The Collinearity Structure

Wojciech Skaba Nicolaus Copernicus University Toruń

Summary. The text includes basic axioms and theorems concerning the collinearity structure based on Wanda Szmielew [2], pp. 18–20. Collinearity is defined as a relation on Cartesian product [:S,S,S:] of set S. The basic text is preceded with a few auxiliary theorems (e.g. ternary relation). Then come the two basic axioms of the collinearity structure: A1.1.1 and A1.1.2 and a few theorems. Another axiom: Aks dim, which states that there exist at least 3 non-collinear points, excludes the trivial structures (i.e. pairs $\{S, [:S,S,S:]\}$). Following it the notion of a line is included and several additional theorems are appended.

MML Identifier: COLLSP.

WWW: http://mizar.org/JFM/Vol2/collsp.html

The articles [4], [1], [5], and [3] provide the notation and terminology for this paper.

In this paper *X* is a set.

Let us consider X. A set is called a 3-ary relation of X if:

(Def. 1) It $\subseteq [:X,X,X:]$.

The following proposition is true

(2)¹ $X = \emptyset$ or there exists a set a such that $\{a\} = X$ or there exist sets a, b such that $a \neq b$ and $a \in X$ and $b \in X$.

We consider collinearity structures as extensions of 1-sorted structure as systems \langle a carrier, a collinearity relation \rangle ,

where the carrier is a set and the collinearity relation is a 3-ary relation of the carrier. Let us observe that there exists a collinearity structure which is non empty and strict. In the sequel C_1 is a non empty collinearity structure and a, b, c are points of C_1 .

Let us consider C_1 , a, b, c. We say that a, b and c are collinear if and only if:

(Def. 2) $\langle a, b, c \rangle \in$ the collinearity relation of C_1 .

Let I_1 be a non empty collinearity structure. We say that I_1 is reflexive if and only if:

(Def. 3) For all points a, b, c of I_1 such that a = b or a = c or b = c holds $\langle a, b, c \rangle \in$ the collinearity relation of I_1 .

Let I_1 be a non empty collinearity structure. We say that I_1 is transitive if and only if the condition (Def. 4) is satisfied.

1

¹ The proposition (1) has been removed.

- (Def. 4) Let a, b, p, q, r be points of I_1 . Suppose that
 - (i) $a \neq b$,
 - (ii) $\langle a, b, p \rangle \in$ the collinearity relation of I_1 ,
 - (iii) $\langle a, b, q \rangle \in$ the collinearity relation of I_1 , and
 - (iv) $\langle a, b, r \rangle \in$ the collinearity relation of I_1 .

Then $\langle p, q, r \rangle \in$ the collinearity relation of I_1 .

Let us note that there exists a non empty collinearity structure which is strict, reflexive, and transitive.

A collinearity space is a reflexive transitive non empty collinearity structure.

We follow the rules: C_2 is a collinearity space and a, b, c, d, p, q, r are points of C_2 .

Next we state several propositions:

- (7)² If a = b or a = c or b = c, then a, b and c are collinear.
- (8) Suppose $a \neq b$ and a, b and p are collinear and a, b and q are collinear and a, b and r are collinear. Then p, q and r are collinear.
- (9) If a, b and c are collinear, then b, a and c are collinear and a, c and b are collinear.
- (10) a, b and a are collinear.
- (11) If $a \neq b$ and a, b and c are collinear and a, b and d are collinear, then a, c and d are collinear.
- (12) If a, b and c are collinear, then b, a and c are collinear.
- (13) If a, b and c are collinear, then b, c and a are collinear.
- (14) Suppose $p \neq q$ and a, b and p are collinear and a, b and q are collinear and p, q and r are collinear. Then a, b and r are collinear.

Let us consider C_2 , a, b. The functor Line(a,b) yields a set and is defined as follows:

(Def. 5) Line $(a,b) = \{p : a, b \text{ and } p \text{ are collinear}\}.$

We now state two propositions:

- $(16)^3$ $a \in \text{Line}(a,b)$ and $b \in \text{Line}(a,b)$.
- (17) a, b and r are collinear iff $r \in Line(a,b)$.

Let I_1 be a non empty collinearity structure. We say that I_1 is proper if and only if:

(Def. 6) There exist points a, b, c of I_1 such that a, b and c are not collinear.

One can check that there exists a collinearity space which is strict and proper.

We use the following convention: C_2 denotes a proper collinearity space and a, b, p, q, r denote points of C_2 .

One can prove the following proposition

 $(19)^4$ For all p, q such that $p \neq q$ there exists r such that p, q and r are not collinear.

Let us consider C_2 . A set is called a line of C_2 if:

(Def. 7) There exist a, b such that $a \neq b$ and it = Line(a, b).

In the sequel P, Q denote lines of C_2 .

We now state a number of propositions:

² The propositions (3)–(6) have been removed.

³ The proposition (15) has been removed.

⁴ The proposition (18) has been removed.

- (22)⁵ If a = b, then Line(a, b) = the carrier of C_2 .
- (23) For every *P* there exist *a*, *b* such that $a \neq b$ and $a \in P$ and $b \in P$.
- (24) If $a \neq b$, then there exists P such that $a \in P$ and $b \in P$.
- (25) If $p \in P$ and $q \in P$ and $r \in P$, then p, q and r are collinear.
- (26) If $P \subseteq Q$, then P = Q.
- (27) If $p \neq q$ and $p \in P$ and $q \in P$, then $Line(p,q) \subseteq P$.
- (28) If $p \neq q$ and $p \in P$ and $q \in P$, then Line(p,q) = P.
- (29) If $p \neq q$ and $p \in P$ and $q \in P$ and $p \in Q$ and $q \in Q$, then P = Q.
- (30) P = Q or P misses Q or there exists p such that $P \cap Q = \{p\}$.
- (31) If $a \neq b$, then Line $(a,b) \neq$ the carrier of C_2 .

REFERENCES

- Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [2] Wanda Szmielew. From Affine to Euclidean Geometry, volume 27. PWN D.Reidel Publ. Co., Warszawa Dordrecht, 1983.
- [3] Andrzej Trybulec. Domains and their Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/domain_1.html.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [5] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received May 9, 1990

Published January 2, 2004

⁵ The propositions (20) and (21) have been removed.