Im(z)^2$.
- $(155) \quad |z \cdot z| = |z \cdot \overline{z}|.$

²⁷ The proposition (129) has been removed.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [5] Library Committee. Introduction to arithmetic. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/arytm_0.html.
- [6] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [7] Jan Popiolek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [9] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [10] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/square_l.html.
- [11] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [12] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat 1.html.

Received March 1, 1990

Published January 2, 2004