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Summary. In this paper definitions of many sorted closure system and many sorted
closure operator are introduced. These notations are also introduced in [9], but in another
meaning. In this article closure system is absolutely multiplicative subset family of many
sorted sets and in [9] is many sorted absolutely multiplicative subset family of many sorted
sets. Analogously, closure operator is function between many sorted sets and in [9] is many
sorted function from a many sorted set into a many sorted set.

MML Identifier: CLOSURE2.

WWW: http://mizar.org/JFM/Vol8/closure2.html

The articles [11], [5], [15], [10], [16], [2], [4], [3], [6], [12], [13], [14], [1], [8], and [7] provide the
notation and terminology for this paper.

1. PRELIMINARIES

We adopt the following convention:i, x, I denote sets,A, B, M denote many sorted sets indexed by
I , and f , f1 denote functions.

Next we state two propositions:

(1) For every non empty setM and for all elementsX, Y of M such thatX ⊆Y holds idM(X)⊆
idM(Y).

(3)1 Let I be a non empty set,A be a many sorted set indexed byI , andB be a many sorted
subset indexed byA. Then rngB⊆

⋃
rng(2A).

Let us mention that every set which is empty is also functional.
Let us observe that there exists a set which is empty and functional.
Let f , g be functions. One can check that{ f ,g} is functional.

2. SET OF MANY SORTED SUBSETS OF AMANY SORTED SET

Let us considerI , M. The functor Bool(M) yielding a set is defined by:

(Def. 1) x∈ Bool(M) iff x is a many sorted subset indexed byM.

1 The proposition (2) has been removed.
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Let us considerI , M. Observe that Bool(M) is non empty and functional and has common
domain.

Let us considerI , M. A family of many sorted subsets indexed byM is a subset of Bool(M).
Let us considerI , M. Then Bool(M) is a family of many sorted subsets indexed byM.
Let us considerI , M. One can verify that there exists a family of many sorted subsets indexed

by M which is non empty and functional and has common domain.
Let us considerI , M. Observe that there exists a family of many sorted subsets indexed byM

which is empty and finite.
In the sequelS1, S2 denote families of many sorted subsets indexed byM.
Let us considerI , M and letSbe a non empty family of many sorted subsets indexed byM. We

see that the element ofS is a many sorted subset indexed byM.
The following propositions are true:

(4) S1∪S2 is a family of many sorted subsets indexed byM.

(5) S1∩S2 is a family of many sorted subsets indexed byM.

(6) S1\x is a family of many sorted subsets indexed byM.

(7) S1−. S2 is a family of many sorted subsets indexed byM.

(8) If A⊆ M, then{A} is a family of many sorted subsets indexed byM.

(9) If A⊆ M andB⊆ M, then{A,B} is a family of many sorted subsets indexed byM.

In the sequelE, T denote elements of Bool(M).
We now state four propositions:

(10) E∩T ∈ Bool(M).

(11) E∪T ∈ Bool(M).

(12) E \A∈ Bool(M).

(13) E−. T ∈ Bool(M).

3. MANY SORTED OPERATOR CORRESPONDING TO THEOPERATOR ONMANY SORTED

SUBSETS

Let Sbe a functional set. The functor|S| yields a function and is defined as follows:

(Def. 3)2(i) There exists a non empty functional setA such thatA = Sand dom|S| =
⋂
{domx : x

ranges over elements ofA} and for everyi such thati ∈ dom|S| holds|S|(i) = {x(i) : x ranges
over elements ofA} if S 6= /0,

(ii) |S|= /0, otherwise.

We now state the proposition

(14) For every non empty familyS1 of many sorted subsets indexed byM holds dom|S1|= I .

Let Sbe an empty functional set. Observe that|S| is empty.
Let us considerI , M and letS be a family of many sorted subsets indexed byM. The functor

|:S:| yielding a many sorted set indexed byI is defined by:

(Def. 4) |:S:|=
{
(i) |S|, if S 6= /0,

0I , otherwise.

Let us considerI , M and letSbe an empty family of many sorted subsets indexed byM. One
can verify that|:S:| is empty yielding.

Next we state the proposition

2 The definition (Def. 2) has been removed.
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(15) If S1 is non empty, then for everyi such thati ∈ I holds |:S1:|(i) = {x(i);x ranges over
elements of Bool(M): x∈ S1}.

Let us considerI , M and letS1 be a non empty family of many sorted subsets indexed byM.
One can check that|:S1:| is non-empty.

We now state several propositions:

(16) dom|{ f}|= dom f .

(17) dom|{ f , f1}|= dom f ∩dom f1.

(18) If i ∈ dom f , then|{ f}|(i) = { f (i)}.

(19) If i ∈ I andS1 = { f}, then|:S1:|(i) = { f (i)}.

(20) If i ∈ dom|{ f , f1}|, then|{ f , f1}|(i) = { f (i), f1(i)}.

(21) If i ∈ I andS1 = { f , f1}, then|:S1:|(i) = { f (i), f1(i)}.

Let us considerI , M, S1. Then|:S1:| is a subset family ofM.
One can prove the following propositions:

(22) If A∈ S1, thenA∈ |:S1:|.

(23) If S1 = {A,B}, then
⋃
|:S1:|= A∪B.

(24) If S1 = {E,T}, then
⋂
|:S1:|= E∩T.

(25) LetZ be a many sorted subset indexed byM. Suppose that for every many sorted setZ1

indexed byI such thatZ1 ∈ S1 holdsZ ⊆ Z1. ThenZ ⊆
⋂
|:S1:|.

(26) |:Bool(M):|= 2M.

Let us considerI , M and letI1 be a family of many sorted subsets indexed byM. We say thatI1
is additive if and only if:

(Def. 5) For allA, B such thatA∈ I1 andB∈ I1 holdsA∪B∈ I1.

We say thatI1 is absolutely-additive if and only if:

(Def. 6) For every familyF of many sorted subsets indexed byM such thatF ⊆ I1 holds
⋃
|:F :| ∈ I1.

We say thatI1 is multiplicative if and only if:

(Def. 7) For allA, B such thatA∈ I1 andB∈ I1 holdsA∩B∈ I1.

We say thatI1 is absolutely-multiplicative if and only if:

(Def. 8) For every familyF of many sorted subsets indexed byM such thatF ⊆ I1 holds
⋂
|:F :| ∈ I1.

We say thatI1 is properly upper bound if and only if:

(Def. 9) M ∈ I1.

We say thatI1 is properly lower bound if and only if:

(Def. 10) 0I ∈ I1.

Let us considerI , M. One can check that there exists a family of many sorted subsets in-
dexed byM which is non empty, functional, additive, absolutely-additive, multiplicative, absolutely-
multiplicative, properly upper bound, and properly lower bound and has common domain.

Let us considerI , M. Then Bool(M) is an additive absolutely-additive multiplicative absolutely-
multiplicative properly upper bound properly lower bound family of many sorted subsets indexed
by M.



ON THE CLOSURE OPERATOR AND THE CLOSURE. . . 4

Let us considerI , M. Observe that every family of many sorted subsets indexed byM which is
absolutely-additive is also additive.

Let us considerI , M. Observe that every family of many sorted subsets indexed byM which is
absolutely-multiplicative is also multiplicative.

Let us considerI , M. One can check that every family of many sorted subsets indexed byM
which is absolutely-multiplicative is also properly upper bound.

Let us considerI , M. Observe that every family of many sorted subsets indexed byM which is
properly upper bound is also non empty.

Let us considerI , M. Observe that every family of many sorted subsets indexed byM which is
absolutely-additive is also properly lower bound.

Let us considerI , M. One can verify that every family of many sorted subsets indexed byM
which is properly lower bound is also non empty.

4. PROPERTIES OFCLOSUREOPERATORS

Let us considerI , M. A set operation inM is a function from Bool(M) into Bool(M).
Let us considerI , M, let f be a set operation inM, and letx be an element of Bool(M). Then

f (x) is an element of Bool(M).
Let us considerI , M and letI1 be a set operation inM. We say thatI1 is reflexive if and only if:

(Def. 12)3 For every elementx of Bool(M) holdsx⊆ I1(x).

We say thatI1 is monotonic if and only if:

(Def. 13) For all elementsx, y of Bool(M) such thatx⊆ y holdsI1(x)⊆ I1(y).

We say thatI1 is idempotent if and only if:

(Def. 14) For every elementx of Bool(M) holdsI1(x) = I1(I1(x)).

We say thatI1 is topological if and only if:

(Def. 15) For all elementsx, y of Bool(M) holdsI1(x∪y) = I1(x)∪ I1(y).

Let us considerI , M. Note that there exists a set operation inM which is reflexive, monotonic,
idempotent, and topological.

The following propositions are true:

(27) idBool(A) is a reflexive set operation inA.

(28) idBool(A) is a monotonic set operation inA.

(29) idBool(A) is an idempotent set operation inA.

(30) idBool(A) is a topological set operation inA.

In the sequelg, h are set operations inM.
We now state three propositions:

(31) If E = M andg is reflexive, thenE = g(E).

(32) If g is reflexive and for every elementX of Bool(M) holdsg(X)⊆ X, theng is idempotent.

(33) For every elementA of Bool(M) such thatA = E∩T holds if g is monotonic, theng(A)⊆
g(E)∩g(T).

Let us considerI , M. Note that every set operation inM which is topological is also monotonic.
One can prove the following proposition

3 The definition (Def. 11) has been removed.
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(34) For every elementA of Bool(M) such thatA = E \T holds if g is topological, theng(E)\
g(T)⊆ g(A).

Let us considerI , M, h, g. Theng·h is a set operation inM.
Next we state four propositions:

(35) If g is reflexive andh is reflexive, theng·h is reflexive.

(36) If g is monotonic andh is monotonic, theng·h is monotonic.

(37) If g is idempotent andh is idempotent andg·h = h·g, theng·h is idempotent.

(38) If g is topological andh is topological, theng·h is topological.

5. ON THE CLOSUREOPERATOR AND THECLOSURESYSTEM

In the sequelS is a 1-sorted structure.
Let us considerS. We introduce closure system structures overSwhich are extensions of many-

sorted structure overSand are systems
〈 sorts, a family〉,

where the sorts constitute a many sorted set indexed by the carrier ofSand the family is a family of
many sorted subsets indexed by the sorts.

In the sequelM1 denotes a many-sorted structure overS.
Let us considerSand letI1 be a closure system structure overS. We say thatI1 is additive if and

only if:

(Def. 16) The family ofI1 is additive.

We say thatI1 is absolutely-additive if and only if:

(Def. 17) The family ofI1 is absolutely-additive.

We say thatI1 is multiplicative if and only if:

(Def. 18) The family ofI1 is multiplicative.

We say thatI1 is absolutely-multiplicative if and only if:

(Def. 19) The family ofI1 is absolutely-multiplicative.

We say thatI1 is properly upper bound if and only if:

(Def. 20) The family ofI1 is properly upper bound.

We say thatI1 is properly lower bound if and only if:

(Def. 21) The family ofI1 is properly lower bound.

Let us considerS, M1. The functor Full(M1) yielding a closure system structure overSis defined
as follows:

(Def. 22) Full(M1) = 〈the sorts ofM1, Bool(the sorts ofM1)〉.

Let us considerS, M1. Note that Full(M1) is strict, additive, absolutely-additive, multiplicative,
absolutely-multiplicative, properly upper bound, and properly lower bound.

Let us considerS and let M1 be a non-empty many-sorted structure overS. Observe that
Full(M1) is non-empty.

Let us considerS. Note that there exists a closure system structure overS which is strict,
non-empty, additive, absolutely-additive, multiplicative, absolutely-multiplicative, properly upper
bound, and properly lower bound.

Let us considerSand letC1 be an additive closure system structure overS. Note that the family
of C1 is additive.
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Let us considerSand letC1 be an absolutely-additive closure system structure overS. Note that
the family ofC1 is absolutely-additive.

Let us considerS and letC1 be a multiplicative closure system structure overS. Note that the
family of C1 is multiplicative.

Let us considerSand letC1 be an absolutely-multiplicative closure system structure overS. One
can verify that the family ofC1 is absolutely-multiplicative.

Let us considerSand letC1 be a properly upper bound closure system structure overS. One can
check that the family ofC1 is properly upper bound.

Let us considerS and letC1 be a properly lower bound closure system structure overS. Note
that the family ofC1 is properly lower bound.

Let us considerS, let M be a non-empty many sorted set indexed by the carrier ofS, and letF
be a family of many sorted subsets indexed byM. One can check that〈M,F〉 is non-empty.

Let us considerS, M1 and letF be an additive family of many sorted subsets indexed by the
sorts ofM1. Note that〈the sorts ofM1, F〉 is additive.

Let us considerS, M1 and letF be an absolutely-additive family of many sorted subsets indexed
by the sorts ofM1. Observe that〈the sorts ofM1, F〉 is absolutely-additive.

Let us considerS, M1 and letF be a multiplicative family of many sorted subsets indexed by the
sorts ofM1. One can check that〈the sorts ofM1, F〉 is multiplicative.

Let us considerS, M1 and letF be an absolutely-multiplicative family of many sorted subsets
indexed by the sorts ofM1. Observe that〈the sorts ofM1, F〉 is absolutely-multiplicative.

Let us considerS, M1 and letF be a properly upper bound family of many sorted subsets indexed
by the sorts ofM1. One can check that〈the sorts ofM1, F〉 is properly upper bound.

Let us considerS, M1 and letF be a properly lower bound family of many sorted subsets indexed
by the sorts ofM1. Observe that〈the sorts ofM1, F〉 is properly lower bound.

Let us considerS. One can check that every closure system structure overSwhich is absolutely-
additive is also additive.

Let us considerS. Observe that every closure system structure overS which is absolutely-
multiplicative is also multiplicative.

Let us considerS. Note that every closure system structure overS which is absolutely-
multiplicative is also properly upper bound.

Let us considerS. One can verify that every closure system structure overSwhich is absolutely-
additive is also properly lower bound.

Let us considerS. A closure system ofS is an absolutely-multiplicative closure system structure
overS.

Let us considerI , M. A closure operator ofM is a reflexive monotonic idempotent set operation
in M.

Next we state the proposition

(39) Let A be a many sorted set indexed by the carrier ofS, f be a reflexive monotonic set
operation inA, andD be a family of many sorted subsets indexed byA. SupposeD = {x;x
ranges over elements of Bool(A): f (x) = x}. Then〈A,D〉 is a closure system ofS.

Let us considerS, let A be a many sorted set indexed by the carrier ofS, and letg be a closure
operator ofA. The functor ClSys(g) yields a strict closure system ofSand is defined by:

(Def. 23) The sorts of ClSys(g) = A and the family of ClSys(g) = {x;x ranges over elements of
Bool(A): g(x) = x}.

Let us considerS, let A be a closure system ofS, and letC be a many sorted subset indexed
by the sorts ofA. The functorC yields an element of Bool(the sorts ofA) and is defined by the
condition (Def. 24).

(Def. 24) There exists a familyF of many sorted subsets indexed by the sorts ofA such thatC =⋂
|:F :| andF = {X;X ranges over elements of Bool(the sorts ofA): C⊆ X ∧ X ∈ the family

of A}.

The following propositions are true:
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(40) Let D be a closure system ofS, a be an element of Bool(the sorts ofD), and f be a set
operation in the sorts ofD. Supposea∈ the family ofD and for every elementx of Bool(the
sorts ofD) holds f (x) = x. Then f (a) = a.

(41) Let D be a closure system ofS, a be an element of Bool(the sorts ofD), and f be a set
operation in the sorts ofD. Supposef (a) = a and for every elementx of Bool(the sorts ofD)
holds f (x) = x. Thena∈ the family ofD.

(42) LetD be a closure system ofSand f be a set operation in the sorts ofD. Suppose that for
every elementx of Bool(the sorts ofD) holds f (x) = x. Then f is reflexive, monotonic, and
idempotent.

Let us considerS and letD be a closure system ofS. The functor ClOp(D) yields a closure
operator of the sorts ofD and is defined as follows:

(Def. 25) For every elementx of Bool(the sorts ofD) holds(ClOp(D))(x) = x.

Next we state two propositions:

(43) For every many sorted setA indexed by the carrier ofSand for every closure operatorf of
A holds ClOp(ClSys( f )) = f .

(44) For every closure systemD of Sholds ClSys(ClOp(D)) = the closure system structure of
D.
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