Comma Category Grzegorz Bancerek Warsaw University, Białystok IM PAN, Warsaw Agata Darmochwał Warsaw University Summary. Comma category of two functors is introduced. MML Identifier: COMMACAT. WWW: http://mizar.org/JFM/Vol4/commacat.html The articles [8], [4], [10], [9], [11], [1], [2], [5], [3], [6], and [7] provide the notation and terminology for this paper. Let x be a set. The functor $x_{1,1}$ yields a set and is defined by: (Def. 1) $$x_{1,1} = (x_1)_1$$. The functor $x_{1,2}$ yields a set and is defined as follows: (Def. 2) $$x_{1,2} = (x_1)_2$$. The functor $x_{2,1}$ yielding a set is defined by: (Def. 3) $$x_{2,1} = (x_2)_1$$. The functor $x_{2,2}$ yielding a set is defined by: (Def. 4) $$x_{2,2} = (x_2)_2$$. In the sequel x, x_1 , x_2 , y, y_1 , y_2 denote sets. The following proposition is true (1) $$\langle \langle x_1, x_2 \rangle, y \rangle_{1,1} = x_1$$ and $\langle \langle x_1, x_2 \rangle, y \rangle_{1,2} = x_2$ and $\langle x, \langle y_1, y_2 \rangle \rangle_{2,1} = y_1$ and $\langle x, \langle y_1, y_2 \rangle \rangle_{2,2} = y_2$. Let D_1 , D_2 , D_3 be non empty sets and let x be an element of $[:[:D_1,D_2:],D_3:]$. Then $x_{1,1}$ is an element of D_1 . Then $x_{1,2}$ is an element of D_2 . Let D_1 , D_2 , D_3 be non empty sets and let x be an element of $[:D_1, [:D_2, D_3:]:]$. Then $x_{2,1}$ is an element of D_2 . Then $x_{2,2}$ is an element of D_3 . For simplicity, we adopt the following convention: C, D, E are categories, C, C₁ are objects of C, C₁ are objects of C, C₂ are objects of C₃, C₄ are objects of C₅, C₆ as a morphism of C₇, C₇ are morphism of C₈, C₈ and C₉ is a functor from C₉ to C₉. Let us consider C, D, E, let F be a functor from C to E, and let G be a functor from D to E. Let us assume that there exist c_1 , d_1 , f_1 such that $f_1 \in \text{hom}(F(c_1), G(d_1))$. The functor $\text{Obj}_{(F,G)}$ yields a non empty subset of [:[:] the objects of C, the objects of D:], the morphisms of E:] and is defined by: (Def. 5) $$\operatorname{Obj}_{(F,G)} = \{ \langle \langle c, d \rangle, f \rangle : f \in \operatorname{hom}(F(c), G(d)) \}.$$ In the sequel o, o_1 , o_2 are elements of $Obj_{(F,G)}$. The following proposition is true (2) If there exist c, d, f such that $f \in \text{hom}(F(c), G(d))$, then $o = \langle \langle o_{1,1}, o_{1,2} \rangle, o_{2} \rangle$ and $o_{2} \in \text{hom}(F(o_{1,1}), G(o_{1,2}))$ and $\text{dom}(o_{2}) = F(o_{1,1})$ and $\text{cod}(o_{2}) = G(o_{1,2})$. Let us consider C, D, E, F, G. Let us assume that there exist c_1 , d_1 , f_1 such that $f_1 \in \text{hom}(F(c_1), G(d_1))$. The functor $\text{Morph}_{(F,G)}$ yields a non empty subset of $[:[:\text{Obj}_{(F,G)}, \text{Obj}_{(F,G)}:]]$, [:the morphisms of C, the morphisms of D:[:] and is defined by: (Def. 6) $\operatorname{Morph}_{(F,G)} = \{ \langle \langle o_1, o_2 \rangle, \langle g, h \rangle \rangle : \operatorname{dom} g = (o_1)_{1,1} \wedge \operatorname{cod} g = (o_2)_{1,1} \wedge \operatorname{dom} h = (o_1)_{1,2} \wedge \operatorname{cod} h = (o_2)_{1,2} \wedge (o_2)_2 \cdot F(g) = G(h) \cdot (o_1)_2 \}.$ In the sequel k, k_1 , k_2 , k' denote elements of Morph_(F,G). Let us consider C, D, E, F, G, k. Then $k_{1,1}$ is an element of $Obj_{(F,G)}$. Then $k_{1,2}$ is an element of $Obj_{(F,G)}$. Next we state the proposition (3) Given c, d, f such that $f \in \text{hom}(F(c), G(d))$. Then $k = \langle \langle k_{1,1}, k_{1,2} \rangle, \langle k_{2,1}, k_{2,2} \rangle \rangle$ and $\text{dom}(k_{2,1}) = (k_{1,1})_{1,1}$ and $\text{cod}(k_{2,1}) = (k_{1,2})_{1,1}$ and $\text{dom}(k_{2,2}) = (k_{1,1})_{1,2}$ and $\text{cod}(k_{2,2}) = (k_{1,2})_{1,2}$ and $(k_{1,2})_2 \cdot F(k_{2,1}) = G(k_{2,2}) \cdot (k_{1,1})_2$. Let us consider C, D, E, F, G, k_1 , k_2 . Let us assume that there exist c_1 , d_1 , f_1 such that $f_1 \in \text{hom}(F(c_1), G(d_1))$. Let us assume that $(k_1)_{1,2} = (k_2)_{1,1}$. The functor $k_2 \cdot k_1$ yielding an element of $\text{Morph}_{(F,G)}$ is defined as follows: (Def. 7) $$k_2 \cdot k_1 = \langle \langle (k_1)_{1,1}, (k_2)_{1,2} \rangle, \langle (k_2)_{2,1} \cdot (k_1)_{2,1}, (k_2)_{2,2} \cdot (k_1)_{2,2} \rangle \rangle.$$ Let us consider C, D, E, F, G. The functor $\circ_{(F,G)}$ yielding a partial function from $[:Morph_{(F,G)}, Morph_{(F,G)}:]$ to $Morph_{(F,G)}$ is defined as follows: (Def. 8) $\operatorname{dom}(\circ_{(F,G)}) = \{\langle k_1, k_2 \rangle : (k_1)_{1,1} = (k_2)_{1,2} \}$ and for all k, k' such that $\langle k, k' \rangle \in \operatorname{dom}(\circ_{(F,G)})$ holds $\circ_{(F,G)}(\langle k, k' \rangle) = k \cdot k'$. Let us consider C, D, E, F, G. Let us assume that there exist c_1 , d_1 , f_1 such that $f_1 \in \text{hom}(F(c_1), G(d_1))$. The functor (F, G) yields a strict category and is defined by the conditions (Def. 9). - (Def. 9)(i) The objects of $(F, G) = \text{Obj}_{(F,G)}$, - (ii) the morphisms of $(F, G) = Morph_{(F,G)}$, - (iii) for every k holds (the dom-map of (F,G)) $(k) = k_{1,1}$, - (iv) for every k holds (the cod-map of (F,G)) $(k) = k_{1,2}$, - $\text{(v)} \quad \text{ for every } o \text{ holds (the id-map of } (F,G))(o) = \langle \langle o,o \rangle, \langle \operatorname{id}_{o_{1,1}}, \operatorname{id}_{o_{1,2}} \rangle \rangle, \text{ and }$ - (vi) the composition of $(F, G) = \circ_{(F,G)}$. One can prove the following two propositions: - (4) The objects of $\dot{\bigcirc}(x,y) = \{x\}$ and the morphisms of $\dot{\bigcirc}(x,y) = \{y\}$. - (5) For all objects a, b of $\dot{\bigcirc}(x, y)$ holds $hom(a, b) = \{y\}$. Let us consider C, c. The functor $\circlearrowright(c)$ yielding a strict subcategory of C is defined by: (Def. 10) $$\dot{\bigcirc}(c) = \dot{\bigcirc}(c, \mathrm{id}_c)$$. Let us consider C, c. The functor (c,C) yields a strict category and is defined by: (Def. 11) $$(c,C) = ({}^{\circlearrowright}(c), id_C).$$ The functor (C,c) yielding a strict category is defined by: (Def. 12) $$(C,c) = (\mathrm{id}_C, \overset{\diamond}{\smile}(c)).$$ ## REFERENCES - Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html. - [2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html. - [3] Czesław Byliński. Introduction to categories and functors. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/cat_1.html. - [4] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/zfmisc 1.html. - [5] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html. - [6] Czesław Byliński. Subcategories and products of categories. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cat_2.html. - [7] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/domain_1.html. - [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. - [9] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/mcart 1.html. - [10] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html. - [11] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html. Received February 20, 1992 Published January 2, 2004