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Summary. In the article the Tarski's classes (non-empty families of sets satisfying
Tarski’'s axiom A given in[[7]) and the rank sets are introduced and some of their properties
are shown. The transitive closure and the rank of a set is given here too.

MML Identifier: CLASSES1.

WWW: http://mizar.org/JFM/Vol2/classesl.html

The articles([7],[[6],[9],[10], 5], 18], 2], [3], [4], and[] provide the notation and terminology for
this paper.
We adopt the following ruledd, X, Y, Z are setsf is a function, andc, y are sets.
Let B be a set. We say thatis subset-closed if and only if:

(Def. 1) ForallX, Y such thaiX € BandY C X holdsY € B.
Let B be a set. We say th&is a Tarski class if and only if:

(Def. 2) Bis subset-closed and for eveXysuch thatX € B holds X € B and for everyX such that
X CBholdsX ~BorX €B.

We introduceB is a Tarski class as a synonymmfs a Tarski class.
Let A, B be sets. We say th&tis a Tarski class oA\ if and only if:

(Def. 3) AeBandBis a Tarski class.
Let Abe a set. The functdF(A) yielding a set is defined as follows:

(Def. 4) T(A) is a Tarski class oA and for every seD such thatD is a Tarski class oA holds
T(A) CD.

Let Abe a set. Note that(A) is non empty.
The following propositions are true:

(ZH W is a Tarski class if and only if the following conditions are satisfied:
(i) W is subset-closed,
(i) for every X such thaX € W holds % € W, and

(iii)  for every X such thaX CW andX < W holdsX € W.
BH XeT(X).
(6) IfYeT(X)andZ CY,thenZ e T(X).

1 The proposition (1) has been removed.
2 The propositions (3) and (4) have been removed.
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(7) IfYeT(X),then?2 € T(X).
(8) IfY CT(X),thenY ~ T(X)orY e T(X).

(9) IfYCT(X)andY < T(X), thenY € T(X).

We use the following conventions, v are elements of (X), A, B, C are ordinal numbers, ard
is a transfinite sequence.
Let us consideK, A. The functorT o(X) is defined by the condition (Def. 5).

(Def. 5) There exist& such that
(i) Ta(X)=lastL,
(i) domL = succA,
(i) L(0) = {X},

(iv) foreveryC such that sud€ € succA holdsL(succC) ={u:V, (ve L(C) AuCv)}u{2":
veL(C)u22©nT(X), and

(v) for everyC such thatC € succA andC # 0 andC is a limit ordinal number holds(C) =
Urng(LIC)NT(X).

Let us consideK, A. ThenT a(X) is a subset oT (X).
One can prove the following propositions:

(10) To(X) = {X}.
(11) Tsucd(X) ={u:Vy (VETAX) AUCV)}U{2 :ve TAX)Ju2TAX 0T (X).
(12) If A#0andAis alimit ordinal number, thefia(X) = {u: Vg (B€ A A ue Tg(X))}.

(13) Y € Tsucaa(X) iff Y C Ta(X) andY € T(X) or there existZ such thaZ € Ta(X) butY CZ
ory =24,

(14) IfY CZandZ € Ta(X), thenY € Tsucon(X).
(15) 1fY € Ta(X), then 2 € Tsyeaa(X).

(16) If A 0andAis a limit ordinal number, ther € Ta(X) iff there existsB such thaB € A
andx € Tg(X).

(17) IfA#0andAis a limit ordinal number an € Ta(X) andZ CY orZ = 2", thenZ
Ta(X).

(18) Ta(X) € Tsucar(X).

(19) If AC B, thenTa(X) C Tg(X).

(20) There existé such thafl o(X) = Tsucea(X).
(21) K TaA(X) = Tsucar(X), thenTa(X) = T(X).
(22) There existé such thafl o(X) = T(X).

(23) There exist# such thafT o(X) = T(X) and for everyB such thaB € A holdsTg(X) #
T(X).

(24) IfY #£ X andY € T(X), then there existd such thaly ¢ Ta(X) andY € Tsyca(X).
(25) If X is transitive, then for everf such thatA £ 0 holdsT a(X) is transitive.
(26) To(X) € T1(X) andTo(X) # T1(X).

(27) If X is transitive, therT (X) is transitive.
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IfY € T(X), thenY < T(X).

IfY € T(X), thenY 2 T(X).

If xe T(X) andy € T(X), then{x} € T(X) and{x,y} € T(X).
If xe T(X) andy € T(X), then(x, y} € T(X).

IfY C T(X)andZ C T(X), thenlY, Z] C T(X).

Let us consideA. The functorRa is defined by the condition (Def. 6).

(Def. 6)
@

(ii)

(iii)

(iv)

V)

There exist& such that

Ra = lastL,

domL = succA,

L(0) =0,

for everyC such that suc€ € succA holdsL(sucdC) = 2-©) and

for everyC such thaC € succA andC # 0 andC is a limit ordinal number holdk(C) =

Urng(L[C).

Next we state a number of propositions:

(33)
(34)
(39)

Ro = 0.
Rsucr = 2RA~

If A# 0 andA is a limit ordinal number, then for everyholdsx € Ry iff there existsB

such thaB € A andx € Rg.

(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)

X C Raiff X € Rsycea.

Ra is transitive.

If X € Ra, thenX C Ra.

Ra C Rsycea-

U(Ra) € Ra.

If X € Ra, thenJX € Ra.

A e Biff Ra € Rg.

AC Biff Ra C Rg.

ACRa.

For allA, X such thaiX € Ra holdsX % Ra andX < R:A.
X C Raiff 2% C Ry

If X CY andY € Ra, thenX € Ra.

X € Raiff 2% € Rsycea.

X € Ra iff {X} € Rsycea-

X € Ra andy € Ry iff {X,y} € Rsycea.

X € Ra andy € Ra iff (X, ¥) € Rsucesuca-

If X is transitive andRaN T (X) = Rsucca N T(X), thenT (X) C Ra.

If X is transitive, then there exisessuch thafl (X) C Ra.
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(54) If X is transitive, therh ) X C X.
(55) If X is transitive and is transitive, therXX UYY is transitive.
(56) If X is transitive and is transitive, therX NY is transitive.

In the sequek, n denote natural numbers.
Let us consideK. The functorX*< yielding a set is defined by:

(Def. 7) x e X*< iff there existf, n such thak € f(n) and domf = N andf(0) = X and for evenk
holdsf(k+1) = U f (k).

We now state a number of propositions:
(58 X*< is transitive.
(59) X C X*e.
(60) If X CY andyY is transitive, therX*s CY.

(61) If for everyZ such thaX C Z andZ is transitive hold¥ C Z andX CY andY is transitive,
thenX*c =Y.

(62) If X is transitive, therX*c = X.
(63) 0*<=0.
(64) A=A
(65) If X CY, thenX*e C Y*e.
(66) (X*e)*e =X*e,
(67) (XUY)*e =X*eUY*e.
(68) (XNY)*e CX*eNnY*e.
(69) There existé\ such thaiX C Ra.
Let us consideK. The functor rkX) yields an ordinal number and is defined as follows:

(Def. 8) X C Ryx) and for everyB such thaiX C Rg holds rkX) CB.

Next we state a number of propositions:
71 rk(2X) = sucerkX).
(72) rk(Ra) =A.
(73) X CRaiffrk(X) CA.
(74) X eRaiffrk(X) e A
(75) 1fX CY, then rikKX) Crk(Y).
(76) 1f X €Y, then rkX) e rk(Y).
(77) rk(X) C Aiff for every Y such thalt € X holds rkY) € A.
(78) A Crk(X) iff for every B such thaB € Athere existy such thaly € X andB C rk(Y).
(79) rk(X)=0iff X=0.
(80) If rk(X) = succA, then there exist¥ such thaly € X and rkY) = A.
(81) rk(A)=A.
(82) rk(T(X))#0and rkT (X)) is a limit ordinal number.

3 The proposition (57) has been removed.
4 The proposition (70) has been removed.




(1
(2]

(3]

4

(5]

(7]

8

&)
[10]

TARSKI’S CLASSES AND RANKS 5

REFERENCES

Grzegorz Bancerek. Cardinal numbedsurnal of Formalized Mathematic$, 1989/http://mizar.org/JFM/Voll/card_1.html}

Grzegorz Bancerek. The fundamental properties of natural numidetsnal of Formalized Mathematicd, 1989.http://mizar.
org/JFM/Voll/nat_1.htmll

Grzegorz Bancerek. The ordinal numbedsurnal of Formalized Mathematic4, 1989.http://mizar.org/JEM/Voll/ordinall.
htmll

Grzegorz Bancerek. Sequences of ordinal numbédaairnal of Formalized Mathematicd, 1989. http://mizar.org/JFM/Voll/
ordinal?2.htmll

Czestaw Bylhski. Functions and their basic propertidsurnal of Formalized Mathematic$, 1989 http://mizar.org/JFM/Voll/
funct_1.html.

Czestaw Bylhski. Some basic properties of set§ournal of Formalized Mathematicd, 1989. http://mizar.org/JFM/Voll/
zfmisc_1.html,

Andrzej Trybulec. Tarski Grothendieck set theodpurnal of Formalized Mathematicéxiomatics, 1989http://mizar.org/JFM/
Axiomatics/tarski.html.

Andrzej Trybulec. Subsets of real numbedsurnal of Formalized Mathematicdddenda, 2002http: //mizar.org/JFM/Addenda/
numbers.htmll

Zinaida Trybulec. Properties of subseleurnal of Formalized Mathematic$, 1989http: //mizar.org/JFM/Voll/subset_1.htmll

Edmund Woronowicz. Relations and their basic propertiesirnal of Formalized Mathematic4, 1989.http://mizar.org/JFM/
Voll/relat_1.htmll.

Received March 23, 1990

Published January 2, 2004


http://mizar.org/JFM/Vol1/card_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol1/ordinal2.html
http://mizar.org/JFM/Vol1/ordinal2.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	tarski's classes and ranks By grzegorz bancerek

