On the Closure Operator and the Closure System of Many Sorted Sets

Artur Korniłowicz Institute of Mathematics Warsaw University Białystok

Summary. In this paper definitions of many sorted closure system and many sorted closure operator are introduced. These notations are also introduced in [9], but in another meaning. In this article closure system is absolutely multiplicative subset family of many sorted sets and in [9] is many sorted absolutely multiplicative subset family of many sorted sets. Analogously, closure operator is function between many sorted sets and in [9] is many sorted function from a many sorted set into a many sorted set.

MML Identifier: CLOSURE2.

WWW: http://mizar.org/JFM/Vol8/closure2.html

The articles [11], [5], [15], [10], [16], [2], [4], [3], [6], [12], [13], [14], [1], [8], and [7] provide the notation and terminology for this paper.

1. Preliminaries

We adopt the following convention: i, x, I denote sets, A, B, M denote many sorted sets indexed by I, and f, f_1 denote functions.

Next we state two propositions:

- (1) For every non empty set M and for all elements X, Y of M such that $X \subseteq Y$ holds $id_M(X) \subseteq id_M(Y)$.
- (3)^I Let I be a non empty set, A be a many sorted set indexed by I, and B be a many sorted subset indexed by A. Then $\operatorname{rng} B \subseteq \bigcup \operatorname{rng}(2^A)$.

Let us mention that every set which is empty is also functional. Let us observe that there exists a set which is empty and functional. Let f, g be functions. One can check that $\{f,g\}$ is functional.

2. SET OF MANY SORTED SUBSETS OF A MANY SORTED SET

Let us consider I, M. The functor Bool(M) yielding a set is defined by:

(Def. 1) $x \in Bool(M)$ iff x is a many sorted subset indexed by M.

1

¹ The proposition (2) has been removed.

Let us consider I, M. Observe that Bool(M) is non empty and functional and has common domain.

Let us consider I, M. A family of many sorted subsets indexed by M is a subset of Bool(M).

Let us consider I, M. Then Bool(M) is a family of many sorted subsets indexed by M.

Let us consider I, M. One can verify that there exists a family of many sorted subsets indexed by M which is non empty and functional and has common domain.

Let us consider I, M. Observe that there exists a family of many sorted subsets indexed by M which is empty and finite.

In the sequel S_1 , S_2 denote families of many sorted subsets indexed by M.

Let us consider *I*, *M* and let *S* be a non empty family of many sorted subsets indexed by *M*. We see that the element of *S* is a many sorted subset indexed by *M*.

The following propositions are true:

- (4) $S_1 \cup S_2$ is a family of many sorted subsets indexed by M.
- (5) $S_1 \cap S_2$ is a family of many sorted subsets indexed by M.
- (6) $S_1 \setminus x$ is a family of many sorted subsets indexed by M.
- (7) $S_1 \dot{-} S_2$ is a family of many sorted subsets indexed by M.
- (8) If $A \subseteq M$, then $\{A\}$ is a family of many sorted subsets indexed by M.
- (9) If $A \subseteq M$ and $B \subseteq M$, then $\{A, B\}$ is a family of many sorted subsets indexed by M.

In the sequel E, T denote elements of Bool(M).

We now state four propositions:

- (10) $E \cap T \in \text{Bool}(M)$.
- (11) $E \cup T \in \text{Bool}(M)$.
- (12) $E \setminus A \in Bool(M)$.
- (13) $E \dot{-} T \in \text{Bool}(M)$.
- 3. Many Sorted Operator corresponding to the Operator on Many Sorted Subsets

Let S be a functional set. The functor |S| yields a function and is defined as follows:

- (Def. 3)²(i) There exists a non empty functional set A such that A = S and $dom |S| = \bigcap \{dom x : x \text{ ranges over elements of } A\}$ and for every i such that $i \in dom |S|$ holds $|S|(i) = \{x(i) : x \text{ ranges over elements of } A\}$ if $S \neq \emptyset$,
 - (ii) $|S| = \emptyset$, otherwise.

We now state the proposition

(14) For every non empty family S_1 of many sorted subsets indexed by M holds dom $|S_1| = I$.

Let *S* be an empty functional set. Observe that |S| is empty.

Let us consider I, M and let S be a family of many sorted subsets indexed by M. The functor |:S:| yielding a many sorted set indexed by I is defined by:

(Def. 4)
$$|:S:| = \begin{cases} i & |S|, \text{ if } S \neq \emptyset, \\ \mathbf{0}_I, \text{ otherwise.} \end{cases}$$

Let us consider I, M and let S be an empty family of many sorted subsets indexed by M. One can verify that |:S:| is empty yielding.

Next we state the proposition

² The definition (Def. 2) has been removed.

(15) If S_1 is non empty, then for every i such that $i \in I$ holds $|:S_1:|(i) = \{x(i); x \text{ ranges over elements of Bool}(M): <math>x \in S_1\}$.

Let us consider I, M and let S_1 be a non empty family of many sorted subsets indexed by M. One can check that $|:S_1:|$ is non-empty.

We now state several propositions:

- (16) $\operatorname{dom} |\{f\}| = \operatorname{dom} f$.
- (17) $\operatorname{dom} |\{f, f_1\}| = \operatorname{dom} f \cap \operatorname{dom} f_1.$
- (18) If $i \in \text{dom } f$, then $|\{f\}|(i) = \{f(i)\}$.
- (19) If $i \in I$ and $S_1 = \{f\}$, then $|:S_1:|(i) = \{f(i)\}$.
- (20) If $i \in \text{dom}[\{f, f_1\}]$, then $|\{f, f_1\}|(i) = \{f(i), f_1(i)\}$.
- (21) If $i \in I$ and $S_1 = \{f, f_1\}$, then $|:S_1:|(i) = \{f(i), f_1(i)\}$.

Let us consider I, M, S_1 . Then $|:S_1:|$ is a subset family of M. One can prove the following propositions:

- (22) If $A \in S_1$, then $A \in |:S_1:|$.
- (23) If $S_1 = \{A, B\}$, then $\bigcup |:S_1:| = A \cup B$.
- (24) If $S_1 = \{E, T\}$, then $\bigcap |:S_1:| = E \cap T$.
- (25) Let Z be a many sorted subset indexed by M. Suppose that for every many sorted set Z_1 indexed by I such that $Z_1 \in S_1$ holds $Z \subseteq Z_1$. Then $Z \subseteq \bigcap |:S_1:|$.
- (26) $|:Bool(M):| = 2^M$.

Let us consider I, M and let I_1 be a family of many sorted subsets indexed by M. We say that I_1 is additive if and only if:

(Def. 5) For all A, B such that $A \in I_1$ and $B \in I_1$ holds $A \cup B \in I_1$.

We say that I_1 is absolutely-additive if and only if:

- (Def. 6) For every family F of many sorted subsets indexed by M such that $F \subseteq I_1$ holds $\bigcup |:F:| \in I_1$. We say that I_1 is multiplicative if and only if:
- (Def. 7) For all A, B such that $A \in I_1$ and $B \in I_1$ holds $A \cap B \in I_1$.

We say that I_1 is absolutely-multiplicative if and only if:

(Def. 8) For every family F of many sorted subsets indexed by M such that $F \subseteq I_1$ holds $\bigcap |:F:| \in I_1$. We say that I_1 is properly upper bound if and only if:

(Def. 9) $M \in I_1$.

We say that I_1 is properly lower bound if and only if:

(Def. 10) $\mathbf{0}_I \in I_1$.

Let us consider I, M. One can check that there exists a family of many sorted subsets indexed by M which is non empty, functional, additive, absolutely-additive, multiplicative, absolutely-multiplicative, properly upper bound, and properly lower bound and has common domain.

Let us consider I, M. Then Bool(M) is an additive absolutely-additive multiplicative absolutely-multiplicative properly upper bound properly lower bound family of many sorted subsets indexed by M.

Let us consider I, M. Observe that every family of many sorted subsets indexed by M which is absolutely-additive is also additive.

Let us consider I, M. Observe that every family of many sorted subsets indexed by M which is absolutely-multiplicative is also multiplicative.

Let us consider I, M. One can check that every family of many sorted subsets indexed by M which is absolutely-multiplicative is also properly upper bound.

Let us consider I, M. Observe that every family of many sorted subsets indexed by M which is properly upper bound is also non empty.

Let us consider I, M. Observe that every family of many sorted subsets indexed by M which is absolutely-additive is also properly lower bound.

Let us consider I, M. One can verify that every family of many sorted subsets indexed by M which is properly lower bound is also non empty.

4. Properties of Closure Operators

Let us consider I, M. A set operation in M is a function from Bool(M) into Bool(M).

Let us consider I, M, let f be a set operation in M, and let x be an element of Bool(M). Then f(x) is an element of Bool(M).

Let us consider I, M and let I_1 be a set operation in M. We say that I_1 is reflexive if and only if:

(Def. 12)³ For every element *x* of Bool(*M*) holds $x \subseteq I_1(x)$.

We say that I_1 is monotonic if and only if:

(Def. 13) For all elements x, y of Bool(M) such that $x \subseteq y$ holds $I_1(x) \subseteq I_1(y)$.

We say that I_1 is idempotent if and only if:

(Def. 14) For every element x of Bool(M) holds $I_1(x) = I_1(I_1(x))$.

We say that I_1 is topological if and only if:

(Def. 15) For all elements x, y of Bool(M) holds $I_1(x \cup y) = I_1(x) \cup I_1(y)$.

Let us consider I, M. Note that there exists a set operation in M which is reflexive, monotonic, idempotent, and topological.

The following propositions are true:

- (27) $id_{Bool(A)}$ is a reflexive set operation in A.
- (28) $id_{Bool(A)}$ is a monotonic set operation in A.
- (29) $id_{Bool(A)}$ is an idempotent set operation in A.
- (30) $id_{Bool(A)}$ is a topological set operation in A.

In the sequel g, h are set operations in M.

We now state three propositions:

- (31) If E = M and g is reflexive, then E = g(E).
- (32) If g is reflexive and for every element X of Bool(M) holds $g(X) \subseteq X$, then g is idempotent.
- (33) For every element *A* of Bool(*M*) such that $A = E \cap T$ holds if *g* is monotonic, then $g(A) \subseteq g(E) \cap g(T)$.

Let us consider I, M. Note that every set operation in M which is topological is also monotonic. One can prove the following proposition

³ The definition (Def. 11) has been removed.

(34) For every element A of Bool(M) such that $A = E \setminus T$ holds if g is topological, then $g(E) \setminus g(T) \subseteq g(A)$.

Let us consider I, M, h, g. Then $g \cdot h$ is a set operation in M. Next we state four propositions:

- (35) If g is reflexive and h is reflexive, then $g \cdot h$ is reflexive.
- (36) If g is monotonic and h is monotonic, then $g \cdot h$ is monotonic.
- (37) If g is idempotent and h is idempotent and $g \cdot h = h \cdot g$, then $g \cdot h$ is idempotent.
- (38) If g is topological and h is topological, then $g \cdot h$ is topological.

5. ON THE CLOSURE OPERATOR AND THE CLOSURE SYSTEM

In the sequel *S* is a 1-sorted structure.

Let us consider S. We introduce closure system structures over S which are extensions of many-sorted structure over S and are systems

 \langle sorts, a family \rangle ,

where the sorts constitute a many sorted set indexed by the carrier of *S* and the family is a family of many sorted subsets indexed by the sorts.

In the sequel M_1 denotes a many-sorted structure over S.

Let us consider S and let I_1 be a closure system structure over S. We say that I_1 is additive if and only if:

(Def. 16) The family of I_1 is additive.

We say that I_1 is absolutely-additive if and only if:

(Def. 17) The family of I_1 is absolutely-additive.

We say that I_1 is multiplicative if and only if:

(Def. 18) The family of I_1 is multiplicative.

We say that I_1 is absolutely-multiplicative if and only if:

(Def. 19) The family of I_1 is absolutely-multiplicative.

We say that I_1 is properly upper bound if and only if:

(Def. 20) The family of I_1 is properly upper bound.

We say that I_1 is properly lower bound if and only if:

(Def. 21) The family of I_1 is properly lower bound.

Let us consider S, M_1 . The functor $Full(M_1)$ yielding a closure system structure over S is defined as follows:

(Def. 22) Full(M_1) = \langle the sorts of M_1 , Bool(the sorts of M_1) \rangle .

Let us consider S, M_1 . Note that $Full(M_1)$ is strict, additive, absolutely-additive, multiplicative, absolutely-multiplicative, properly upper bound, and properly lower bound.

Let us consider S and let M_1 be a non-empty many-sorted structure over S. Observe that $Full(M_1)$ is non-empty.

Let us consider S. Note that there exists a closure system structure over S which is strict, non-empty, additive, absolutely-additive, multiplicative, absolutely-multiplicative, properly upper bound, and properly lower bound.

Let us consider S and let C_1 be an additive closure system structure over S. Note that the family of C_1 is additive.

Let us consider S and let C_1 be an absolutely-additive closure system structure over S. Note that the family of C_1 is absolutely-additive.

Let us consider S and let C_1 be a multiplicative closure system structure over S. Note that the family of C_1 is multiplicative.

Let us consider S and let C_1 be an absolutely-multiplicative closure system structure over S. One can verify that the family of C_1 is absolutely-multiplicative.

Let us consider S and let C_1 be a properly upper bound closure system structure over S. One can check that the family of C_1 is properly upper bound.

Let us consider S and let C_1 be a properly lower bound closure system structure over S. Note that the family of C_1 is properly lower bound.

Let us consider S, let M be a non-empty many sorted set indexed by the carrier of S, and let F be a family of many sorted subsets indexed by M. One can check that $\langle M, F \rangle$ is non-empty.

Let us consider S, M_1 and let F be an additive family of many sorted subsets indexed by the sorts of M_1 . Note that \langle the sorts of M_1 , $F \rangle$ is additive.

Let us consider S, M_1 and let F be an absolutely-additive family of many sorted subsets indexed by the sorts of M_1 . Observe that \langle the sorts of M_1 , $F \rangle$ is absolutely-additive.

Let us consider S, M_1 and let F be a multiplicative family of many sorted subsets indexed by the sorts of M_1 . One can check that \langle the sorts of M_1 , $F \rangle$ is multiplicative.

Let us consider S, M_1 and let F be an absolutely-multiplicative family of many sorted subsets indexed by the sorts of M_1 . Observe that \langle the sorts of M_1 , $F \rangle$ is absolutely-multiplicative.

Let us consider S, M_1 and let F be a properly upper bound family of many sorted subsets indexed by the sorts of M_1 . One can check that \langle the sorts of M_1 , $F \rangle$ is properly upper bound.

Let us consider S, M_1 and let F be a properly lower bound family of many sorted subsets indexed by the sorts of M_1 . Observe that \langle the sorts of M_1 , $F \rangle$ is properly lower bound.

Let us consider S. One can check that every closure system structure over S which is absolutely-additive is also additive.

Let us consider S. Observe that every closure system structure over S which is absolutely-multiplicative is also multiplicative.

Let us consider S. Note that every closure system structure over S which is absolutely-multiplicative is also properly upper bound.

Let us consider *S*. One can verify that every closure system structure over *S* which is absolutely-additive is also properly lower bound.

Let us consider *S*. A closure system of *S* is an absolutely-multiplicative closure system structure over *S*.

Let us consider I, M. A closure operator of M is a reflexive monotonic idempotent set operation in M.

Next we state the proposition

(39) Let A be a many sorted set indexed by the carrier of S, f be a reflexive monotonic set operation in A, and D be a family of many sorted subsets indexed by A. Suppose $D = \{x; x \text{ ranges over elements of Bool}(A): f(x) = x\}$. Then $\langle A, D \rangle$ is a closure system of S.

Let us consider S, let A be a many sorted set indexed by the carrier of S, and let g be a closure operator of A. The functor ClSys(g) yields a strict closure system of S and is defined by:

(Def. 23) The sorts of ClSys(g) = A and the family of ClSys $(g) = \{x; x \text{ ranges over elements of Bool}(A): <math>g(x) = x\}$.

Let us consider S, let A be a closure system of S, and let C be a many sorted subset indexed by the sorts of A. The functor \overline{C} yields an element of Bool(the sorts of A) and is defined by the condition (Def. 24).

(Def. 24) There exists a family F of many sorted subsets indexed by the sorts of A such that $\overline{C} = \bigcap |:F:|$ and $F = \{X; X \text{ ranges over elements of Bool(the sorts of } A): <math>C \subseteq X \land X \in \text{the family of } A\}$.

The following propositions are true:

- (40) Let D be a closure system of S, a be an element of Bool(the sorts of D), and f be a set operation in the sorts of D. Suppose $a \in$ the family of D and for every element x of Bool(the sorts of D) holds $f(x) = \overline{x}$. Then f(a) = a.
- (41) Let D be a closure system of S, a be an element of Bool(the sorts of D), and f be a set operation in the sorts of D. Suppose f(a) = a and for every element x of Bool(the sorts of D) holds $f(x) = \overline{x}$. Then $a \in \text{the family of } D$.
- (42) Let D be a closure system of S and f be a set operation in the sorts of D. Suppose that for every element x of Bool(the sorts of D) holds $f(x) = \overline{x}$. Then f is reflexive, monotonic, and idempotent.

Let us consider S and let D be a closure system of S. The functor ClOp(D) yields a closure operator of the sorts of D and is defined as follows:

(Def. 25) For every element *x* of Bool(the sorts of *D*) holds $(ClOp(D))(x) = \bar{x}$.

Next we state two propositions:

- (43) For every many sorted set A indexed by the carrier of S and for every closure operator f of A holds ClOp(ClSys(f)) = f.
- (44) For every closure system D of S holds ClSys(ClOp(D)) = the closure system structure of D.

REFERENCES

- Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_2.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc 1.html.
- [6] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [7] Artur Kornilowicz. Certain facts about families of subsets of many sorted sets. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/mssubfam.html.
- [8] Artur Korniłowicz. Definitions and basic properties of boolean and union of many sorted sets. *Journal of Formalized Mathematics*, 7, 1995. http://mizar.org/JFM/Vol7/mboolean.html.
- [9] Artur Kornitowicz. On the many sorted closure operator and the many sorted closure system. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/closure1.html.
- [10] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [12] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fraenkel.html.
- [13] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [14] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1. html.
- $[15] \enskip \textbf{Zinaida Trybulec. Properties of subsets.} \enskip \textbf{Journal of Formalized Mathematics}, \textbf{1, 1989. } \\ \texttt{http://mizar.org/JFM/Vol1/subset_1.html.}$

[16] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received February 7, 1996

Published January 2, 2004