Tarski's Classes and Ranks

Grzegorz Bancerek Warsaw University Białystok

Summary. In the article the Tarski's classes (non-empty families of sets satisfying Tarski's axiom A given in [7]) and the rank sets are introduced and some of their properties are shown. The transitive closure and the rank of a set is given here too.

MML Identifier: CLASSES1.

WWW: http://mizar.org/JFM/Vol2/classes1.html

The articles [7], [6], [9], [10], [5], [8], [2], [3], [4], and [1] provide the notation and terminology for this paper.

We adopt the following rules: W, X, Y, Z are sets, f is a function, and x, y are sets.

Let *B* be a set. We say that *B* is subset-closed if and only if:

(Def. 1) For all X, Y such that $X \in B$ and $Y \subseteq X$ holds $Y \in B$.

Let B be a set. We say that B is a Tarski class if and only if:

(Def. 2) *B* is subset-closed and for every *X* such that $X \in B$ holds $2^X \in B$ and for every *X* such that $X \subseteq B$ holds $X \approx B$ or $X \in B$.

We introduce *B* is a Tarski class as a synonym of *B* is a Tarski class.

Let A, B be sets. We say that B is a Tarski class of A if and only if:

(Def. 3) $A \in B$ and B is a Tarski class.

Let A be a set. The functor T(A) yielding a set is defined as follows:

(Def. 4) $\mathbf{T}(A)$ is a Tarski class of A and for every set D such that D is a Tarski class of A holds $\mathbf{T}(A) \subseteq D$.

Let A be a set. Note that T(A) is non empty.

The following propositions are true:

- $(2)^1$ W is a Tarski class if and only if the following conditions are satisfied:
- (i) W is subset-closed,
- (ii) for every X such that $X \in W$ holds $2^X \in W$, and
- (iii) for every X such that $X \subseteq W$ and $\overline{\overline{X}} < \overline{\overline{W}}$ holds $X \in W$.
- $(5)^2 X \in \mathbf{T}(X).$
- (6) If $Y \in \mathbf{T}(X)$ and $Z \subseteq Y$, then $Z \in \mathbf{T}(X)$.

¹ The proposition (1) has been removed.

² The propositions (3) and (4) have been removed.

- (7) If $Y \in \mathbf{T}(X)$, then $2^Y \in \mathbf{T}(X)$.
- (8) If $Y \subseteq \mathbf{T}(X)$, then $Y \approx \mathbf{T}(X)$ or $Y \in \mathbf{T}(X)$.
- (9) If $Y \subseteq \mathbf{T}(X)$ and $\overline{\overline{Y}} < \overline{\overline{\mathbf{T}(X)}}$, then $Y \in \mathbf{T}(X)$.

We use the following convention: u, v are elements of $\mathbf{T}(X)$, A, B, C are ordinal numbers, and L is a transfinite sequence.

Let us consider X, A. The functor $\mathbf{T}_A(X)$ is defined by the condition (Def. 5).

- (Def. 5) There exists L such that
 - (i) $\mathbf{T}_A(X) = \operatorname{last} L$,
 - (ii) dom L = succ A,
 - (iii) $L(\emptyset) = \{X\},\$
 - (iv) for every C such that succ $C \in \operatorname{succ} A$ holds $L(\operatorname{succ} C) = \{u : \bigvee_v (v \in L(C) \land u \subseteq v)\} \cup \{2^v : v \in L(C)\} \cup 2^{L(C)} \cap \mathbf{T}(X)$, and
 - (v) for every C such that $C \in \operatorname{succ} A$ and $C \neq \emptyset$ and C is a limit ordinal number holds $L(C) = \bigcup \operatorname{rng}(L \upharpoonright C) \cap \mathbf{T}(X)$.

Let us consider X, A. Then $\mathbf{T}_A(X)$ is a subset of $\mathbf{T}(X)$.

One can prove the following propositions:

- (10) $\mathbf{T}_{\emptyset}(X) = \{X\}.$
- $(11) \quad \mathbf{T}_{\operatorname{succ} A}(X) = \{u : \bigvee_{v} (v \in \mathbf{T}_{A}(X) \land u \subseteq v)\} \cup \{2^{v} : v \in \mathbf{T}_{A}(X)\} \cup 2^{\mathbf{T}_{A}(X)} \cap \mathbf{T}(X).$
- (12) If $A \neq \emptyset$ and A is a limit ordinal number, then $\mathbf{T}_A(X) = \{u : \bigvee_B (B \in A \land u \in \mathbf{T}_B(X))\}.$
- (13) $Y \in \mathbf{T}_{\operatorname{succ} A}(X)$ iff $Y \subseteq \mathbf{T}_A(X)$ and $Y \in \mathbf{T}(X)$ or there exists Z such that $Z \in \mathbf{T}_A(X)$ but $Y \subseteq Z$ or $Y = 2^Z$.
- (14) If $Y \subseteq Z$ and $Z \in \mathbf{T}_A(X)$, then $Y \in \mathbf{T}_{\operatorname{succ} A}(X)$.
- (15) If $Y \in \mathbf{T}_A(X)$, then $2^Y \in \mathbf{T}_{\operatorname{succ} A}(X)$.
- (16) If $A \neq \emptyset$ and A is a limit ordinal number, then $x \in \mathbf{T}_A(X)$ iff there exists B such that $B \in A$ and $x \in \mathbf{T}_B(X)$.
- (17) If $A \neq \emptyset$ and A is a limit ordinal number and $Y \in \mathbf{T}_A(X)$ and $Z \subseteq Y$ or $Z = 2^Y$, then $Z \in \mathbf{T}_A(X)$.
- (18) $\mathbf{T}_A(X) \subseteq \mathbf{T}_{\operatorname{succ} A}(X)$.
- (19) If $A \subseteq B$, then $\mathbf{T}_A(X) \subseteq \mathbf{T}_B(X)$.
- (20) There exists A such that $\mathbf{T}_A(X) = \mathbf{T}_{\text{succ}A}(X)$.
- (21) If $\mathbf{T}_A(X) = \mathbf{T}_{\operatorname{succ} A}(X)$, then $\mathbf{T}_A(X) = \mathbf{T}(X)$.
- (22) There exists *A* such that $T_A(X) = T(X)$.
- (23) There exists A such that $\mathbf{T}_A(X) = \mathbf{T}(X)$ and for every B such that $B \in A$ holds $\mathbf{T}_B(X) \neq \mathbf{T}(X)$.
- (24) If $Y \neq X$ and $Y \in \mathbf{T}(X)$, then there exists A such that $Y \notin \mathbf{T}_A(X)$ and $Y \in \mathbf{T}_{\operatorname{succ} A}(X)$.
- (25) If X is transitive, then for every A such that $A \neq \emptyset$ holds $\mathbf{T}_A(X)$ is transitive.
- (26) $\mathbf{T}_{\emptyset}(X) \in \mathbf{T}_{\mathbf{1}}(X)$ and $\mathbf{T}_{\emptyset}(X) \neq \mathbf{T}_{\mathbf{1}}(X)$.
- (27) If X is transitive, then $\mathbf{T}(X)$ is transitive.

- (28) If $Y \in \mathbf{T}(X)$, then $\overline{\overline{Y}} < \overline{\overline{\mathbf{T}(X)}}$.
- (29) If $Y \in \mathbf{T}(X)$, then $Y \not\approx \mathbf{T}(X)$.
- (30) If $x \in \mathbf{T}(X)$ and $y \in \mathbf{T}(X)$, then $\{x\} \in \mathbf{T}(X)$ and $\{x,y\} \in \mathbf{T}(X)$.
- (31) If $x \in \mathbf{T}(X)$ and $y \in \mathbf{T}(X)$, then $\langle x, y \rangle \in \mathbf{T}(X)$.
- (32) If $Y \subseteq \mathbf{T}(X)$ and $Z \subseteq \mathbf{T}(X)$, then $[:Y,Z:] \subseteq \mathbf{T}(X)$.

Let us consider A. The functor \mathbf{R}_A is defined by the condition (Def. 6).

- (Def. 6) There exists L such that
 - (i) $\mathbf{R}_A = \operatorname{last} L$,
 - (ii) dom L = succ A,
 - (iii) $L(\emptyset) = \emptyset$,
 - (iv) for every C such that $\operatorname{succ} C \in \operatorname{succ} A$ holds $L(\operatorname{succ} C) = 2^{L(C)}$, and
 - (v) for every C such that $C \in \operatorname{succ} A$ and $C \neq \emptyset$ and C is a limit ordinal number holds $L(C) = \bigcup \operatorname{rng}(L \upharpoonright C)$.

Next we state a number of propositions:

- (33) $\mathbf{R}_{\emptyset} = \emptyset$.
- (34) $\mathbf{R}_{\text{succ }A} = 2^{\mathbf{R}_A}$.
- (35) If $A \neq \emptyset$ and A is a limit ordinal number, then for every x holds $x \in \mathbf{R}_A$ iff there exists B such that $B \in A$ and $x \in \mathbf{R}_B$.
- (36) $X \subseteq \mathbf{R}_A \text{ iff } X \in \mathbf{R}_{\text{succ }A}.$
- (37) \mathbf{R}_A is transitive.
- (38) If $X \in \mathbf{R}_A$, then $X \subseteq \mathbf{R}_A$.
- (39) $\mathbf{R}_A \subseteq \mathbf{R}_{\operatorname{succ} A}$.
- (40) $\bigcup (\mathbf{R}_A) \subseteq \mathbf{R}_A$.
- (41) If $X \in \mathbf{R}_A$, then $\bigcup X \in \mathbf{R}_A$.
- (42) $A \in B \text{ iff } \mathbf{R}_A \in \mathbf{R}_B.$
- (43) $A \subseteq B \text{ iff } \mathbf{R}_A \subseteq \mathbf{R}_B.$
- (44) $A \subseteq \mathbf{R}_A$.
- (45) For all A, X such that $X \in \mathbf{R}_A$ holds $X \not\approx \mathbf{R}_A$ and $\overline{\overline{X}} < \overline{\overline{\mathbf{R}_A}}$.
- (46) $X \subseteq \mathbf{R}_A \text{ iff } 2^X \subseteq \mathbf{R}_{\text{succ }A}.$
- (47) If $X \subseteq Y$ and $Y \in \mathbf{R}_A$, then $X \in \mathbf{R}_A$.
- (48) $X \in \mathbf{R}_A \text{ iff } 2^X \in \mathbf{R}_{\text{succ}A}.$
- (49) $x \in \mathbf{R}_A \text{ iff } \{x\} \in \mathbf{R}_{\text{succ }A}.$
- (50) $x \in \mathbf{R}_A$ and $y \in \mathbf{R}_A$ iff $\{x, y\} \in \mathbf{R}_{\operatorname{succ} A}$.
- (51) $x \in \mathbf{R}_A$ and $y \in \mathbf{R}_A$ iff $\langle x, y \rangle \in \mathbf{R}_{\operatorname{succ succ } A}$.
- (52) If *X* is transitive and $\mathbf{R}_A \cap \mathbf{T}(X) = \mathbf{R}_{\operatorname{succ} A} \cap \mathbf{T}(X)$, then $\mathbf{T}(X) \subseteq \mathbf{R}_A$.
- (53) If *X* is transitive, then there exists *A* such that $\mathbf{T}(X) \subseteq \mathbf{R}_A$.

- (54) If *X* is transitive, then $\bigcup X \subseteq X$.
- (55) If *X* is transitive and *Y* is transitive, then $X \cup Y$ is transitive.
- (56) If *X* is transitive and *Y* is transitive, then $X \cap Y$ is transitive.

In the sequel k, n denote natural numbers.

Let us consider X. The functor $X^{*\in}$ yielding a set is defined by:

(Def. 7) $x \in X^{*_{\in}}$ iff there exist f, n such that $x \in f(n)$ and $dom f = \mathbb{N}$ and f(0) = X and for every k holds $f(k+1) = \bigcup f(k)$.

We now state a number of propositions:

- $(58)^3$ $X^{*\in}$ is transitive.
- (59) $X \subseteq X^{* \in}$.
- (60) If $X \subseteq Y$ and Y is transitive, then $X^{*\in} \subseteq Y$.
- (61) If for every Z such that $X \subseteq Z$ and Z is transitive holds $Y \subseteq Z$ and $X \subseteq Y$ and Y is transitive, then $X^{*_{\in}} = Y$.
- (62) If *X* is transitive, then $X^{*\in} = X$.
- (63) $\emptyset^{*} \in \emptyset$.
- (64) $A^{*\in} = A$.
- (65) If $X \subseteq Y$, then $X^{*\in} \subseteq Y^{*\in}$.
- (66) $(X^{*\in})^{*\in} = X^{*\in}$.
- (67) $(X \cup Y)^{*\in} = X^{*\in} \cup Y^{*\in}.$
- $(68) \quad (X \cap Y)^{* \in} \subseteq X^{* \in} \cap Y^{* \in}.$
- (69) There exists A such that $X \subseteq \mathbf{R}_A$.

Let us consider X. The functor rk(X) yields an ordinal number and is defined as follows:

(Def. 8) $X \subseteq \mathbf{R}_{rk(X)}$ and for every B such that $X \subseteq \mathbf{R}_B$ holds $rk(X) \subseteq B$.

Next we state a number of propositions:

- $(71)^4$ rk (2^X) = succrk(X).
- (72) $\operatorname{rk}(\mathbf{R}_A) = A$.
- (73) $X \subseteq \mathbf{R}_A$ iff $\mathrm{rk}(X) \subseteq A$.
- (74) $X \in \mathbf{R}_A \text{ iff } \mathrm{rk}(X) \in A.$
- (75) If $X \subseteq Y$, then $\operatorname{rk}(X) \subseteq \operatorname{rk}(Y)$.
- (76) If $X \in Y$, then $\operatorname{rk}(X) \in \operatorname{rk}(Y)$.
- (77) $\operatorname{rk}(X) \subseteq A$ iff for every Y such that $Y \in X$ holds $\operatorname{rk}(Y) \in A$.
- (78) $A \subseteq \operatorname{rk}(X)$ iff for every B such that $B \in A$ there exists Y such that $Y \in X$ and $B \subseteq \operatorname{rk}(Y)$.
- (79) $rk(X) = \emptyset \text{ iff } X = \emptyset.$
- (80) If rk(X) = succ A, then there exists Y such that $Y \in X$ and rk(Y) = A.
- (81) rk(A) = A.
- (82) $\operatorname{rk}(\mathbf{T}(X)) \neq \emptyset$ and $\operatorname{rk}(\mathbf{T}(X))$ is a limit ordinal number.

³ The proposition (57) has been removed.

⁴ The proposition (70) has been removed.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [3] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [4] Grzegorz Bancerek. Sequences of ordinal numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc 1.html.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [8] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html
- [9] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [10] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received March 23, 1990

Published January 2, 2004