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The articles([14],[[18],[[3],[17],[[15],[18], 16],[5],.[10],.[16], [4], [11], [1],[[2] [[12] [I3],[[8], and
[7] provide the notation and terminology for this paper.

1. DIRECTEDSETS

One can verify that there exists a coherent space which is finiteX beta set. Let us observe that
X is binary complete if and only if:

(Def. 1) For every sef such that for all seta, b such thata € A andb € A holdsauUb € X holds
UAeX.

Let X be a set. The functor FlatCoX) yields a set and is defined as follows:
(Def. 2) FlatCotiX) = CohSgidx).
The functor SubFifX) yielding a subset oX is defined by:
(Def. 3) For every set holdsx € SubFir(X) iff x € X andx s finite.

Next we state three propositions:

(1) For all setX, x holdsx € FlatCoH(X) iff x= 0 or there exists a sgtsuch thak = {y} and
yeX.

(2) Forevery seX holds|JFlatCoh(X) = X.
(3) For every finite subset-closed séholds SubFi(X) = X.

One can verify thaf0} is subset-closed and binary complete. Xebe a set. Observe that
2% is subset-closed and binary complete and Flat®glis non empty, subset-closed, and binary
complete.

LetC be a non empty subset-closed set. One can check that $aGhFmon empty and subset-
closed.

One can prove the following proposition

@) Wek({0})=0.
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The schemélinimalElement wrt Incbeals with sets2, B and a unary predicat®, and states

that:
There exists a setsuch thaa € B andP[a] and for every seb such thab € B and

P[b] andb C aholdsb=a
provided the following requirements are met:
e 4¢c B,
e P[4],and
e A4is finite.
LetC be a coherent space. One can check that there exists an eler@anhath is finite.

Let X be a set. We say thatis U-directed if and only if:

(Def. 4) For every finite subs&t of X there exists a setsuch thatJY C aanda e X.

We say thak is N-directed if and only if:

(Def. 5) For every finite subsat of X there exists a set such that for every satsuch thaty € Y
holdsa C yanda € X.

Let us mention that every set which lisdirected is also non empty and every set which is

N-directed is also non empty.
One can prove the following propositions:

(5) LetX be a set. Suppose is U-directed. Leta, b be sets. Ifa € X andb € X, then there
exists a set such thaUb C candc € X.

(6) LetX be a non empty set. Suppose that for all sets such thata € X andb € X there
exists a set such thanUb C candc € X. ThenX is U-directed.

(7) LetX be a set. Supposg is N-directed. Leta, b be sets. lfac X andb € X, then there
exists a set such that C anbandc € X.

(8) LetX be a non empty set. Suppose that for all sgts such thata € X andb € X there
exists a set such that C anb andc € X. ThenX is N-directed.

(9) For every sex holds{x} is U-directed andh-directed.
(10) For all setx, y holds{x,y,xUy} is U-directed.
(11) For all setx, y holds{x,y,xNy} is N-directed.

Let us note that there exists a set whiclislirectedN-directed, and finite.
Let C be a non empty set. Note that there exists a subs@tvdfich is U-directed,N-directed,

and finite.
We now state the proposition

(12) For every seX holds FinX is U-directed and-directed.

Let X be a set. Observe that Binis U-directed andh-directed.
Let C be a subset-closed non empty set. Observe that there exists a suBsghigh is pre-

boolean and non empty.
LetC be a subset-closed non empty set and le¢ an element €. Then Firais a preboolean

non empty subset @.
We now state the proposition

(13) LetX be a non empty set andbe a set. Supposg is U-directed andr C X andY is
finite. Then there exists a sétsuch thaZ € X andY C Z.

Let X be a set. We introduc¥ is multiplicative as a synonym of is N-closed.
Let X be a set. We say thatis closed under directed unions if and only if:
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(Def. 7E] For every subseh of X such thatA is U-directed hold$ JA € X.

Let us observe that every set which is subset-closed is also multiplicative.
One can prove the following proposition

(15E] For every coherent spaeand for everyJ-directed subseh of C holds|JA € C.

Let us mention that every coherent space is closed under directed unions.

One can check that there exists a coherent space which is multiplicative and closed under di-
rected unions.

Let C be a closed under directed unions non empty set anél it aU-directed subset dE.
ThenJA s an element of.

Let X, Y be sets. We say thatincludes lattice oY if and only if:

(Def. 8) For all sets, b such that € Y andb € Y holdsanb € X andaub € X.

Next we state the proposition

(16) For every non empty s&t such thatxX includes lattice ofX holds X is U-directed and
N-directed.

Let X, x, y be sets. We say that includes lattice ok, y if and only if:
(Def. 9) X includes lattice of x,y}.

Next we state the proposition

(17) For all set, x, y holdsX includes lattice ok, y iff x € X andy € X andxny € X and
XUy e X.

2. CONTINUOUS, STABLE, AND LINEAR FUNCTIONS

Let f be a function. We say thdtis preserving arbitrary unions if and only if:
(Def. 10) For every subsétof domf such that JA € domf holds f(JA) = U(f°A).
We say thaff is preserving directed unions if and only if:

(Def. 11) For every subsé of domf such thatA is U-directed and JA € domf holds f(JA) =
U(F°A).

Let f be a function. We say thdtis C-monotone if and only if:
(Def. 12) For all sets, b such thata € domf andb € domf anda C b holds f(a) C f(b).
We say thaff is preserving binary intersections if and only if:
(Def. 13) For all sets, b such that donfi includes lattice of, b holds f (anb) = f(a)n f(b).

Let us observe that every function which is preserving directed unions iscataonotone and
every function which is preserving arbitrary unions is also preserving directed unions.
We now state two propositions:

(18) Letf be afunction. Supposkis preserving arbitrary unions. Lety be sets. I € domf
andy € domf andxUy € domf, thenf(xUy) = f(x) U f(y).

(19) For every functiorf such thatf is preserving arbitrary unions hold$0) = 0.

1 The definition (Def. 6) has been removed.
2 The proposition (14) has been removed.
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Let C, C, be coherent spaces. Note that there exists a function €primto C, which is
preserving arbitrary unions and preserving binary intersections.

Let C be a coherent space. Note that there exists a many sorted set indeged/Htigh is
preserving arbitrary unions and preserving binary intersections.

Let f be a function. We say thdtis continuous if and only if:

(Def. 14) domf is closed under directed unions ahds preserving directed unions.
Let f be a function. We say thdtis stable if and only if:
(Def. 15) domf is multiplicative andf is continuous and preserving binary intersections.
Let f be a function. We say thdtis linear if and only if:
(Def. 16) f is stable and preserving arbitrary unions.
One can verify the following observations:
x every function which is continuous is also preserving directed unions,
x every function which is stable is also preserving binary intersections and continuous, and
x every function which is linear is also preserving arbitrary unions and stable.

Let X be a closed under directed unions set. Note that every many sorted set indekedhiay
is preserving directed unions is also continuous.

Let X be a multiplicative set. Observe that every many sorted set index®dndich is contin-
uous and preserving binary intersections is also stable.

One can check that every function which is stable and preserving arbitrary unions is also linear.

Note that there exists a function which is linear. Cdie a coherent space. Note that there exists
a many sorted set indexed Bywhich is linear. LeB be a coherent space. One can check that there
exists a function fronB into C which is linear.

Let f be a continuous function. Observe that dbia closed under directed unions.

Let f be a stable function. Note that ddnis multiplicative.

Next we state several propositions:

(20) For every seX holds|JFinX = X.

(21) For every continuous functiohsuch that donf is subset-closed and for every setuch
thata € domf holdsf(a) = J(f°Fina).

(22) Letf be a function. Suppose doiris subset-closed. Thehis continuous if and only if
the following conditions are satisfied:
(i) domf is closed under directed unions,
(i)  fis C-monotone, and
(iiiy  for all setsa, y such thata € domf andy € f(a) there exists a sét such thab is finite
andb C aandy € f(b).
(23) Letf be a function. Suppose doims subset-closed and closed under directed unions.
Thenf is stable if and only if the following conditions are satisfied:
(i) fisC-monotone, and
(i) for all setsa, y such thata € domf andy € f(a) there exists a sdt such thab is finite
andb C aandy € f(b) and for every set such that C aandy € f(c) holdsb C c.
(24) Letf be a function. Suppose doimis subset-closed and closed under directed unions.
Thenf is linear if and only if the following conditions are satisfied:
(i) fis C-monotone, and

(i) for all setsa, y such thata € domf andy € f(a) there exists a setsuch that € a and
y € f({x}) and for every sel such thab C aandy € f(b) holdsx € b.
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3. GRAPH OFCONTINUOUS FUNCTION

Let f be a function. The functor graph) yielding a set is defined as follows:

(Def. 17) For every set holdsx € grapH f) iff there exists a finite sgt and there exists a sesuch
thatx = (y, z) andy € domf andz € f(y).

LetCy, C, be non empty sets and Iétbe a function fronC; into C,. Then graphf) is a subset
of [:Cl, Uuc ]

Let f be a function. One can check that graphis relation-like.

We now state several propositions:

(25) For every functiorf and for all setx, y holds(x, y} € graph f) iff xis finite andx € domf
andy € f(x).

(26) Letf be aC-monotone function and, b be sets. Suppodec domf anda C b andb is
finite. Lety be a set. If{a, y) € grapH f), then(b, y) € grapHf).

(27) LetCy, C; be coherent spacesbe a function fronC; into Cy, a be an element of;, and
y1, Y2 be sets. Ifa, y1) € grapi(f) and(a, y») € grapH f), then{ys,y2} € Co.

(28) LetCy, C, be coherent space$, be aC-monotone function fron€C; into C,, anda, b
be elements o€;. SupposeaUb € C;. Letys, y» be sets. If{(a, y1) € graphf) and (b,
y2) € graph(f), then{y,y»} € C,.

(29) For all coherent spac€s, C, and for all continuous functions, g from C; into C, such
that graplif ) = grapHg) holdsf = g.
(30) LetCy, Cy be coherent spaces alde a subset dfCy, | JC, 1. Suppose that
(i) for every setx such thak € X holdsx; is finite,

(i)  for all finite elementsa, b of C; such thata C b and for every sey such that(a, y) € X
holds(b, y) € X, and

(iiiy  for every finite element of C; and for all setys, y» such thaf{a, y1) € X and(a, y») € X
holds{yi,y»2} € C,.

Then there exists a continuous functibfrom C; into C; such thatX = graph(f).

(31) LetCy, C, be coherent space$,be a continuous function froi@; into C,, anda be an
element ofC;. Thenf(a) = (graph f))°Fina.

4. TRACE OFSTABLE FUNCTION

Let f be a function. The functor Tra¢#) yielding a set is defined by the condition (Def. 18).

(Def. 18) Letxbe a set. Ther € Tracq f) if and only if there exist sets, y such thak = (a, y) and
ae domf andy € f(a) and for every seb such thab € domf andb C aandy € f(b) holds
a=h.

One can prove the following proposition
(32) Letf be afunction and, y be sets. Therfa, y) € Tracd f) if and only if the following
conditions are satisfied:
(i) aedomf,
(i) yef(a),and
(iii)  for every setb such thab € domf andb C aandy € f(b) holdsa=b.
LetCy, C, be non empty sets and Iétbe a function fronC; into C,. Then Tracéf) is a subset
of [ZCl, Uc ]

Let f be a function. One can check that Tratgis relation-like.
Next we state a number of propositions:
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(33) For every continuous functiofi such that donfi is subset-closed holds Trade C
graph(f).

(34) Letf be a continuous function. Suppose dbiis subset-closed. Let, y be sets. If(a,
y) € Trace ), thenais finite.

(85) LetCqy, C, be coherent space be aC-monotone function fron€; into C,, anday, a; be
sets. Supposa; Uay € C;. Lety, y» be sets. Ifay, y1) € Trace f) and(ay, y2) € Trace f),
then{ys,y2} € Cs.

(36) LetCy, C, be coherent spacetbe a preserving binary intersections function frégrinto
Cy, anday, ap be sets. lfa; Uay € Cy, then for every sey such that(ay, y) € Trace f) and
(az,y) € Tracq f) holdsa; = ap.

(37) LetCy, C; be coherent spaces affidg be stable functions fror@; into C,. If Trace(f) C
Traceg), then for every elemergt of C; holds f(a) C g(a).

(38) For all coherent spac€s, C, and for all stable function$, g from C; into C, such that
Tracq f) = Tracgg) holdsf = g.
(39) LetCy, Cy be coherent spaces alde a subset dfCy, [ JC, . Suppose that
(i) for every setx such thak € X holdsx; is finite,

(i) for all elementsa, b of C; such thaBUb € C; and for all setys, y2 such that{a, y;) € X
and(b, y») € X holds{yi,y2} € C, and

(iiiy  for all elementsa, b of C; such thatUb € C; and for every sey such that{a, y) € X and
(b,y) € X holdsa=h.

Then there exists a stable functiérirom C; into C, such thaiX = Tracg f).

(40) LetCq, C; be coherent spacesbe a stable function fror@; into C,, anda be an element
of C;. Thenf(a) = (Tracd f))° Fina.

(41) LetCq, C, be coherent spaces,be a stable function fror@; into C,, a be an element of
Ci, andy be a set. Them € f(a) if and only if there exists an elemehtof C; such that(b,
y) € Tracg f) andb C a.

(42) For all coherent spac€y, C; there exists a stable functiohfrom C; into C, such that
Tracgf) =0.

(43) LetCy, Cy be coherent spacespe a finite element df;, andy be a set. Ify € UC;, then
there exists a stable functidnfrom C; into C, such that Tradef) = {(a, y}}.

(44) LetCy, C, be coherent spacespe an element dfy, y be a set, and be a stable function
from C; into C,. Suppose Tradd) = {{(a, y)}. Letb be an element dE;. Then
(i) if aChb,thenf(b)={y}, and
(i) if aZ b, thenf(b)=0.

(45) LetCy, C; be coherent spacegpbe a stable function fror@; into C,, andX be a subset of
Tracq f). Then there exists a stable functigifrom C; into C, such that Tradg) = X.

(46) LetCy, C; be coherent spaces aAde a set. Suppose that for all sgty such thax € A
andy € A there exists a stable functiohfrom C; into C, such thatxUy = Tracg f). Then
there exists a stable functidnfrom C; into Cy such that JA = Trac€ f).

Let C;, C; be coherent spaces. The functor Stab@rlC,) yields a set and is defined as
follows:

(Def. 19) For every set holdsx € StabColfC;,Cy) iff there exists a stable functioh from C; into
C, such tha = Trace f).
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LetCy, Cy be coherent spaces. One can check that Statiizdy) is non empty, subset-closed,
and binary complete.
One can prove the following propositions:

(47) For all coherent spacé&y, C; and for every stable functioi from C; into C, holds
Tracg f) C [ SubFinCy), UCz .
(48) For all coherent spac€s, C, holds|J StabColiC;,Cy) = [: SubFinCy), UCz .

(49) LetCq, C, be coherent spaceas, b be finite elements o€;, andyi, y2 be sets. Then
({a, y1), (b, y2)) € Web(StabColiCy,C;)) if and only if one of the following conditions is
satisfied:

(i) aub¢Candy; € JCy andy; € |JCy, or
(i) (v1,Y2) € Web(Cyp) and ify; = y,, thena=h.

5. TRACE OFLINEAR FUNCTION

Next we state the proposition

(50) LetCq, C, be coherent spaces afde a stable function fror@; into C,. Thenf is linear
if and only if for all setsa, y such thaa, y) € Trace f) there exists a setsuch that = {x}.

Let f be a function. The functor LinTra¢é) yielding a set is defined as follows:

(Def. 20) For every set holdsx € LinTrace f) iff there exist sety, z such tha = (y, z) and{{y},
z) € Trace f).

Next we state three propositions:

(51) Forevery functiorf and for all sets;, y holds{x, y) € LinTrace(f) iff ({x},y) € Tracgf).

(52) For every functionf such thatf (0) = 0 and for all sets, y such that{x} € domf and
y € f({x}) holds(x, y) € LinTracgf).

(53) For every functiorf and for all setx, y such that(x, y) € LinTracgf) holds{x} € domf
andy € f({x}).

Let Cy, C; be non empty sets and Iétbe a function fronC; into C,. Then LinTracéf) is a
subset of: UC1, UC2 1.

Let f be a function. Note that LinTra¢é) is relation-like.

LetCy, C; be coherent spaces. The functor Lin@ohC,) yielding a set is defined as follows:

(Def. 21) For every setholdsx € LinCoh(Cy,Cy) iff there exists a linear functiofi from C; into C,
such tha = LinTracgf).

One can prove the following propositions:

(54) LetCy, C, be coherent spaces, be aC-monotone function fronC; into Cp, andxg,
X2 be sets. Supposfx, X2} € Ci. Let yi, y2 be sets. If{xq, y1) € LinTracef) and (xy,
y2) € LinTrace f), then{ys,y2} € Co.

(55) LetCy, C, be coherent spacetbe a preserving binary intersections function frégrinto
Cy, andxy, X2 be sets. If{x1,x} € Cy, then for every sey such that{xs, y) € LinTrace(f)
and(xg, y) € LinTrace f) holdsx; = xa.

(56) For all coherent spac€s, C, and for all linear functiond, g from C; into C, such that
LinTrace f) = LinTrace(g) holdsf = g.
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(57) LetCy, C; be coherent spaces aKdoe a subset dfl JC1, JCy ]. Suppose that

(i) for all setsa, b such that{a,b} € C; and for all sets/, y» such that(a, y1) € X and (b,
y2) € X holds{ys,y2} € Cz, and

(i) forall setsa, b such that{a, b} € C; and for every sef such that{a, y) € X and{b, y) € X
holdsa=b.

Then there exists a linear functidnfrom C; into C; such thatX = LinTracg(f).

(58) LetCy, Cy be coherent spacetbe a linear function fron€; into C,, anda be an element
of C;. Thenf(a) = (LinTracg(f))°a.

(59) For all coherent spac€, C, there exists a linear functioh from C; into C, such that
LinTrace(f) = 0.

(60) LetCq, C, be coherent spacesbe a set, ang be a set. Supposec JC; andy € JCs.
Then there exists a linear functidrfrom C; into C, such that LinTracéf ) = {(x, y) }.

(61) LetCy,Cy be coherent spacesbe a set, anglbe a set. Supposec [ JC; andy € JC,. Let
f be a linear function fron€; into C,. Suppose LinTradd ) = {(x, y) }. Letabe an element
of C;. Then

(i) if xea, thenf(a)={y}, and
(i) if x¢a thenf(a)=0.

(62) LetCy, Cy be coherent spacebbe a linear function fron€; into C,, andX be a subset of
LinTrace f). Then there exists a linear functigrirom C; into C, such that LinTrac@) = X.

(63) LetCy, Cy be coherent spaces aAde a set. Suppose that for all sgty such thak € A
andy € Athere exists a linear functiohfrom C; into C, such thakUy = LinTrace(f). Then
there exists a linear functiohfrom C; into C; such that JA = LinTracg(f).

LetCy, C; be coherent spaces. Note that Lin@oh Cy) is non empty, subset-closed, and binary
complete.
The following propositions are true:

(64) For all coherent spac€s, C, holds|JLinCoh(Cy,Cy) = : | UC1, UC2 1.

(65) LetCi, Cy be coherent spacess, x; be sets, ands, y2 be sets. Ther{{xi, y1), (X2,
y2)) € Web(LinCoh(C4,C,)) if and only if the following conditions are satisfied:
() x1eUCy,
(i) xeUCy,and

(i)  (x1,x%) ¢ Web(C;1) andy; € |JC, andy, € UG, or {y1, ¥2) € Web(Cy) and ify; = y»,
thenx; = xo.

6. NEGATION OF COHERENCESPACES

LetC be a coherent space. The functet yields a set and is defined by:

(Def. 22) —C = {a;aranges over subsets0fC : Ap:clement oic Vx:set 8ND C {x}}.

The following proposition is true
(66) LetCbe acoherent space axlte a set. There —C if and only if the following conditions
are satisfied:
(i) xCUyc,and
(i) for every element of C there exists a setsuch thakna C {z}.

LetC be a coherent space. Observe th@tis non empty, subset-closed, and binary complete.
We now state several propositions:
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(67) For every coherent spa€eholds| -C = JC.

(68) For every coherent spa€eand for all sets, y such thak # y and{x,y} € C holds{x,y} ¢
-C.

(69) For every coherent spa€eand for all set, y such thafx,y} C [JC and{x,y} ¢ C holds
{x,y} € -C.

(70) For every coherent spa@and for all sets, y holds (x, y) € Welh(—C) iff x € [JC but
ye UCbutx=yor (x,y) ¢ Web(C).

(71) For every coherent spa€eholds——C =C.
(72) —~{0} ={0}.
(73) For every seX holds—FlatCoh(X) = 2X and—(2X) = FlatCoH(X).

7. ProDUCT AND COPRODUCT ONCOHERENCESPACES

Letx, y be sets. The functoryy yields a set and is defined as follows:
(Def. 23) xwy=Jdisjoint(x,y).
Next we state a number of propositions:
(74) Forall setx, y holdsxwy =[x, {1} JU[Ly, {2} ].
(75) Forevery sexholdsxw 0= [x, {1} ] and0wx =[x, {2} ].

(76) For all setx, y, zsuch thatz € xWy holdsz= (z;, ) butz, = 1 andz; € xorz =2 and
FARSH'A

(77) Forall setx, y, zholds(z, 1) € xwyiff ze x.
(78) For all setx, y, zholds(z, 2) € xwyiff zey.
(79) For all setxq, y1, X2, ¥2 holdsx; Wy C xo Wy, iff X3 C X andy; C yo.

(80) For all setx, y, zsuch that C xyy there exist setg;, y1 such thatz = x; Wy; andx; C x
andy; Cy.

(81) For all setxq, y1, X2, y2 holdsx; Wy = xoWys iff X3 =X andy; = y».
(82) Forall setsq, y1, X2, y2 holds(xg Wy1) U (X Wy2) =X UXo Wy Uya.
(83) Forall setsq, y1, X2, y2 holds(xg Wy1) N (X2 Wy2) = X1 NX2 Wy NYa.
LetCq, C, be coherent spaces. The fundrmC; yielding a set is defined as follows:
(Def. 24) C NCy = {aWb:aranges over elements 6f, b ranges over elements G }.
The functorC; LIC; yields a set and is defined by:
(Def. 25) CUC, = {aw0: aranges over elements 6f} U{0wb: b ranges over elements G5 }.

Next we state several propositions:

(84) LetCy, C, be coherent spaces arthe a set. Ther € C;MC; if and only if there exists an
elementa of C; and there exists an elemdnbf C, such thak = awb.

(85) For all coherent spac€s, C, and for all setx, y holdsxwy € C,M1C; iff x € Cy andy € Co.
(86) For all coherent spac€s, C, holds|J(C1M1Cp) = JCiWUJCo.
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(87) For all coherent spac€s, C; and for all setx, y holdsxwy € C; LIC; iff x € C; andy =0
orx=0andy € C,.

(88) LetCy, Cy be coherent spaces arde a set. Supposec C; LIC,. Then there exists an
elementa of C; and there exists an elemdnbf C, such thatk =awbbuta=0orb= 0.

(89) For all coherent spacé€s, C, holds|J(C1LUCp) = JC1wJCo.

Let C1, Co be coherent spaces. Observe Baf1C, is non empty, subset-closed, and binary
complete andC; LIC; is non empty, subset-closed, and binary complete.

In the sequeC,, C; are coherent spaces.

Next we state several propositions:

(90) For all setx, y holds({x, 1), {y, 1)} € Web(Cy N Cy) iff (X, y) € Web(Cy).
(91) Forall setx, y holds({x, 2), {y, 2)) € Web(C1 NCy) iff (X, y) € Web(C,).

(92) For all setx, y such thaix € |JC; andy € |JCy holds{(x, 1}, (y, 2)) € Web(C; M Cy) and
((y7 2)7 <X7 1)) € Web(Cl HCZ)'

(93) Forall setx, y holds({x, 1), {y, 1)} € Web(C, LICy) iff (X, y) € Web(Cy).
(94) For all setx, y holds({x, 2), {y, 2)) € Web(C, LICyp) iff (X, y) € Web(C,).
(95) For all setx, y holds((x, 1}, {y, 2)) ¢ Web(Cy LICy) and{{y, 2}, (x, 1}) ¢ Web(C, LUCy).
(96) —(C1MCp) = —C1LI-Cp.
LetCy, C; be coherent spaces. The funaiars C; yielding a set is defined by:
(Def. 26) Cy®C, =J{2*P: aranges over elements 6f, b ranges over elements 65}

One can prove the following proposition

(97) LetCy, C, be coherent spaces arble a set. Ther € C; ® C;, if and only if there exists an
elementa of C; and there exists an elemdnof C, such tha C [:a, by.

LetCq, Co be coherent spaces. Note tRato C, is non empty.
The following proposition is true

(98) For all coherent spac€j, C, and for every elemerd of C; ® C; holdsm (a) € C; and
T™(a) e C; andaC [y(a), (a)].

LetCq, Co be coherent spaces. Note tRato C, is subset-closed and binary complete.
Next we state two propositions:

(99) For all coherent spac€s, C, holds|J(C1 ®Cp) = [UUC1, UC2 1.

(100) For all setsq, y1, X2, Y2 holds {({X1, X2}, {y1, y2}) € Webh(C1 ®Cy) iff (x1,y1) € Weh(Cy)
and{xp, y2) € Web(Cy).
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