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1. PRELIMINARIES

For simplicity, we adopt the following rules; x, | denote setsA, M denote many sorted sets
indexed byl, f denotes a function, arfel denotes a many sorted function indexed by
The scheméMSSUBSETeals with a sefd, a non-empty many sorted s@tindexed by4, a
many sorted saf indexed by4, and a unary predicat®, and states that:
If for every many sorted set indexed by4 holdsX € B iff X € € andP[X], then
BCC
for all values of the parameters.
One can prove the following two propositions:

(1) LetX be a non empty set andy be sets. I Cy, then{t;t ranges over elements &f.
y Ct} C {zzranges over elements ¥f x C z}.

(2) If there existA such thatA € M, thenM is non-empty.

Let us considel, F, A. ThenF < Ais a many sorted set indexed hy

Let us considel, let A, B be non-empty many sorted sets indexed gt F be a many sorted
function fromA into B, and letX be an element 0A. ThenF < X is an element oB.

The following propositions are true:

(3) LetA, X be many sorted sets indexed Iy be a non-empty many sorted set indexed by
andF be a many sorted function frofinto B. If X € A, thenF - X € B.

(4) LetF, G be many sorted functions indexed bgndA be a many sorted set indexed by
If Ae domG(K), thenF <P (G A) = (FoG) A

(5) If Fis“1-1”, then for all many sorted sefs B indexed byl such thatA € dom, F (k) and
B € domcF (k) andF «# A=F < BholdsA=B.

(6) Suppose dogpF (k) is non-empty and for all many sorted sétsB indexed byl such that
A € dom F(K) andB € dom F (k) andF «p A=F <, B holdsA=B. ThenF is “1-1".
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(7) LetA, B be non-empty many sorted sets indexed landF, G be many sorted functions
from Ainto B. If for everyM such thaM € A holdsF «# M = G <P M, thenF = G.

Let us considet, M. Observe that there exists an element ¥fvghich is empty yielding and
locally-finite.

2. PROPERTIES OFMANY SORTED CLOSURE OPERATORS

Let us considet, M. A set many sorted operation vt is a many sorted function from2into 2.
Let us considel, M, let O be a set many sorted operationhih and letX be an element of'%.
ThenO p X is an element of .
Let us considel, M and letl; be a set many sorted operationvh We say that; is reflexive if
and only if:

(Def. 2ff] For every elemenX of 2 holdsX C I3 «p X.
We say that; is monotonic if and only if:

(Def. 3) For all elementX, Y of 2Y such thaiX C Y holdsly <P X C 11 <PY.
We say that; is idempotent if and only if:

(Def. 4) For every elemenX of 2V holdsly <P X = Iy <P (I3 <P X).
We say that; is topological if and only if:

(Def. 5) For all elementX, Y of 2Y holdsly <P (XUY) =11 <P XUl «<PY.

The following propositions are true:

(8) For every non-empty many sorted 8&indexed byl and for every elemerX of M holds
X =idy «P X.

(9) LetM be a non-empty many sorted set indexed lapdX, Y be elements of. If X C Y,
thenidy <P X Cidy «PY.

(10) LetM be a non-empty many sorted set indexed bypdX, Y be elements df. If XUY is
an element oM, then idy <P (XUY) =idy <P XUidy <.

(11) LetX be an element of" andi, x be sets. Supposec | andx € (idm <P X)(i). Then
there exists a locally-finite eleme¥itof 2¥ such thaty C X andx € (idom <P Y)(i).

Let us considett, M. Observe that there exists a set many sorted operatidh which is
reflexive, monotonic, idempotent, and topological.
The following propositions are true:

(12) ida is a reflexive set many sorted operatiorAin
(13) idya is @ monotonic set many sorted operatiorin
(14) idya is an idempotent set many sorted operatioA.in
(15) idya is a topological set many sorted operatioriin

In the sequeP, R are set many sorted operationdMnandE, T are elements of*$.
One can prove the following three propositions:

(16) If E=M andP is reflexive, therE =P < E.

(17) I Pis reflexive and for every elemeNtof 2V holdsP «p X C X, thenP is idempotent.

1 The definition (Def. 1) has been removed.
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(18) If Pis monotonic, thef® < (ENT) CP-PENP < T.

Let us considel, M. One can verify that every set many sorted operatioM iwhich is topo-
logical is also monotonic.
We now state the proposition

(19) If Pistopological, the®® -PE\P T CP <P (E\T).

Let us considel, M, R, P. ThenPoRis a set many sorted operationhh
We now state several propositions:

(20) If Pis reflexive andRis reflexive, therP o Ris reflexive.

(21) If Pis monotonic andR is monotonic, the? o Ris monotonic.

(22) If Pisidempotent an® is idempotent an® o R= Ro P, thenP o Ris idempotent.
(23) If Pis topological andris topological, therP o Ris topological.

(24) IfPisreflexive and € | andf = P(i), then for every elementof 2M() holdsx C f ().

(25) If Pis monotonic and € | and f = P(i), then for all elements, y of 2¥() such tha C y
holds f(x) C f(y).

(26) If Pis idempotent and e | and f = P(i), then for every element of 2() holds f (x) =
f(f(x)).

(27) If Pistopological and € | andf = P(i), then for all elements, y of 2M() holds f (xUy) =
fO)Uf(y).

3. ON THE MANY SORTED CLOSUREOPERATOR AND THEMANY SORTED CLOSURE
SYSTEM

In the sequeSBis a 1-sorted structure.

Let us consideB. We introduce many sorted closure system structures®wgrich are exten-
sions of many-sorted structure ov@and are systems

( sorts, a family,
where the sorts constitute a many sorted set indexed by the carSaaraf the family is a subset
family of the sorts.

In the sequeM; is a many-sorted structure ov&r

Let us consideS and letl; be a many sorted closure system structure Qvéffe say that; is
additive if and only if:

(Def. 6) The family ofi; is additive.
We say that; is absolutely-additive if and only if:
(Def. 7) The family ofl; is absolutely-additive.
We say that; is multiplicative if and only if:
(Def. 8) The family ofl1 is multiplicative.
We say that; is absolutely-multiplicative if and only if:
(Def. 9) The family ofl; is absolutely-multiplicative.
We say that; is properly upper bound if and only if:
(Def. 10) The family ofl; is properly upper bound.

We say that; is properly lower bound if and only if:
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(Def. 11) The family ofi; is properly lower bound.

Let us conside§, M;. The functor MSFullM;) yielding a many sorted closure system structure
overSis defined as follows:

(Def. 12) MSFullM;) = (the sorts oMy, 2he sorts oMz

Let us conside§, M;. Note that MSFullM;) is strict, additive, absolutely-additive, multiplica-
tive, absolutely-multiplicative, properly upper bound, and properly lower bound.

Let us consideB and letM; be a non-empty many-sorted structure 08e©ne can verify that
MSFull(M1) is non-empty.

Let us consideB. One can verify that there exists a many sorted closure system structure over
Swhich is strict, non-empty, additive, absolutely-additive, multiplicative, absolutely-multiplicative,
properly upper bound, and properly lower bound.

Let us consideBand letC; be an additive many sorted closure system structure®v@bserve
that the family ofC; is additive.

Let us consideBand letC; be an absolutely-additive many sorted closure system structure over
S Observe that the family @; is absolutely-additive.

Let us considefs and letC; be a multiplicative many sorted closure system structure Sver
One can verify that the family @, is multiplicative.

Let us consideBand letC; be an absolutely-multiplicative many sorted closure system structure
overS. Observe that the family &, is absolutely-multiplicative.

Let us consideS and letC; be a properly upper bound many sorted closure system structure
overS. One can check that the family 6f is properly upper bound.

Let us considefs and letC; be a properly lower bound many sorted closure system structure
overS. Observe that the family &; is properly lower bound.

Let us consideB, let M be a non-empty many sorted set indexed by the carri& ahd letF
be a subset family d1. Note that{M,F) is non-empty.

Let us conside, M1 and letF be an additive subset family of the sortsi{. Note that(the
sorts ofMy, F) is additive.

Let us considef, M1 and letF be an absolutely-additive subset family of the sort¥ef Note
that(the sorts oM3, F) is absolutely-additive.

Let us conside§ M; and letF be a multiplicative subset family of the sortsidf. Note that
(the sorts oMy, F) is multiplicative.

Let us conside§, M; and letF be an absolutely-multiplicative subset family of the sortMef
Observe thatthe sorts oM, F) is absolutely-multiplicative.

Let us conside§, M; and letF be a properly upper bound subset family of the sortd af Note
that(the sorts oM3, F) is properly upper bound.

Let us considefS, M1 and letF be a properly lower bound subset family of the sortsviaf
Observe thatthe sorts oMy, F) is properly lower bound.

Let us consideS. Observe that every many sorted closure system structureSowsich is
absolutely-additive is also additive.

Let us consideS. Observe that every many sorted closure system structureSowdich is
absolutely-multiplicative is also multiplicative.

Let us consideB. One can verify that every many sorted closure system structureSavieich
is absolutely-multiplicative is also properly upper bound.

Let us considelS. Note that every many sorted closure system structure Swshich is
absolutely-additive is also properly lower bound.

Let us consides. A many sorted closure system®ifs an absolutely-multiplicative many sorted
closure system structure ov@r

Let us considel, M. A many sorted closure operator ldfis a reflexive monotonic idempotent
set many sorted operation .

Let us considell, M and letF be a many sorted function froml into M. The functor
FixPointgF) yields a many sorted subset indexed\byand is defined as follows:

(Def. 13) For every such that € | holdsx € (FixPointgF))(i) iff there exists a functiorf such that
f =F(i) andx € domf and f(x) = x.



ON THE MANY SORTED CLOSURE OPERATOR.. 5

Let us considel, letM be an empty yielding many sorted set indexed Jgnd letF be a many
sorted function fronM into M. Note that FixPoint$~) is empty yielding.
Next we state a number of propositions:

(28) For every many sorted functidh from M into M holdsAe M andF «P A=Aiff A€
FixPointgF).

(29) FixPointgida) = A.

(30) LetAbe a many sorted set indexed by the carriegdfbe a reflexive monotonic set many
sorted operation i\, andD be a subset family of. If D = FixPointgJ), then(A,D) is a
many sorted closure system&f

(31) LetD be a properly upper bound subset familyMfand X be an element of*®. Then
there exists a non-empty subset fan$yof M such that for every many sorted ¥eindexed
by | holdsY € S if and only if the following conditions are satisfied:

(i) YeD,and
(i) XCVv.

(32) LetD be a properly upper bound subset family\f X be an element of®®, andS; be a
non-empty subset family dfl. Suppose that for every many sorted$éhdexed byl holds
Y e S iff YeDandX CY. Leti be a set an®; be a non empty set. Ife | andD; = D(i),
thenS, (i) = {z zranges over elements Bf: X(i) C z}.

(33) LetD be a properly upper bound subset familyhf Then there exists a set many sorted
operationJ in M such that for every elemeit of 2Y and for every non-empty subset family
S of M if for every many sorted séf indexed byl holdsY € S iff Y € D andX C Y, then
JPX=NS.

(34) LetD be a properly upper bound subset family\df A be an element of*, andJ be a set
many sorted operation . Suppose that

(i) AeD,and

(i) for every elemeniX of 2¥ and for every non-empty subset famfly of M such that for
every many sorted s&tindexed byl holdsY € §; iff Y € DandX CY holdsJ < X =N S;.

Thend P A=A.

(35) LetD be an absolutely-multiplicative subset familyMf A be an element of'?, andJ be
a set many sorted operationNh Suppose that

i J-,A=Aand

(i) for every elemeniX of 2¥ and for every non-empty subset famfy of M such that for
every many sorted s&tindexed byl holdsY € S iff Y e DandX CY holdsJ ¢ X =N $;.

ThenA e D.

(86) LetD be a properly upper bound subset familyMfandJ be a set many sorted operation
in M. Suppose that for every elemexitof 2M and for every non-empty subset famfly of
M such that for every many sorted eindexed byl holdsY € S iff Y € D andX C Y holds
J <P X =N S. Thend is reflexive and monotonic.

(37) LetD be an absolutely-multiplicative subset familyMfandJ be a set many sorted oper-
ation inM. Suppose that for every elemexitof 2¥ and for every non-empty subset family
S of M such that for every many sorted &eindexed byl holdsY € S iff Y e DandX CY
holdsJ < X =N S. ThenJ is idempotent.

(38) LetD be a many sorted closure systemS#&ndJ be a set many sorted operation in the
sorts ofD. Suppose that for every elemefitof 2the sorts oD gnd for every non-empty subset
family S of the sorts oD such that for every many sorted &indexed by the carrier d&
holdsY € S iff Y € the family ofD andX CY holdsJ «p X =[N S. ThenJ is a many sorted
closure operator of the sorts bf
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Let us considef let A be a many sorted set indexed by the carrieBadind letC be a many

sorted closure operator 8f The functor CISy&C) yields a many sorted closure systenfSand is
defined by:

(Def. 14) There exists a subset familyof A such thaD = FixPoint§C) and CISy$C) = (A, D).

Let us consides, let A be a many sorted set indexed by the carriegodnd letC be a many

sorted closure operator 8f Observe that CISYE) is strict.

Let us consides, let A be a non-empty many sorted set indexed by the carri€r afd letC be

a many sorted closure operatorAfOne can check that CIS{B) is non-empty.

Let us consideB and letD be a many sorted closure systenfThe functor CIOgD) yields

a many sorted closure operator of the sortB@nd is defined by the condition (Def. 15).

(Def. 15) LetX be an element of!® s°s °D gndS; be a non-empty subset family of the sortdof

Suppose that for every many sorted¥ehdexed by the carrier ddholdsY € S iff Y € the
family of D andX CY. Then(CIOp(D)) < X =N S.

The following propositions are true:

(39) LetA be a many sorted set indexed by the carrieS@ndJ be a many sorted closure

operator ofA. Then ClOgCISyqJ)) =J.

(40) For every many sorted closure systBnof S holds CISy$CIOp(D)) = the many sorted
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