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Summary. The text includes basic axioms and theorems concerning the collinearity
structure based on Wanda Szmielew [2], pp. 18–20. Collinearity is defined as a relation on
Cartesian product[:S,S,S:] of setS. The basic text is preceeded with a few auxiliary theorems
(e.g: ternary relation). Then come the two basic axioms of the collinearity structure: A1.1.1
and A1.1.2 and a few theorems. Another axiom: Aks dim, which states that there exist at least
3 non-collinear points, excludes the trivial structures (i.e. pairs〈〈S, [:S,S,S:]〉〉). Following it the
notion of a line is included and several additional theorems are appended.

MML Identifier: COLLSP.

WWW: http://mizar.org/JFM/Vol2/collsp.html

The articles [4], [1], [5], and [3] provide the notation and terminology for this paper.
In this paperX is a set.
Let us considerX. A set is called a 3-ary relation ofX if:

(Def. 1) It⊆ [:X, X, X :].

The following proposition is true

(2)1 X = /0 or there exists a seta such that{a}= X or there exist setsa, b such thata 6= b and
a∈ X andb∈ X.

We consider collinearity structures as extensions of 1-sorted structure as systems
〈 a carrier, a collinearity relation〉,

where the carrier is a set and the collinearity relation is a 3-ary relation of the carrier.
Let us observe that there exists a collinearity structure which is non empty and strict.
In the sequelC1 is a non empty collinearity structure anda, b, c are points ofC1.
Let us considerC1, a, b, c. We say thata, b andc are collinear if and only if:

(Def. 2) 〈〈a, b, c〉〉 ∈ the collinearity relation ofC1.

Let I1 be a non empty collinearity structure. We say thatI1 is reflexive if and only if:

(Def. 3) For all pointsa, b, c of I1 such thata= b or a= c or b= c holds〈〈a, b, c〉〉 ∈ the collinearity
relation ofI1.

Let I1 be a non empty collinearity structure. We say thatI1 is transitive if and only if the
condition (Def. 4) is satisfied.

1 The proposition (1) has been removed.
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(Def. 4) Leta, b, p, q, r be points ofI1. Suppose that

(i) a 6= b,

(ii) 〈〈a, b, p〉〉 ∈ the collinearity relation ofI1,

(iii) 〈〈a, b, q〉〉 ∈ the collinearity relation ofI1, and

(iv) 〈〈a, b, r〉〉 ∈ the collinearity relation ofI1.

Then〈〈p, q, r〉〉 ∈ the collinearity relation ofI1.

Let us note that there exists a non empty collinearity structure which is strict, reflexive, and
transitive.

A collinearity space is a reflexive transitive non empty collinearity structure.
We follow the rules:C2 is a collinearity space anda, b, c, d, p, q, r are points ofC2.
Next we state several propositions:

(7)2 If a = b or a = c or b = c, thena, b andc are collinear.

(8) Supposea 6= b anda, b andp are collinear anda, b andq are collinear anda, b andr are
collinear. Thenp, q andr are collinear.

(9) If a, b andc are collinear, thenb, a andc are collinear anda, c andb are collinear.

(10) a, b anda are collinear.

(11) If a 6= b anda, b andc are collinear anda, b andd are collinear, thena, c andd are collinear.

(12) If a, b andc are collinear, thenb, a andc are collinear.

(13) If a, b andc are collinear, thenb, c anda are collinear.

(14) Supposep 6= q anda, b andp are collinear anda, b andq are collinear andp, q andr are
collinear. Thena, b andr are collinear.

Let us considerC2, a, b. The functor Line(a,b) yields a set and is defined as follows:

(Def. 5) Line(a,b) = {p : a, b andp are collinear}.

We now state two propositions:

(16)3 a∈ Line(a,b) andb∈ Line(a,b).

(17) a, b andr are collinear iffr ∈ Line(a,b).

Let I1 be a non empty collinearity structure. We say thatI1 is proper if and only if:

(Def. 6) There exist pointsa, b, c of I1 such thata, b andc are not collinear.

One can check that there exists a collinearity space which is strict and proper.
We use the following convention:C2 denotes a proper collinearity space anda, b, p, q, r denote

points ofC2.
One can prove the following proposition

(19)4 For all p, q such thatp 6= q there existsr such thatp, q andr are not collinear.

Let us considerC2. A set is called a line ofC2 if:

(Def. 7) There exista, b such thata 6= b and it= Line(a,b).

In the sequelP, Q denote lines ofC2.
We now state a number of propositions:

2 The propositions (3)–(6) have been removed.
3 The proposition (15) has been removed.
4 The proposition (18) has been removed.
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(22)5 If a = b, then Line(a,b) = the carrier ofC2.

(23) For everyP there exista, b such thata 6= b anda∈ P andb∈ P.

(24) If a 6= b, then there existsP such thata∈ P andb∈ P.

(25) If p∈ P andq∈ P andr ∈ P, thenp, q andr are collinear.

(26) If P⊆Q, thenP = Q.

(27) If p 6= q andp∈ P andq∈ P, then Line(p,q)⊆ P.

(28) If p 6= q andp∈ P andq∈ P, then Line(p,q) = P.

(29) If p 6= q andp∈ P andq∈ P andp∈Q andq∈Q, thenP = Q.

(30) P = Q or P missesQ or there existsp such thatP∩Q = {p}.

(31) If a 6= b, then Line(a,b) 6= the carrier ofC2.
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