Coherent Space

Jarosław Kotowicz Warsaw University Białystok Konrad Raczkowski Warsaw University Białystok

Summary. Coherent Space, web of coherent space and two categories: category of coherent spaces and category of tolerances on same fixed set.

MML Identifier: COH_SP.

WWW: http://mizar.org/JFM/Vol4/coh_sp.html

The articles [9], [6], [11], [12], [13], [10], [2], [5], [1], [3], [8], [7], and [4] provide the notation and terminology for this paper.

1. COHERENT SPACE AND WEB OF COHERENT SPACE

In this paper x, y, a, b, X, A denote sets.

Let I_1 be a set. We say that I_1 is binary complete if and only if:

(Def. 2)¹ For every A such that $A \subseteq I_1$ and for all a, b such that $a \in A$ and $b \in A$ holds $a \cup b \in I_1$ holds $a \cup b \in I_1$.

Let us note that there exists a set which is subset-closed, binary complete, and non empty.

A coherent space is a subset-closed binary complete non empty set.

In the sequel C, D denote coherent spaces.

One can prove the following propositions:

- (1) $\emptyset \in C$.
- (2) 2^X is a coherent space.
- (3) $\{\emptyset\}$ is a coherent space.
- (4) If $x \in \bigcup C$, then $\{x\} \in C$.

Let C be a coherent space. The functor Web(C) yields a tolerance of $\bigcup C$ and is defined by:

(Def. 3) For all x, y holds $\langle x, y \rangle \in \text{Web}(C)$ iff there exists X such that $X \in C$ and $x \in X$ and $y \in X$.

In the sequel T denotes a tolerance of $\bigcup C$.

The following propositions are true:

- (5) T = Web(C) iff for all x, y holds $\langle x, y \rangle \in T$ iff $\{x, y\} \in C$.
- (6) $a \in C$ iff for all x, y such that $x \in a$ and $y \in a$ holds $\{x,y\} \in C$.

¹ The definition (Def. 1) has been removed.

- (7) $a \in C$ iff for all x, y such that $x \in a$ and $y \in a$ holds $\langle x, y \rangle \in \text{Web}(C)$.
- (8) If for all x, y such that $x \in a$ and $y \in a$ holds $\{x, y\} \in C$, then $a \subseteq \bigcup C$.
- (9) If Web(C) = Web(D), then C = D.
- (10) If $\bigcup C \in C$, then $C = 2^{\bigcup C}$.
- (11) If $C = 2^{\bigcup C}$, then Web $(C) = \nabla_{\bigcup C}$.

Let X be a set and let E be a tolerance of X. The functor CohSp(E) yields a coherent space and is defined by:

(Def. 4) For every a holds $a \in \text{CohSp}(E)$ iff for all x, y such that $x \in a$ and $y \in a$ holds $\langle x, y \rangle \in E$.

In the sequel E is a tolerance of X.

We now state four propositions:

- (12) $\operatorname{Web}(\operatorname{CohSp}(E)) = E$.
- (13) $\operatorname{CohSp}(\operatorname{Web}(C)) = C$.
- (14) $a \in CohSp(E)$ iff a is a set of mutually elements w.r.t. E.
- (15) $\operatorname{CohSp}(E) = \operatorname{TolSets} E$.

2. CATEGORY OF COHERENT SPACES

Let us consider X. The functor CSp(X) yields a set and is defined by:

(Def. 5) $CSp(X) = \{x; x \text{ ranges over subsets of } 2^X : x \text{ is a coherent space} \}.$

Let us consider X. One can verify that CSp(X) is non empty.

Let X be a set. Note that every element of CSp(X) is subset-closed, binary complete, and non empty.

In the sequel C, C_1 , C_2 are elements of CSp(X).

One can prove the following proposition

(16) If $\{x,y\} \in C$, then $x \in \bigcup C$ and $y \in \bigcup C$.

Let us consider X. The functor Funcs_CX yields a set and is defined by:

(Def. 7)² Funcs_C $X = \bigcup \{(\bigcup y)^{\bigcup x} : x \text{ ranges over elements of } CSp(X), y \text{ ranges over elements of } CSp(X)\}.$

Let us consider X. One can verify that Funcs_CX is non empty and functional.

In the sequel g denotes an element of Funcs $_{\mathbb{C}}X$.

One can prove the following proposition

(17) $x \in \operatorname{Funcs}_{\mathbb{C}} X$ iff there exist C_1 , C_2 such that if $\bigcup C_2 = \emptyset$, then $\bigcup C_1 = \emptyset$ and x is a function from $\bigcup C_1$ into $\bigcup C_2$.

Let us consider X. The functor Maps_CX yields a set and is defined by the condition (Def. 8).

(Def. 8) Maps_C $X = \{ \langle \langle C, C_3 \rangle, f \rangle; C \text{ ranges over elements of } CSp(X), C_3 \text{ ranges over elements of } CSp(X), f \text{ ranges over elements of } Funcs_C<math>X : (\bigcup C_3 = \emptyset \Rightarrow \bigcup C = \emptyset) \land f \text{ is a function from } \bigcup C \text{ into } \bigcup C_3 \land \bigwedge_{x,y} (\{x,y\} \in C \Rightarrow \{f(x),f(y)\} \in C_3) \}.$

Let us consider X. One can check that Maps_CX is non empty.

In the sequel l, l_1 , l_2 , l_3 denote elements of Maps_CX.

One can prove the following two propositions:

² The definition (Def. 6) has been removed.

- (18) There exist g, C_1, C_2 such that
 - (i) $l = \langle \langle C_1, C_2 \rangle, g \rangle$,
- (ii) if $\bigcup C_2 = \emptyset$, then $\bigcup C_1 = \emptyset$,
- (iii) g is a function from $\bigcup C_1$ into $\bigcup C_2$, and
- (iv) for all x, y such that $\{x,y\} \in C_1$ holds $\{g(x),g(y)\} \in C_2$.
- (19) Let f be a function from $\bigcup C_1$ into $\bigcup C_2$. Suppose if $\bigcup C_2 = \emptyset$, then $\bigcup C_1 = \emptyset$ and for all x, y such that $\{x,y\} \in C_1$ holds $\{f(x),f(y)\} \in C_2$. Then $\langle\langle C_1,C_2\rangle,f\rangle \in \operatorname{Maps}_{\mathbb{C}}X$.

Let X be a set and let l be an element of Maps_CX. Note that l_2 is function-like and relation-like. Let us consider X, l. The functor dom l yields an element of CSp(X) and is defined as follows:

(Def. 10)³ dom $l = (l_1)_1$.

The functor cod l yielding an element of CSp(X) is defined by:

(Def. 11) $cod l = (l_1)_2$.

One can prove the following proposition

(20) $l = \langle \langle \operatorname{dom} l, \operatorname{cod} l \rangle, l_2 \rangle.$

Let us consider X, C. The functor id(C) yielding an element of Maps_CX is defined as follows:

(Def. 12)
$$id(C) = \langle \langle C, C \rangle, id_{\bigcup C} \rangle$$
.

The following proposition is true

(21) $\bigcup \operatorname{cod} l \neq \emptyset$ or $\bigcup \operatorname{dom} l = \emptyset$ but l_2 is a function from $\bigcup \operatorname{dom} l$ into $\bigcup \operatorname{cod} l$ but for all x, y such that $\{x, y\} \in \operatorname{dom} l$ holds $\{l_2(x), l_2(y)\} \in \operatorname{cod} l$.

Let us consider X, l_1 , l_2 . Let us assume that $\operatorname{cod} l_1 = \operatorname{dom} l_2$. The functor $l_2 \cdot l_1$ yields an element of $\operatorname{Maps}_{\mathbb{C}} X$ and is defined by:

(Def. 13) $l_2 \cdot l_1 = \langle \langle \text{dom } l_1, \text{cod } l_2 \rangle, (l_2)_2 \cdot (l_1)_2 \rangle.$

One can prove the following propositions:

- (22) If $dom l_2 = cod l_1$, then $(l_2 \cdot l_1)_2 = (l_2)_2 \cdot (l_1)_2$ and $dom(l_2 \cdot l_1) = dom l_1$ and $cod(l_2 \cdot l_1) = cod l_2$.
- (23) If dom $l_2 = \text{cod } l_1$ and dom $l_3 = \text{cod } l_2$, then $l_3 \cdot (l_2 \cdot l_1) = (l_3 \cdot l_2) \cdot l_1$.
- (24) $(id(C))_2 = id_{\bigcup C}$ and domid(C) = C and codid(C) = C.
- (25) $l \cdot id(\text{dom } l) = l \text{ and } id(\text{cod } l) \cdot l = l.$

Let us consider X. The functor $Dom_{CSp}X$ yields a function from $Maps_{C}X$ into CSp(X) and is defined by:

(Def. 14) For every l holds $(Dom_{CSp}X)(l) = dom l$.

The functor $Cod_{CSp}X$ yields a function from $Maps_{C}X$ into CSp(X) and is defined by:

(Def. 15) For every l holds $(Cod_{CSp}X)(l) = cod l$.

The functor $\cdot_{CSp} X$ yields a partial function from [: Maps_CX, Maps_CX :] to Maps_CX and is defined as follows:

(Def. 16) For all l_2 , l_1 holds $\langle l_2, l_1 \rangle \in \text{dom} \cdot_{\text{CSp}} X$ iff $\text{dom} l_2 = \text{cod} l_1$ and for all l_2 , l_1 such that $\text{dom} l_2 = \text{cod} l_1$ holds $(\cdot_{\text{CSp}} X)(\langle l_2, l_1 \rangle) = l_2 \cdot l_1$.

³ The definition (Def. 9) has been removed.

The functor $Id_{CSp}X$ yields a function from CSp(X) into $Maps_{C}X$ and is defined by:

(Def. 17) For every C holds $(Id_{CSp}X)(C) = id(C)$.

We now state the proposition

(26) $\langle CSp(X), Maps_C X, Dom_{CSp} X, Cod_{CSp} X, \cdot_{CSp} X, Id_{CSp} X \rangle$ is a category.

Let us consider *X*. The *X*-coherent space category yielding a category is defined by:

(Def. 18) The *X*-coherent space category = $\langle CSp(X), Maps_C X, Dom_{CSp} X, Cod_{CSp} X, \cdot_{CSp} X, Id_{CSp} X \rangle$.

3. CATEGORY OF TOLERANCES

Let *X* be a set. The tolerances on *X* constitute a set defined as follows:

(Def. 19) $x \in$ the tolerances on X iff x is a tolerance of X.

Let *X* be a set. Note that the tolerances on *X* is non empty.

Let *X* be a set. The tolerances on subsets of *X* constitute a set defined as follows:

(Def. 20) The tolerances on subsets of $X = \bigcup \{ \text{the tolerances on } Y \colon Y \text{ ranges over subsets of } X \}.$

Let *X* be a set. One can check that the tolerances on subsets of *X* is non empty. One can prove the following propositions:

- (27) $x \in$ the tolerances on subsets of X iff there exists A such that $A \subseteq X$ and x is a tolerance of A.
- (28) $\nabla_a \in \text{the tolerances on } a.$
- $(30)^4$ $\emptyset \in$ the tolerances on subsets of *X*.
- (31) If $a \subseteq X$, then $\nabla_a \in$ the tolerances on subsets of X.
- (32) If $a \subseteq X$, then $id_a \in the tolerances on subsets of <math>X$.
- (33) $\nabla_X \in \text{the tolerances on subsets of } X.$
- (34) $id_X \in the tolerances on subsets of X.$

Let us consider X. The functor TOL(X) yields a set and is defined by:

(Def. 21) $TOL(X) = \{\langle t, Y \rangle; t \text{ ranges over elements of the tolerances on subsets of } X, Y \text{ ranges over elements of } 2^X : t \text{ is a tolerance of } Y \}.$

Let us consider X. One can verify that TOL(X) is non empty.

In the sequel T, T_1 , T_2 denote elements of TOL(X).

One can prove the following propositions:

- (35) $\langle \emptyset, \emptyset \rangle \in TOL(X)$.
- (36) If $a \subseteq X$, then $\langle id_a, a \rangle \in TOL(X)$.
- (37) If $a \subseteq X$, then $\langle \nabla_a, a \rangle \in TOL(X)$.
- (38) $\langle id_X, X \rangle \in TOL(X)$.
- (39) $\langle \nabla_X, X \rangle \in TOL(X)$.

Let us consider X, T. Then T_2 is an element of 2^X . Then T_1 is a tolerance of T_2 . Let us consider X. The functor Funcs_TX yields a set and is defined by:

⁴ The proposition (29) has been removed.

(Def. 22) Funcs_T $X = \bigcup \{((T_3)_2)^{T_2} : T \text{ ranges over elements of } TOL(X), T_3 \text{ ranges over elements of } TOL(X) \}.$

Let us consider X. Observe that Funcs_TX is non empty and functional.

In the sequel f is an element of Funcs_TX.

One can prove the following proposition

(40) $x \in \text{Funcs}_T X$ iff there exist T_1 , T_2 such that if $(T_2)_2 = \emptyset$, then $(T_1)_2 = \emptyset$ and x is a function from $(T_1)_2$ into $(T_2)_2$.

Let us consider X. The functor Maps_TX yielding a set is defined by the condition (Def. 23).

(Def. 23) Maps_T $X = \{\langle\langle T, T_3 \rangle, f \rangle; T \text{ ranges over elements of TOL}(X), T_3 \text{ ranges over elements of TOL}(X), f \text{ ranges over elements of Funcs}_T X : ((T_3)_2 = \emptyset \Rightarrow T_2 = \emptyset) \land f \text{ is a function from } T_2 \text{ into } (T_3)_2 \land \bigwedge_{x,y} (\langle x, y \rangle \in T_1 \Rightarrow \langle f(x), f(y) \rangle \in (T_3)_1) \}.$

Let us consider X. Note that Maps_TX is non empty.

In the sequel m, m_1 , m_2 , m_3 are elements of Maps_TX.

The following propositions are true:

- (41) There exist f, T_1 , T_2 such that
- (i) $m = \langle \langle T_1, T_2 \rangle, f \rangle$,
- (ii) if $(T_2)_2 = \emptyset$, then $(T_1)_2 = \emptyset$,
- (iii) f is a function from $(T_1)_2$ into $(T_2)_2$, and
- (iv) for all x, y such that $\langle x, y \rangle \in (T_1)_1$ holds $\langle f(x), f(y) \rangle \in (T_2)_1$.
- (42) Let f be a function from $(T_1)_2$ into $(T_2)_2$. Suppose if $(T_2)_2 = \emptyset$, then $(T_1)_2 = \emptyset$ and for all x, y such that $\langle x, y \rangle \in (T_1)_1$ holds $\langle f(x), f(y) \rangle \in (T_2)_1$. Then $\langle \langle T_1, T_2 \rangle, f \rangle \in \operatorname{Maps}_T X$.

Let X be a set and let m be an element of Maps_TX. One can check that m_2 is function-like and relation-like.

Let us consider X, m. The functor dom m yields an element of TOL(X) and is defined by:

(Def. 25)⁵ dom $m = (m_1)_1$.

The functor cod m yielding an element of TOL(X) is defined as follows:

(Def. 26) $cod m = (m_1)_2$.

Next we state the proposition

(43) $m = \langle \langle \operatorname{dom} m, \operatorname{cod} m \rangle, m_2 \rangle.$

Let us consider X, T. The functor id(T) yields an element of Maps_TX and is defined as follows:

(Def. 27)
$$id(T) = \langle \langle T, T \rangle, id_{T_2} \rangle$$
.

Next we state the proposition

(44) $(\operatorname{cod} m)_2 \neq \emptyset$ or $(\operatorname{dom} m)_2 = \emptyset$ but m_2 is a function from $(\operatorname{dom} m)_2$ into $(\operatorname{cod} m)_2$ but for all x, y such that $\langle x, y \rangle \in (\operatorname{dom} m)_1$ holds $\langle m_2(x), m_2(y) \rangle \in (\operatorname{cod} m)_1$.

Let us consider X, m_1 , m_2 . Let us assume that $\operatorname{cod} m_1 = \operatorname{dom} m_2$. The functor $m_2 \cdot m_1$ yielding an element of $\operatorname{Maps}_T X$ is defined by:

(Def. 28)
$$m_2 \cdot m_1 = \langle \langle \operatorname{dom} m_1, \operatorname{cod} m_2 \rangle, (m_2)_2 \cdot (m_1)_2 \rangle$$
.

The following four propositions are true:

⁵ The definition (Def. 24) has been removed.

- (45) If $dom m_2 = cod m_1$, then $(m_2 \cdot m_1)_2 = (m_2)_2 \cdot (m_1)_2$ and $dom(m_2 \cdot m_1) = dom m_1$ and $cod(m_2 \cdot m_1) = cod m_2$.
- (46) If dom $m_2 = \operatorname{cod} m_1$ and dom $m_3 = \operatorname{cod} m_2$, then $m_3 \cdot (m_2 \cdot m_1) = (m_3 \cdot m_2) \cdot m_1$.
- (47) $(id(T))_2 = id_{T_2}$ and domid(T) = T and codid(T) = T.
- (48) $m \cdot id(\text{dom } m) = m \text{ and } id(\text{cod } m) \cdot m = m.$

Let us consider X. The functor Dom_X yields a function from $Maps_TX$ into TOL(X) and is defined as follows:

(Def. 29) For every m holds $Dom_X(m) = dom m$.

The functor Cod_X yields a function from $Maps_TX$ into TOL(X) and is defined as follows:

(Def. 30) For every m holds $Cod_X(m) = cod m$.

The functor \cdot_X yields a partial function from [:Maps_TX, Maps_TX :] to Maps_TX and is defined by:

(Def. 31) For all m_2 , m_1 holds $\langle m_2, m_1 \rangle \in \text{dom}(\cdot_X)$ iff $\text{dom } m_2 = \text{cod } m_1$ and for all m_2 , m_1 such that $\text{dom } m_2 = \text{cod } m_1$ holds $\cdot_X(\langle m_2, m_1 \rangle) = m_2 \cdot m_1$.

The functor Id_X yielding a function from TOL(X) into $Maps_T X$ is defined by:

(Def. 32) For every T holds $Id_X(T) = id(T)$.

Next we state the proposition

(49) $\langle TOL(X), Maps_T X, Dom_X, Cod_X, \cdot_X, Id_X \rangle$ is a category.

Let us consider *X*. The *X*-tolerance category is a category and is defined by:

(Def. 33) The *X*-tolerance category = $\langle TOL(X), Maps_T X, Dom_X, Cod_X, \cdot_X, Id_X \rangle$.

REFERENCES

- [1] Grzegorz Bancerek. Tarski's classes and ranks. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/classes1.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [3] Czesław Byliński. Functions from a set to a set. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Czesław Byliński. Introduction to categories and functors. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/cat_1.html.
- [5] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [7] Krzysztof Hryniewiecki. Relations of tolerance. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/toler_ 1.html.
- [8] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/eqrel_1.html.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [10] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/mcart_1.html.
- [11] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [12] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

[13] Edmund Woronowicz. Relations defined on sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relset_l.html.

Received December 29, 1992

Published January 2, 2004
