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Summary. The text includes basic axioms and theorems concerning the collinearity
structure based on Wanda Szmieléw [2], pp. 18-20. Collinearity is defined as a relation on
Cartesian produdtS S S] of setS. The basic text is preceeded with a few auxiliary theorems
(e.g: ternary relation). Then come the two basic axioms of the collinearity structure: A1.1.1
and A1.1.2 and a few theorems. Another axiom: Aks dim, which states that there exist at least
3 non-collinear points, excludes the trivial structures (i.e. pg8rsS, S S])). Following it the
notion of a line is included and several additional theorems are appended.

MML ldentifier: COLLSP.

WWW: http://mizar.orqg/JFM/Vol2/collsp.html

The articles([4],[[1],[[5], and [3] provide the notation and terminology for this paper.
In this papetX is a set.
Let us consideK. A set is called a 3-ary relation of if:

(Def. 1) ItC[X, X, X].
The following proposition is true

(ZE] X = 0 or there exists a setsuch that{a} = X or there exist sets, b such that # b and
ac Xandbe X.

We consider collinearity structures as extensions of 1-sorted structure as systems
( a carrier, a collinearity relatiop

where the carrier is a set and the collinearity relation is a 3-ary relation of the carrier.
Let us observe that there exists a collinearity structure which is non empty and strict.
In the sequeC; is a non empty collinearity structure aadb, c are points ofC;.
Let us conside€s, a, b, c. We say thag, b andc are collinear if and only if:

(Def. 2) (a, b, c) € the collinearity relation o€;.
LetI; be a non empty collinearity structure. We say thas reflexive if and only if:

(Def. 3) For all pointsa, b, c of I1 such thae=b ora=corb=cholds(a, b, c) € the collinearity
relation ofl;.

Let I; be a non empty collinearity structure. We say thats transitive if and only if the
condition (Def. 4) is satisfied.

1 The proposition (1) has been removed.

1 © Association of Mizar Users


http://mizar.org/JFM/Vol2/collsp.html

THE COLLINEARITY STRUCTURE 2

(Def. 4) Leta, b, p, q, r be points ofl;. Suppose that
() a#b,
(i) (& b, p) € the collinearity relation ofy,
(i)  (a b, g) € the collinearity relation of;, and
(iv) (a b, r) € the collinearity relation of;.
Then(p, q, r) € the collinearity relation of;.

Let us note that there exists a non empty collinearity structure which is strict, reflexive, and
transitive.

A collinearity space is a reflexive transitive non empty collinearity structure.
We follow the rulesC; is a collinearity space aral b, ¢, d, p, g, r are points ofC;.
Next we state several propositions:

(7] 1fa=bora=corb=c,thena, bandcare collinear.

(8) Supposea # b anda, b andp are collinear an@, b andq are collinear and, b andr are
collinear. Therp, g andr are collinear.

(9) If a, bandc are collinear, theb, a andc are collinear and, c andb are collinear.
(10) a, bandaare collinear.
(11) Ifa#banda, bandcare collinear and, b andd are collinear, thema, c andd are collinear.
(12) If a, bandcare collinear, theiy, a andc are collinear.
(13) If a, bandcare collinear, theiy, c anda are collinear.

(14) Suppose # qanda, b andp are collinear ané, b andq are collinear angb, g andr are
collinear. Ther, b andr are collinear.

Let us conside€,, a, b. The functor Linéa,b) yields a set and is defined as follows:
(Def.5) Linga,b)={p:a, bandpare collinea}.
We now state two propositions:
(16 a € Line(a,b) andb € Line(a,b).
(17) a, bandr are collinear iffr € Line(a,b).
Letl; be a non empty collinearity structure. We say thas proper if and only if:
(Def. 6) There exist pointg, b, c of I1 such thak, b andc are not collinear.

One can check that there exists a collinearity space which is strict and proper.

We use the following conventioi€, denotes a proper collinearity space anb, p, g, r denote
points ofC,.

One can prove the following proposition

(19@] For all p, q such thatp # g there exists such thatp, g andr are not collinear.
Let us conside€,. A set is called a line of; if:
(Def. 7) There exish, b such thatn # b and it= Line(a,b).

In the sequeP, Q denote lines of;.
We now state a number of propositions:

2 The propositions (3)—(6) have been removed.
3 The proposition (15) has been removed.
4 The proposition (18) has been removed.
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(ZZE If a= Db, then Linga,b) = the carrier oC,.

(23) For everyP there exish, b such thath#£ bandac Pandb € P.
(24) If a# Db, then there exist® such thab e Pandb e P.

(25) If pe Pandge Pandr € P, thenp, gandr are collinear.
(26) IfPCQ,thenP=Q.

(27) If p£qandpe Pandqe P, then Lindp,q) CP.

(28) If p£qandpe Pandqe P, then Lindp,q) =P.

(29) Ifp#£gandpePandge Pandpe Qandge Q,thenP=Q.
(30) P=QorP missed or there existp such thaPNQ = {p}.
(31) Ifa#b, then Linga,b) # the carrier ofC;.
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