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Summary. Comma category of two functors is introduced.

MML Identifier: COMMACAT.

WWW: http://mizar.org/JFM/Vol4/commacat .html

The articlesl[8],[4],[10],19], ([11],T1], 2], 5], [8], [6], and.[7] provide the notation and terminol-
ogy for this paper.
Letx be a set. The functoq 1 yields a set and is defined by:

(Def. 1) xp1= (X1)1.
The functorxy » yields a set and is defined as follows:
(Def. 2) x12= (X1)2.
The functorxy 1 yielding a set is defined by:
(Def. 3) x21= (X2)1.
The functorxy  yielding a set is defined by:
(Def. 4) X2 = (X2)2.
In the sequek, X1, X2, Y, Y1, Y2 denote sets.
The following proposition is true
D) ((x2,%2), )11 =%1and({x, X2}, ¥)1 =Xz @nd(X, (Y1, y2)) 1 =Yyrand(x, (y1, y2)),, =
Ya.

Let D1, D, D3 be non empty sets and letbe an element of D1, D2, D3]. Thenxy 1 is an
element ofD;. Thenx, 2 is an element oD».

Let D1, D2, D3 be non empty sets and bebe an element of D1, D2, D3]]. Thenxy 1 is an
element ofD,. Thenx, > is an element oDs.

For simplicity, we adopt the following conventio@; D, E are categories;, c; are objects o€,
d, d; are objects oD, x is a set,f, f; are morphisms o, g is a morphism ofC, h is a morphism
of D, F is a functor fromC to E, andG is a functor fronD to E.

Let us conside€, D, E, letF be a functor fronC to E, and letG be a functor fronD to E. Let
us assume that there exist di, f1 such thatf; € hom(F(c1),G(d1)). The functor Ohj ) yields a
non empty subset dff: the objects o€, the objects oD ], the morphisms oE ;] and is defined by:

(Def.5) Objrg = {((c.d), f) : f € hom(F(c),G(d))}.

In the sequeb, 01, 02 are elements of OQ{G).
The following proposition is true
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(2) |If there existc, d, f such thatf € hom(F(c),G(d)), theno = ({011, 012), 02) ando, €
hom(F (01,1), G(01,2)) and donfoz) = F(01,1) and codoz) = G(01,2).

Let us consideC, D, E, F, G. Let us assume that there exist, dy, f; such thatf; €
hom(F (c1),G(d1)). The functor Morply i) yields a non empty subset of Obje ). Objr ) 1.
[ the morphisms o€, the morphisms ob 1] and is defined by:

(Def. 6) Morphe gy = {{{01, 02}, (g, h)) : domg = (01)1,1 A codg= (02)1,1 A domh= (01)12 A
codh = (02)12 A (02)2-F(g) = G(h) - (01)2}.

In the sequek, kq, ko, k' denote elements of Morgkb>.

Let us consideC, D, E, F, G, k. Thenky ; is an element of Olggm. Thenk » is an element of
Objr ).

Next we state the proposition

(3) Givenc, d, f such thatf € hom(F(c),G(d)). Thenk = ((ky1, k12), (k21, ko 2)) and
dom(kz,l) = (k171)1,1 and COijzfl) = (k172)171 and dOI’Tkaﬁz) = (k171)172 and CO(ﬂkz‘yz) =
(ki2)12and(ky2)2-F(kz1) = G(kz2) - (K11)2-

Let us considecC, D, E, F, G, kq, ko. Let us assume that there exist d;, f; such that
f1 e hom(F(c1),G(dy)). Letus assume thgks )1 2 = (k2)1,1. The functorks - kq yielding an element
of Morphg ) is defined as follows:

(Def. 7) ko ki = (((k1)1,1, (k2)1,2), {(K2)2.1- (K1)2.1, (K2)2,2- (K1)2:2))-

Let us conside€, D, E, F, G. The functoro ¢ g yielding a partial function fron Morphe )
Morphe g ] to Morph g, is defined as follows:

(Def. 8) domorg)) = {(ki, kz) : (k1)1,1 = (k2)1.2} and for allk, k' such thatk, k') € dom(o g g))
holdso e ) ((k, K')) = k-K.

Let us considelC, D, E, F, G. Let us assume that there exist, di, f1 such thatf; €
hom(F(c1),G(d1)). The functor(F,G) yields a strict category and is defined by the conditions
(Def. 9).

(Def. 9)(i) The objects ofF,G) = Objir )
(i) the morphisms ofF,G) = Morphgg),
(i)  for everyk holds (the dom-map afF, G)) (k) = k.1,
(iv) for everyk holds (the cod-map dfF,G)) (k) = k1 2,
(v) for everyo holds (the id-map ofF,G))(0) = ({0, 0), (ido, ,, ido, ,)), and
(vi) the composition of F,G) = ok g).

One can prove the following two propositions:

(4) The objects of>(x,y) = {x} and the morphisms @b (x,y) = {y}.

(5) For all objectsa, b of O(x,y) holds honga, b) = {y}.

Let us conside€, c. The functor)(c) yielding a strict subcategory @ is defined by:
(Def. 10) O(c) = O(c,ide).

Let us conside€, c. The functor(c,C) yields a strict category and is defined by:
(Def. 11) (c,C) = (9 idc).

The functor(C, c) yielding a strict category is defined by:

(Def. 12) (C,c) = (ide, ©9).
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