The Complex Numbers ## Czesław Byliński Warsaw University Białystok **Summary.** We define the set $\mathbb C$ of complex numbers as the set of all ordered pairs $z=\langle a,b\rangle$ where a and b are real numbers and where addition and multiplication are defined. We define the real and imaginary parts of z and denote this by $a=\Re(z)$, $b=\Im(z)$. These definitions satisfy all the axioms for a field. $0_{\mathbb C}=0+0i$ and $1_{\mathbb C}=1+0i$ are identities for addition and multiplication respectively, and there are multiplicative inverses for each non zero element in $\mathbb C$. The difference and division of complex numbers are also defined. We do not interpret the set of all real numbers $\mathbb R$ as a subset of $\mathbb C$. From here on we do not abandon the ordered pair notation for complex numbers. For example: $i^2=(0+1i)^2=-1+0i\neq -1$. We conclude this article by introducing two operations on $\mathbb C$ which are not field operations. We define the absolute value of z denoted by |z| and the conjugate of z denoted by z^* . MML Identifier: COMPLEX1. WWW: http://mizar.org/JFM/Vol2/complex1.html The articles [8], [11], [1], [5], [9], [6], [7], [10], [12], [2], [3], and [4] provide the notation and terminology for this paper. In this paper a, b denote elements of \mathbb{R} . One can prove the following proposition (2)¹ For all real numbers a, b holds $a^2 + b^2 = 0$ iff a = 0 and b = 0. Let us observe that every element of \mathbb{C} is complex. Let z be a complex number. The functor $\Re(z)$ is defined by: (Def. 2)²(i) $$\Re(z) = z \text{ if } z \in \mathbb{R},$$ (ii) there exists a function f from 2 into \mathbb{R} such that z = f and $\Re(z) = f(0)$, otherwise. The functor $\Im(z)$ is defined as follows: (Def. 3)(i) $$\Im(z) = 0$$ if $z \in \mathbb{R}$, (ii) there exists a function f from 2 into \mathbb{R} such that z = f and $\mathfrak{I}(z) = f(1)$, otherwise. Let z be a complex number. One can check that $\Re(z)$ is real and $\Im(z)$ is real. Let z be a complex number. Then $\Re(z)$ is a real number. Then $\Im(z)$ is a real number. We now state four propositions: (5)³ For every function f from 2 into \mathbb{R} there exist a, b such that $f = [0 \longmapsto a, 1 \longmapsto b]$. ¹ The proposition (1) has been removed. ² The definition (Def. 1) has been removed. ³ The propositions (3) and (4) have been removed. - $(7)^4$ $\Re(a+bi) = a$ and $\Im(a+bi) = b$. - (8) For every complex number z holds $\Re(z) + \Im(z)i = z$. - (9) For all complex numbers z_1 , z_2 such that $\Re(z_1) = \Re(z_2)$ and $\Im(z_1) = \Im(z_2)$ holds $z_1 = z_2$. Let z_1 , z_2 be complex numbers. Let us observe that $z_1 = z_2$ if and only if: (Def. 5)⁵ $$\Re(z_1) = \Re(z_2)$$ and $\Im(z_1) = \Im(z_2)$. The element $0_{\mathbb{C}}$ of \mathbb{C} is defined as follows: (Def. 6) $$0_{\mathbb{C}} = 0$$. The element $1_{\mathbb{C}}$ of \mathbb{C} is defined as follows: (Def. 7) $$1_{\mathbb{C}} = 1$$. Then i is an element of \mathbb{C} and it can be characterized by the condition: (Def. 8) $$i = 0 + 1i$$. Let us note that $0_{\mathbb{C}}$ is zero. One can prove the following propositions: $$(12)^6$$ $\Re(0_{\mathbb{C}}) = 0$ and $\Im(0_{\mathbb{C}}) = 0$. - (13) For every complex number z holds $z = 0_{\mathbb{C}}$ iff $\Re(z)^2 + \Im(z)^2 = 0$. - (14) $0 = 0_{\mathbb{C}}$. - (15) $\Re(1_{\mathbb{C}}) = 1$ and $\Im(1_{\mathbb{C}}) = 0$. - $(17)^7$ $\Re(i) = 0$ and $\Im(i) = 1$. In the sequel z, z_1 , z_2 are elements of \mathbb{C} . Let us consider z_1 , z_2 . Then $z_1 + z_2$ is an element of \mathbb{C} and it can be characterized by the condition: (Def. 9) $$z_1 + z_2 = (\Re(z_1) + \Re(z_2)) + (\Im(z_1) + \Im(z_2))i$$. One can prove the following propositions: (19)⁸ For all complex numbers z_1 , z_2 holds $\Re(z_1+z_2) = \Re(z_1) + \Re(z_2)$ and $\Im(z_1+z_2) = \Im(z_1) + \Im(z_2)$. $$(22)^9$$ $0_{\mathbb{C}} + z = z$. Let us consider z_1, z_2 . Then $z_1 \cdot z_2$ is an element of $\mathbb C$ and it can be characterized by the condition: (Def. 10) $$z_1 \cdot z_2 = (\Re(z_1) \cdot \Re(z_2) - \Im(z_1) \cdot \Im(z_2)) + (\Re(z_1) \cdot \Im(z_2) + \Re(z_2) \cdot \Im(z_1))i$$. Next we state several propositions: (24)¹⁰ For all complex numbers $$z_1$$, z_2 holds $\Re(z_1 \cdot z_2) = \Re(z_1) \cdot \Re(z_2) - \Im(z_1) \cdot \Im(z_2)$ and $\Im(z_1 \cdot z_2) = \Re(z_1) \cdot \Im(z_2) + \Re(z_2) \cdot \Im(z_1)$. ⁴ The proposition (6) has been removed. ⁵ The definition (Def. 4) has been removed. ⁶ The propositions (10) and (11) have been removed. ⁷ The proposition (16) has been removed. ⁸ The proposition (18) has been removed. ⁹ The propositions (20) and (21) have been removed. ¹⁰ The proposition (23) has been removed. $$(28)^{11}$$ $0_{\mathbb{C}} \cdot z = 0_{\mathbb{C}}$. $$(29) \quad 1_{\mathbb{C}} \cdot z = z.$$ (30) If $$\Im(z_1) = 0$$ and $\Im(z_2) = 0$, then $\Re(z_1 \cdot z_2) = \Re(z_1) \cdot \Re(z_2)$ and $\Im(z_1 \cdot z_2) = 0$. (31) If $$\Re(z_1) = 0$$ and $\Re(z_2) = 0$, then $\Re(z_1 \cdot z_2) = -\Im(z_1) \cdot \Im(z_2)$ and $\Im(z_1 \cdot z_2) = 0$. (32) $$\Re(z \cdot z) = \Re(z)^2 - \Im(z)^2$$ and $\Im(z \cdot z) = 2 \cdot (\Re(z) \cdot \Im(z))$. Let us consider z. Then -z is an element of \mathbb{C} and it can be characterized by the condition: (Def. 11) $$-z = -\Re(z) + (-\Im(z))i$$. One can prove the following three propositions: $$(34)^{12}$$ For every complex number z holds $\Re(-z) = -\Re(z)$ and $\Im(-z) = -\Im(z)$. $$(37)^{13}$$ $i \cdot i = -1_{\mathbb{C}}$. $$(46)^{14}$$ $-z = (-1_{\mathbb{C}}) \cdot z$. Let us consider z_1 , z_2 . Then $z_1 - z_2$ is an element of \mathbb{C} and it can be characterized by the condition: (Def. 12) $$z_1 - z_2 = (\Re(z_1) - \Re(z_2)) + (\Im(z_1) - \Im(z_2))i$$. The following two propositions are true: $$(48)^{15} \quad \Re(z_1 - z_2) = \Re(z_1) - \Re(z_2) \text{ and } \Im(z_1 - z_2) = \Im(z_1) - \Im(z_2).$$ $$(52)^{16}$$ $z - 0_{\mathbb{C}} = z$. Let us consider z. Then z^{-1} is an element of \mathbb{C} and it can be characterized by the condition: (Def. 13) $$z^{-1} = \frac{\Re(z)}{\Re(z)^2 + \Im(z)^2} + \frac{-\Im(z)}{\Re(z)^2 + \Im(z)^2}i.$$ We now state several propositions: (64)¹⁷ For every complex number z holds $$\Re(z^{-1}) = \frac{\Re(z)}{\Re(z)^2 + \Im(z)^2}$$ and $\Im(z^{-1}) = \frac{-\Im(z)}{\Re(z)^2 + \Im(z)^2}$. (65) If $$z \neq 0_{\mathbb{C}}$$, then $z \cdot z^{-1} = 1_{\mathbb{C}}$. $$(69)^{18}$$ If $z_2 \neq 0_{\mathbb{C}}$ and $z_1 \cdot z_2 = 1_{\mathbb{C}}$, then $z_1 = z_2^{-1}$. $$(71)^{19} (1_{\mathbb{C}})^{-1} = 1_{\mathbb{C}}.$$ (72) $$(i)^{-1} = -i$$. $$(79)^{20}$$ If $\Re(z) \neq 0$ and $\Im(z) = 0$, then $\Re(z^{-1}) = \Re(z)^{-1}$ and $\Im(z^{-1}) = 0$. (80) If $$\Re(z) = 0$$ and $\Im(z) \neq 0$, then $\Re(z^{-1}) = 0$ and $\Im(z^{-1}) = -\Im(z)^{-1}$. Let us consider z_1 , z_2 . Then $\frac{z_1}{z_2}$ is an element of $\mathbb C$ and it can be characterized by the condition: ¹¹ The propositions (25)–(27) have been removed. ¹² The proposition (33) has been removed. ¹³ The propositions (35) and (36) have been removed. ¹⁴ The propositions (38)–(45) have been removed. ¹⁵ The proposition (47) has been removed. ¹⁶ The propositions (49)–(51) have been removed. ¹⁷ The propositions (53)–(63) have been removed. ¹⁸ The propositions (66)–(68) have been removed. ¹⁹ The proposition (70) has been removed. ²⁰ The propositions (73)–(78) have been removed. (Def. 14) $$\frac{z_1}{z_2} = \frac{\Re(z_1) \cdot \Re(z_2) + \Im(z_1) \cdot \Im(z_2)}{\Re(z_2)^2 + \Im(z_2)^2} + \frac{\Re(z_2) \cdot \Im(z_1) - \Re(z_1) \cdot \Im(z_2)}{\Re(z_2)^2 + \Im(z_2)^2} i.$$ Next we state several propositions: $$(82)^{21} \quad \Re(\tfrac{z_1}{z_2}) = \tfrac{\Re(z_1) \cdot \Re(z_2) + \Im(z_1) \cdot \Im(z_2)}{\Re(z_2)^2 + \Im(z_2)^2} \text{ and } \Im(\tfrac{z_1}{z_2}) = \tfrac{\Re(z_2) \cdot \Im(z_1) - \Re(z_1) \cdot \Im(z_2)}{\Re(z_2)^2 + \Im(z_2)^2}.$$ $$(84)^{22}$$ If $z \neq 0_{\mathbb{C}}$, then $z^{-1} = \frac{1_{\mathbb{C}}}{z}$. $$(85) \quad \frac{z}{1_{\mathbb{C}}} = z.$$ (86) If $$z \neq 0_{\mathbb{C}}$$, then $\frac{z}{z} = 1_{\mathbb{C}}$. $$(87) \quad \frac{0_{\mathbb{C}}}{7} = 0_{\mathbb{C}}.$$ $$(91)^{23}$$ If $z_2 \neq 0_{\mathbb{C}}$ and $\frac{z_1}{z_2} = 1_{\mathbb{C}}$, then $z_1 = z_2$. $$(109)^{24} \quad \text{If } \Im(z_1) = 0 \text{ and } \Im(z_2) = 0 \text{ and } \Re(z_2) \neq 0, \text{ then } \Re(\frac{z_1}{z_2}) = \frac{\Re(z_1)}{\Re(z_2)} \text{ and } \Im(\frac{z_1}{z_2}) = 0.$$ (110) If $$\Re(z_1) = 0$$ and $\Re(z_2) = 0$ and $\Im(z_2) \neq 0$, then $\Re(\frac{z_1}{z_2}) = \frac{\Im(z_1)}{\Im(z_2)}$ and $\Im(\frac{z_1}{z_2}) = 0$. Let z be a complex number. The functor \overline{z} yielding a complex number is defined by: (Def. 15) $$\overline{z} = \Re(z) + (-\Im(z))i$$. Let us notice that the functor \overline{z} is involutive. Let z be a complex number. Then \overline{z} is an element of \mathbb{C} . Next we state a number of propositions: $$(112)^{25}$$ For every complex number z holds $\Re(\overline{z}) = \Re(z)$ and $\Im(\overline{z}) = -\Im(z)$. $$(113) \quad \overline{0_{\mathbb{C}}} = 0_{\mathbb{C}}.$$ (114) If $$\overline{z} = 0_{\mathbb{C}}$$, then $z = 0_{\mathbb{C}}$. (115) $$\overline{1_{\mathbb{C}}} = 1_{\mathbb{C}}$$. (116) $$\bar{i} = -i$$. $$(118)^{26}$$ $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$. $$(119) \quad \overline{-z} = -\overline{z}.$$ $$(120) \quad \overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}.$$ (121) $$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$. $$(122) \quad \overline{z^{-1}} = \overline{z}^{-1}.$$ $$(123) \quad \overline{\frac{z_1}{z_2}} = \overline{\frac{z_1}{\overline{z_2}}}.$$ (124) If $$\Im(z) = 0$$, then $\overline{z} = z$. (125) If $$\Re(z) = 0$$, then $\overline{z} = -z$. (126) $$\Re(z \cdot \overline{z}) = \Re(z)^2 + \Im(z)^2$$ and $\Im(z \cdot \overline{z}) = 0$. (127) $$\Re(z+\overline{z}) = 2 \cdot \Re(z)$$ and $\Im(z+\overline{z}) = 0$. ²¹ The proposition (81) has been removed. ²² The proposition (83) has been removed. ²³ The propositions (88)–(90) have been removed. ²⁴ The propositions (92)–(108) have been removed. ²⁵ The proposition (111) has been removed. ²⁶ The proposition (117) has been removed. (128) $$\Re(z-\overline{z}) = 0$$ and $\Im(z-\overline{z}) = 2 \cdot \Im(z)$. Let z be a complex number. The functor |z| is defined as follows: (Def. 16) $$|z| = \sqrt{\Re(z)^2 + \Im(z)^2}$$. Let z be a complex number. Note that |z| is real. Let z be a complex number. Then |z| is a real number. We now state several propositions: $$(130)^{27}$$ $|0_{\mathbb{C}}| = 0.$ - (131) For every complex number z such that |z| = 0 holds $z = 0_{\mathbb{C}}$. - (132) For every complex number z holds $0 \le |z|$. - (133) For every complex number z holds $z \neq 0_{\mathbb{C}}$ iff 0 < |z|. - (134) $|1_{\mathbb{C}}| = 1$. - (135) |i| = 1. - (136) For every complex number z such that $\Im(z) = 0$ holds $|z| = |\Re(z)|$. - (137) For every complex number z such that $\Re(z) = 0$ holds $|z| = |\Im(z)|$. - (138) For every complex number z holds |-z| = |z|. In the sequel *z* is a complex number. We now state a number of propositions: - $(139) \quad |\overline{z}| = |z|.$ - (140) $\Re(z) \le |z|$. - (141) $\Im(z) \le |z|$. - (142) For all complex numbers z_1, z_2 holds $|z_1 + z_2| \le |z_1| + |z_2|$. - $(143) \quad |z_1 z_2| \le |z_1| + |z_2|.$ - $(144) \quad |z_1| |z_2| \le |z_1 + z_2|.$ - $(145) \quad |z_1| |z_2| \le |z_1 z_2|.$ - (146) $|z_1 z_2| = |z_2 z_1|$. - (147) $|z_1 z_2| = 0$ iff $z_1 = z_2$. - (148) $z_1 \neq z_2 \text{ iff } 0 < |z_1 z_2|.$ - $(149) \quad |z_1 z_2| \le |z_1 z| + |z z_2|.$ - $(150) \quad ||z_1| |z_2|| \le |z_1 z_2|.$ - (151) For all complex numbers z_1 , z_2 holds $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$. - (152) If $z \neq 0_{\mathbb{C}}$, then $|z^{-1}| = |z|^{-1}$. - (153) If $z_2 \neq 0_{\mathbb{C}}$, then $\frac{|z_1|}{|z_2|} = |\frac{z_1}{z_2}|$. - (154) $|z \cdot z| = \Re(z)^2 + \Im(z)^2$. - $(155) \quad |z \cdot z| = |z \cdot \overline{z}|.$ ²⁷ The proposition (129) has been removed. ## REFERENCES - [1] Grzegorz Bancerek. The ordinal numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html. - [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html. - [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html. - [4] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html. - [5] Library Committee. Introduction to arithmetic. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/arytm_0.html. - [6] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html. - [7] Jan Popiolek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html. - [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. - [9] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html. - [10] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/square_l.html. - [11] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. - [12] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat 1.html. Received March 1, 1990 Published January 2, 2004