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The articles [9], [6], [11], [12], [13], [10], [2], [5], [1], [3], [8], [7], and [4] provide the notation and
terminology for this paper.

1. COHERENTSPACE AND WEB OF COHERENTSPACE

In this paperx, y, a, b, X, A denote sets.
Let I1 be a set. We say thatI1 is binary complete if and only if:

(Def. 2)1 For everyA such thatA⊆ I1 and for alla, b such thata ∈ A andb ∈ A holdsa∪b ∈ I1
holds

⋃
A∈ I1.

Let us note that there exists a set which is subset-closed, binary complete, and non empty.
A coherent space is a subset-closed binary complete non empty set.
In the sequelC, D denote coherent spaces.
One can prove the following propositions:

(1) /0 ∈C.

(2) 2X is a coherent space.

(3) { /0} is a coherent space.

(4) If x∈
⋃

C, then{x} ∈C.

Let C be a coherent space. The functor Web(C) yields a tolerance of
⋃

C and is defined by:

(Def. 3) For allx, y holds〈〈x, y〉〉 ∈Web(C) iff there existsX such thatX ∈C andx∈ X andy∈ X.

In the sequelT denotes a tolerance of
⋃

C.
The following propositions are true:

(5) T = Web(C) iff for all x, y holds〈〈x, y〉〉 ∈ T iff {x,y} ∈C.

(6) a∈C iff for all x, y such thatx∈ a andy∈ a holds{x,y} ∈C.

1 The definition (Def. 1) has been removed.
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(7) a∈C iff for all x, y such thatx∈ a andy∈ a holds〈〈x, y〉〉 ∈Web(C).

(8) If for all x, y such thatx∈ a andy∈ a holds{x,y} ∈C, thena⊆
⋃

C.

(9) If Web(C) = Web(D), thenC = D.

(10) If
⋃

C∈C, thenC = 2
⋃

C.

(11) If C = 2
⋃

C, then Web(C) = ∇⋃
C.

Let X be a set and letE be a tolerance ofX. The functor CohSp(E) yields a coherent space and
is defined by:

(Def. 4) For everya holdsa∈ CohSp(E) iff for all x, y such thatx∈ a andy∈ a holds〈〈x, y〉〉 ∈ E.

In the sequelE is a tolerance ofX.
We now state four propositions:

(12) Web(CohSp(E)) = E.

(13) CohSp(Web(C)) = C.

(14) a∈ CohSp(E) iff a is a set of mutually elements w.r.t.E.

(15) CohSp(E) = TolSetsE.

2. CATEGORY OFCOHERENTSPACES

Let us considerX. The functor CSp(X) yields a set and is defined by:

(Def. 5) CSp(X) = {x;x ranges over subsets of 2X: x is a coherent space}.

Let us considerX. One can verify that CSp(X) is non empty.
Let X be a set. Note that every element of CSp(X) is subset-closed, binary complete, and non

empty.
In the sequelC, C1, C2 are elements of CSp(X).
One can prove the following proposition

(16) If {x,y} ∈C, thenx∈
⋃

C andy∈
⋃

C.

Let us considerX. The functor FuncsCX yields a set and is defined by:

(Def. 7)2 FuncsCX =
⋃
{(

⋃
y)

⋃
x : x ranges over elements of CSp(X), y ranges over elements of

CSp(X)}.

Let us considerX. One can verify that FuncsCX is non empty and functional.
In the sequelg denotes an element of FuncsCX.
One can prove the following proposition

(17) x∈ FuncsCX iff there existC1, C2 such that if
⋃

C2 = /0, then
⋃

C1 = /0 andx is a function
from

⋃
C1 into

⋃
C2.

Let us considerX. The functor MapsCX yields a set and is defined by the condition (Def. 8).

(Def. 8) MapsCX = {〈〈〈〈C, C3〉〉, f 〉〉;C ranges over elements of CSp(X), C3 ranges over elements of
CSp(X), f ranges over elements of FuncsCX : (

⋃
C3 = /0 ⇒

⋃
C = /0) ∧ f is a function from⋃

C into
⋃

C3 ∧
∧

x,y ({x,y} ∈C ⇒ { f (x), f (y)} ∈C3)}.

Let us considerX. One can check that MapsCX is non empty.
In the sequell , l1, l2, l3 denote elements of MapsCX.
One can prove the following two propositions:

2 The definition (Def. 6) has been removed.
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(18) There existg, C1, C2 such that

(i) l = 〈〈〈〈C1, C2〉〉, g〉〉,
(ii) if

⋃
C2 = /0, then

⋃
C1 = /0,

(iii) g is a function from
⋃

C1 into
⋃

C2, and

(iv) for all x, y such that{x,y} ∈C1 holds{g(x),g(y)} ∈C2.

(19) Let f be a function from
⋃

C1 into
⋃

C2. Suppose if
⋃

C2 = /0, then
⋃

C1 = /0 and for allx,
y such that{x,y} ∈C1 holds{ f (x), f (y)} ∈C2. Then〈〈〈〈C1, C2〉〉, f 〉〉 ∈MapsCX.

Let X be a set and letl be an element of MapsCX. Note thatl2 is function-like and relation-like.
Let us considerX, l . The functor doml yields an element of CSp(X) and is defined as follows:

(Def. 10)3 doml = (l1)1.

The functor codl yielding an element of CSp(X) is defined by:

(Def. 11) codl = (l1)2.

One can prove the following proposition

(20) l = 〈〈〈〈doml , codl〉〉, l2〉〉.

Let us considerX, C. The functor id(C) yielding an element of MapsCX is defined as follows:

(Def. 12) id(C) = 〈〈〈〈C, C〉〉, id⋃
C〉〉.

The following proposition is true

(21)
⋃

codl 6= /0 or
⋃

doml = /0 but l2 is a function from
⋃

doml into
⋃

codl but for allx, y such
that{x,y} ∈ doml holds{l2(x), l2(y)} ∈ codl .

Let us considerX, l1, l2. Let us assume that codl1 = doml2. The functorl2 · l1 yields an element
of MapsCX and is defined by:

(Def. 13) l2 · l1 = 〈〈〈〈doml1, codl2〉〉, (l2)2 · (l1)2〉〉.

One can prove the following propositions:

(22) If doml2 = codl1, then(l2 · l1)2 = (l2)2 · (l1)2 and dom(l2 · l1) = doml1 and cod(l2 · l1) =
codl2.

(23) If doml2 = codl1 and doml3 = codl2, thenl3 · (l2 · l1) = (l3 · l2) · l1.

(24) (id(C))2 = id⋃
C and domid(C) = C and codid(C) = C.

(25) l · id(doml) = l and id(codl) · l = l .

Let us considerX. The functor DomCSpX yields a function from MapsCX into CSp(X) and is
defined by:

(Def. 14) For everyl holds(DomCSpX)(l) = doml .

The functor CodCSpX yields a function from MapsCX into CSp(X) and is defined by:

(Def. 15) For everyl holds(CodCSpX)(l) = codl .

The functor·CSpX yields a partial function from[:MapsCX, MapsCX :] to MapsCX and is defined as
follows:

(Def. 16) For all l2, l1 holds 〈〈l2, l1〉〉 ∈ dom·CSpX iff dom l2 = codl1 and for all l2, l1 such that
doml2 = codl1 holds(·CSpX)(〈〈l2, l1〉〉) = l2 · l1.

3 The definition (Def. 9) has been removed.
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The functor IdCSpX yields a function from CSp(X) into MapsCX and is defined by:

(Def. 17) For everyC holds(IdCSpX)(C) = id(C).

We now state the proposition

(26) 〈CSp(X),MapsCX,DomCSpX,CodCSpX, ·CSpX, IdCSpX〉 is a category.

Let us considerX. TheX-coherent space category yielding a category is defined by:

(Def. 18) TheX-coherent space category= 〈CSp(X),MapsCX,DomCSpX,CodCSpX, ·CSpX, IdCSpX〉.

3. CATEGORY OFTOLERANCES

Let X be a set. The tolerances onX constitute a set defined as follows:

(Def. 19) x∈ the tolerances onX iff x is a tolerance ofX.

Let X be a set. Note that the tolerances onX is non empty.
Let X be a set. The tolerances on subsets ofX constitute a set defined as follows:

(Def. 20) The tolerances on subsets ofX =
⋃
{the tolerances onY: Y ranges over subsets ofX}.

Let X be a set. One can check that the tolerances on subsets ofX is non empty.
One can prove the following propositions:

(27) x∈ the tolerances on subsets ofX iff there existsA such thatA⊆ X andx is a tolerance of
A.

(28) ∇a ∈ the tolerances ona.

(30)4 /0 ∈ the tolerances on subsets ofX.

(31) If a⊆ X, then∇a ∈ the tolerances on subsets ofX.

(32) If a⊆ X, then ida ∈ the tolerances on subsets ofX.

(33) ∇X ∈ the tolerances on subsets ofX.

(34) idX ∈ the tolerances on subsets ofX.

Let us considerX. The functor TOL(X) yields a set and is defined by:

(Def. 21) TOL(X) = {〈〈t, Y〉〉; t ranges over elements of the tolerances on subsets ofX, Y ranges over
elements of 2X: t is a tolerance ofY}.

Let us considerX. One can verify that TOL(X) is non empty.
In the sequelT, T1, T2 denote elements of TOL(X).
One can prove the following propositions:

(35) 〈〈 /0, /0〉〉 ∈ TOL(X).

(36) If a⊆ X, then〈〈ida, a〉〉 ∈ TOL(X).

(37) If a⊆ X, then〈〈∇a, a〉〉 ∈ TOL(X).

(38) 〈〈idX, X〉〉 ∈ TOL(X).

(39) 〈〈∇X, X〉〉 ∈ TOL(X).

Let us considerX, T. ThenT2 is an element of 2X. ThenT1 is a tolerance ofT2.
Let us considerX. The functor FuncsTX yields a set and is defined by:

4 The proposition (29) has been removed.



COHERENT SPACE 5

(Def. 22) FuncsTX =
⋃
{((T3)2)T2 : T ranges over elements of TOL(X), T3 ranges over elements of

TOL(X)}.

Let us considerX. Observe that FuncsTX is non empty and functional.
In the sequelf is an element of FuncsTX.
One can prove the following proposition

(40) x∈ FuncsTX iff there existT1, T2 such that if(T2)2 = /0, then(T1)2 = /0 andx is a function
from (T1)2 into (T2)2.

Let us considerX. The functor MapsTX yielding a set is defined by the condition (Def. 23).

(Def. 23) MapsTX = {〈〈〈〈T, T3〉〉, f 〉〉;T ranges over elements of TOL(X), T3 ranges over elements of
TOL(X), f ranges over elements of FuncsTX : ((T3)2 = /0 ⇒ T2 = /0) ∧ f is a function from
T2 into (T3)2 ∧

∧
x,y (〈〈x, y〉〉 ∈ T1 ⇒ 〈〈 f (x), f (y)〉〉 ∈ (T3)1)}.

Let us considerX. Note that MapsTX is non empty.
In the sequelm, m1, m2, m3 are elements of MapsTX.
The following propositions are true:

(41) There existf , T1, T2 such that

(i) m= 〈〈〈〈T1, T2〉〉, f 〉〉,
(ii) if (T2)2 = /0, then(T1)2 = /0,

(iii) f is a function from(T1)2 into (T2)2, and

(iv) for all x, y such that〈〈x, y〉〉 ∈ (T1)1 holds〈〈 f (x), f (y)〉〉 ∈ (T2)1.

(42) Let f be a function from(T1)2 into (T2)2. Suppose if(T2)2 = /0, then(T1)2 = /0 and for all
x, y such that〈〈x, y〉〉 ∈ (T1)1 holds〈〈 f (x), f (y)〉〉 ∈ (T2)1. Then〈〈〈〈T1, T2〉〉, f 〉〉 ∈MapsTX.

Let X be a set and letm be an element of MapsTX. One can check thatm2 is function-like and
relation-like.

Let us considerX, m. The functor domm yields an element of TOL(X) and is defined by:

(Def. 25)5 domm= (m1)1.

The functor codm yielding an element of TOL(X) is defined as follows:

(Def. 26) codm= (m1)2.

Next we state the proposition

(43) m= 〈〈〈〈domm, codm〉〉, m2〉〉.

Let us considerX, T. The functor id(T) yields an element of MapsTX and is defined as follows:

(Def. 27) id(T) = 〈〈〈〈T, T〉〉, idT2〉〉.

Next we state the proposition

(44) (codm)2 6= /0 or (domm)2 = /0 butm2 is a function from(domm)2 into (codm)2 but for all
x, y such that〈〈x, y〉〉 ∈ (domm)1 holds〈〈m2(x), m2(y)〉〉 ∈ (codm)1.

Let us considerX, m1, m2. Let us assume that codm1 = domm2. The functorm2 ·m1 yielding
an element of MapsTX is defined by:

(Def. 28) m2 ·m1 = 〈〈〈〈domm1, codm2〉〉, (m2)2 · (m1)2〉〉.

The following four propositions are true:

5 The definition (Def. 24) has been removed.
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(45) If domm2 = codm1, then (m2 ·m1)2 = (m2)2 · (m1)2 and dom(m2 ·m1) = domm1 and
cod(m2 ·m1) = codm2.

(46) If domm2 = codm1 and domm3 = codm2, thenm3 · (m2 ·m1) = (m3 ·m2) ·m1.

(47) (id(T))2 = idT2 and domid(T) = T and codid(T) = T.

(48) m· id(domm) = m and id(codm) ·m= m.

Let us considerX. The functor DomX yields a function from MapsTX into TOL(X) and is
defined as follows:

(Def. 29) For everym holds DomX(m) = domm.

The functor CodX yields a function from MapsTX into TOL(X) and is defined as follows:

(Def. 30) For everym holds CodX(m) = codm.

The functor·X yields a partial function from[:MapsTX, MapsTX :] to MapsTX and is defined by:

(Def. 31) For allm2, m1 holds〈〈m2, m1〉〉 ∈ dom(·X) iff domm2 = codm1 and for allm2, m1 such that
domm2 = codm1 holds·X(〈〈m2, m1〉〉) = m2 ·m1.

The functor IdX yielding a function from TOL(X) into MapsTX is defined by:

(Def. 32) For everyT holds IdX(T) = id(T).

Next we state the proposition

(49) 〈TOL(X),MapsTX,DomX,CodX, ·X, IdX〉 is a category.

Let us considerX. TheX-tolerance category is a category and is defined by:

(Def. 33) TheX-tolerance category= 〈TOL(X),MapsTX,DomX,CodX, ·X, IdX〉.
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