JOURNAL OF FORMALIZED MATHEMATICS
Volume4,  Released 1992,  Published 2003
Inst. of Computer Science, Univ. of Bialystok

Coherent Space

Jarostaw Kotowicz Konrad Raczkowski
Warsaw University Warsaw University
Biatystok Biatystok

Summary. Coherent Space, web of coherent space and two categories: category of
coherent spaces and category of tolerances on same fixed set.

MML Identifier: COH_SP.
WWW: http://mizar.org/JFM/Vol4/coh_sp.html

The articles([9],[[6],[11],112],[[18],0110],1R],[5],1],I8],8],7], and [4] provide the notation and
terminology for this paper.

1. COHERENTSPACE AND WEB OF COHERENT SPACE

In this papek, v, a, b, X, A denote sets.
Letl; be a set. We say thét is binary complete if and only if:

(Def. ZE] For everyA such thatA C |1 and for alla, b such thata € Aandb € A holdsaube I;
holds A€ I;.

Let us note that there exists a set which is subset-closed, binary complete, and non empty.
A coherent space is a subset-closed binary complete non empty set.

In the sequeC, D denote coherent spaces.

One can prove the following propositions:

(1) oecC.

(2) 2%is acoherent space.

(3) {0} is a coherent space.

(4) IfxelUC, then{x} eC.

Let C be a coherent space. The functor \@hyields a tolerance df/C and is defined by:
(Def. 3) For allx, y holds{x, y} € Weh(C) iff there existsX such thaiX € C andx € X andy € X.

In the sequeTl denotes a tolerance pfC.
The following propositions are true:

(5) T =Web(C) iff for all x, yholds(x,y) € T iff {x,y} €C.
(6) aecCiffforall x, ysuch thaik € aandy € a holds{x,y} € C.

1 The definition (Def. 1) has been removed.
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(7) acCiffforall x, ysuch thai € aandy € a holds(x, y) € Web(C).
(8) Iffor all x, y such tha € aandy € a holds{x,y} € C, thena C |JC.
(9) If Web(C) = Weh(D), thenC =D.

(10) IfUCeC,thenC = 2U°C,

(11) IfC=2UYC then WeliC) = [ jc.

Let X be a set and Ie€E be a tolerance oX. The functor CohS{E) yields a coherent space and
is defined by:

(Def. 4) For everya holdsa € CohSHE) iff for all X, y such thak € aandy € aholds{x, y) € E.

In the sequeE is a tolerance oX.
We now state four propositions:

(12) WeHCohSHE)) =E.
(13) CohSpwebC)) =C.
(14) ac CohSHE) iff ais a set of mutually elements w.rE.

(15) CohSKE) = TolSet<E.

2. CATEGORY OF COHERENTSPACES

Let us consideK. The functor CS{X) yields a set and is defined by:
(Def. 5) CSpX) = {x;x ranges over subsets of 2x is a coherent spage

Let us consideK. One can verify that CSjX) is non empty.

Let X be a set. Note that every element of @&pis subset-closed, binary complete, and non
empty.

In the sequeC, Cy, C; are elements of C$K).

One can prove the following proposition

(16) If{x,y} €C,thenxe JCandy e |JC.
Let us consideK. The functor FungsX yields a set and is defined by:

(Def. 7E| FuncgX = U{(Uy)YU* : x ranges over elements of CSf), y ranges over elements of
CspX)}.

Let us consideKX. One can verify that FungX is non empty and functional.
In the sequef) denotes an element of Fures
One can prove the following proposition

(17) x e FuncgX iff there existCy, C, such that if JC, = 0, then JC; = 0 andx is a function
fromJCy into JCo.

Let us consideK. The functor MapgX yields a set and is defined by the condition (Def. 8).

(Def. 8) MapgX = {{(C, C3), f);C ranges over elements of C8f), C; ranges over elements of
CspX), f ranges over elements of Fuges: (JC3 =0 = JC=0) A fis afunction from
UCintoUCs A Axy ({%y} €C = {f(x),f(y)} €Cs)}.

Let us consideK. One can check that MagX is non empty.
In the sequel, 14, |2, I3 denote elements of MagX.
One can prove the following two propositions:

2 The definition (Def. 6) has been removed.
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(18) There exisy, C1, C; such that

i) 1={C,%),09).
(i) if UC,=0,thenCy =0,
(iii)  gis afunction fromJC; into UCy, and
(iv) forall x, y such that{x,y} € C; holds{g(x),g(y)} € Co.

(19) Letf be afunction fromJC; into |JC,. Suppose if JC, = 0, then| JC; = 0 and for allx,
y such thaf{x,y} € C; holds{ f(x), f(y)} € Co. Then({Cy, Cp), ) € Maps:X.

Let X be a set and ldtbe an element of MapX. Note that, is function-like and relation-like.
Let us consideK, |. The functor donhyields an element of C$K) and is defined as follows:

(Def. 10§ doml = (I1);.
The functor cod yielding an element of CX) is defined by:

(Def. 11) cod = (I1)2.

One can prove the following proposition

(20) 1= ((doml, codl), I5).

Let us consideK, C. The functor idC) yielding an element of Maps is defined as follows:
(Def. 12) idC) = ((C, C), id|c)-

The following proposition is true

(21) Ucod # 0 or|Jdoml = 0 butl, is a function from_Jdoml into | Jcodl but for allx, y such
that{x,y} € doml holds{l»(x),l2(y)} € codl.

Let us considek, Iy, 2. Let us assume that cbd= doml,. The functod; - I yields an element
of Maps:X and is defined by:

(Def. 13) |2 . |1 = ((d0m|1, C0d|2), (|2)2 . (|1)2).
One can prove the following propositions:

(22) If domly = codly, then(l2-11)2 = (I2)2- (11)2 and dontlz - 11) = doml; and codl; - 11) =
codl,.

(23) If d0m|2 = COd|1 and dOI’ﬂ3 = C0d|27 thenI3 . (|2 . |1) = (|3 . |2) . |1.
(24) (id(C))2 =idyc and domidC) = C and codidC) =C.
(25) I-id(doml)=1andidcodl) I =1.

Let us consideX. The functor DorgspX yields a function from MapsX into CSgX) and is
defined by:

(Def. 14) For every holds(DomcspX)(l) = doml.
The functor CodspX yields a function from MapsX into CSgX) and is defined by:
(Def. 15) For every holds(CodcspX)(l) = codl.

The functor-cspX yields a partial function froni Maps-X, Maps-X ] to Maps-X and is defined as
follows:

(Def. 16) For allly, 11 holds {2, 11) € dom-cspX iff doml> = codly and for allly, |1 such that
domly = codly holds(-cspX)({l2, 11)) =12-11.

3 The definition (Def. 9) has been removed.
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The functor I¢spX yields a function from CSX) into MapgX and is defined by:
(Def. 17)  For every holds(ldcspX)(C) =id(C).
We now state the proposition
(26) (CSpX),Maps-X,DomcspX, CodespX, -cspX, IdcspX) is a category.
Let us consideK. TheX-coherent space category yielding a category is defined by:

(Def. 18) TheX-coherent space categes(CSp(X), Maps-X, DomespX, CotespX, -cspX, ldcspX).

3. CATEGORY OF TOLERANCES

Let X be a set. The tolerances #nconstitute a set defined as follows:
(Def. 19) x € the tolerances oK iff xis a tolerance oK.

Let X be a set. Note that the tolerancesXrs non empty.
Let X be a set. The tolerances on subsetX abnstitute a set defined as follows:

(Def. 20) The tolerances on subsets<of | J{the tolerances o¥: Y ranges over subsets Xf.

Let X be a set. One can check that the tolerances on sub<¥tis afon empty.
One can prove the following propositions:

(27) x e the tolerances on subsetsXiff there existsA such thatA C X andx is a tolerance of
A

(28) [, € the tolerances oa.

(30f] 0 < the tolerances on subsets)f

(81) IfacC X, then, € the tolerances on subsetsXf
(32) IfacC X, thenid, € the tolerances on subsetsXf
(33) UOx € the tolerances on subsetsXf

(34) idx € the tolerances on subsetsXof

Let us consideK. The functor TOLX) yields a set and is defined by:

(Def. 21) TOLX) = {(t, Y);t ranges over elements of the tolerances on subsé{sYfanges over
elements of 2: t is a tolerance oY }.

Let us consideK. One can verify that TO(X) is non empty.
In the sequeT, T;, T, denote elements of TGKX).
One can prove the following propositions:

(35) (0,0) € TOL(X).

(36) IfaC X, then(ida, a) € TOL(X).
(37) IfaCX,then(O,, a) € TOL(X).
(88) (idx, X) € TOL(X).

(39) (Ox, X) € TOL(X).

Let us consideKX, T. ThenT, is an element of 2. ThenT; is a tolerance of>.
Let us consideK. The functor FuncsX yields a set and is defined by:

4 The proposition (29) has been removed.
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(Def. 22) FuncsX = U{((Tz)2)™2 : T ranges over elements of TQX), Tz ranges over elements of
TOL(X)}.

Let us consideK. Observe that FungX is non empty and functional.
In the sequef is an element of FungX.
One can prove the following proposition

(40) x e FuncsX iff there existTy, T, such that if(T,), = 0, then(T1), = 0 andx is a function
from (T1)2 into (T2)2.

Let us consideK. The functor MapsX yielding a set is defined by the condition (Def. 23).

(Def. 23) MapgX = {{{T, Ts), f); T ranges over elements of TQX), T3 ranges over elements of
TOL(X), f ranges over elements of Fupes: ((Tz)2 =0 = To =0) A f is a function from
T2into (Ts)2 A Axy ((%,¥) € To = (f(x), f(y)) € (Ta)1)}-

Let us consideX. Note that MapsX is non empty.
In the sequei, my, mp, Mg are elements of MapX.
The following propositions are true:

(41) There exisf, T1, T» such that
) m={(T,T2), f),
(i) if (T2)2=0,then(T1)2=10,
(i) fisafunction from(Ty), into (T2)2, and
(iv) forall x, y such thatx, y) € (T1)1 holds({f (x), f(y)) € (T2)1.

(42) Letf be a function from(T1)2 into (T2)2. Suppose i{T2)2 = 0, then(Ty), = 0 and for all
X, y such thafx, y) € (T1)1 holds{f(x), f(y)) € (T2)1. Then{(T1, T2), f) € Maps:X.

Let X be a set and lah be an element of MapX. One can check thaty, is function-like and
relation-like.

Let us consideK, m. The functor donmyields an element of TO(X) and is defined by:
(Def. 25§ domm= (my);.
The functor codnyielding an element of TO(X) is defined as follows:
(Def. 26) codn= (m)>.
Next we state the proposition
(43) m= ({domm, codm), m,).
Let us consideK, T. The functor idT) yields an element of MapX and is defined as follows:
(Def. 27) idT) = ((T,T),idr,).
Next we state the proposition

(44) (codm), £ 0 or (domm), = 0 butmy is a function from(domm), into (codm), but for all
X, y such thafx, y) € (domm); holds{my(x), mx(y)) € (codm);.

Let us consideX, my, mp. Let us assume that cogg = dommy,. The functormy - my yielding
an element of MapsX is defined by:

(Def. 28) mp-my = ((dommy, codmy), (mp)2- (My)2).

The following four propositions are true:

5 The definition (Def. 24) has been removed.
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(45) If domm, = codmy, then (mp-my)2 = (Mp)2 - (My)2 and donimy - my) = dommy and
codmp - my) = codmp.

(46) If dommp = codmy and dommg = codmy, thenmg - (My - my) = (Mg - Mp) - My
(47) (id(T))2 =idt, and domidT) =T and codidT) =T.
(48) m-id(domm) =mand idcodm)-m=m.

Let us consideX. The functor Domg yields a function from MapsX into TOL(X) and is
defined as follows:

(Def. 29) For everyn holds Donx (m) = domm.

The functor Cog yields a function from MapsX into TOL(X) and is defined as follows:
(Def. 30) For everynholds Cog (m) = codm.

The functor-x yields a partial function front Maps; X, Maps; X ] to Maps X and is defined by:

(Def. 31) For allmp, my holds(mp, my) € dom(-x) iff domm, = codmy and for allmy, my such that
dommy, = codmy holds-x ({mp, my)) = mp - my.

The functor I¢ yielding a function from TOICX) into Maps X is defined by:
(Def. 32) For everyl holds Idk(T) =id(T).

Next we state the proposition
(49) (TOL(X),MapsX,Domx,Codk,-x,ldx) is a category.
Let us consideX. TheX-tolerance category is a category and is defined by:

(Def. 33) TheX-tolerance category (TOL(X),Maps; X, Domy, Codx, -x, ldx).
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