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The articles [21], [27], [25], [20], [11], [9], [28], [6], [12], [2], [3], [7], [1], [8], [14], [4], [10], [22],
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this paper.

1. STABILIZING CIRCUITS

One can prove the following proposition

(1) LetSbe a non void circuit-like non empty many sorted signature,A be a non-empty circuit
of S, sbe a state ofA, andx be a set. Ifx∈ InputVertices(S), then for every natural numbern
holds(Following(s,n))(x) = s(x).

Let Sbe a non void circuit-like non empty many sorted signature, letA be a non-empty circuit
of S, and lets be a state ofA. We say thats is stabilizing if and only if:

(Def. 1) There exists a natural numbern such that Following(s,n) is stable.

Let S be a non void circuit-like non empty many sorted signature and letA be a non-empty
circuit of S. We say thatA is stabilizing if and only if:

(Def. 2) Every state ofA is stabilizing.

We say thatA has a stabilization limit if and only if:

(Def. 3) There exists a natural numbern such that for every states of A holds Following(s,n) is
stable.

Let Sbe a non void circuit-like non empty many sorted signature. Observe that every non-empty
circuit of Swhich has a stabilization limit is also stabilizing.

Let Sbe a non void circuit-like non empty many sorted signature, letA be a non-empty circuit
of S, and letsbe a state ofA. Let us assume thats is stabilizing. The functor Result(s) yields a state
of A and is defined by:

(Def. 4) Result(s) is stable and there exists a natural numbernsuch that Result(s) = Following(s,n).
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Let Sbe a non void circuit-like non empty many sorted signature, letA be a non-empty circuit
of S, and lets be a state ofA. Let us assume thats is stabilizing. The stabilization time ofs is a
natural number and is defined by the conditions (Def. 5).

(Def. 5)(i) Following(s, the stabilization time ofs) is stable, and

(ii) for every natural numbern such thatn < the stabilization time ofs holds Following(s,n)
is not stable.

We now state a number of propositions:

(2) LetSbe a non void circuit-like non empty many sorted signature,A be a non-empty circuit
of S, ands be a state ofA. If s is stabilizing, then Result(s) = Following(s, the stabilization
time ofs).

(3) LetSbe a non void circuit-like non empty many sorted signature,A be a non-empty circuit
of S, s be a state ofA, andn be a natural number. If Following(s,n) is stable, then the
stabilization time ofs≤ n.

(4) LetSbe a non void circuit-like non empty many sorted signature,A be a non-empty circuit
of S, sbe a state ofA, andn be a natural number. If Following(s,n) is stable, then Result(s) =
Following(s,n).

(5) LetSbe a non void circuit-like non empty many sorted signature,A be a non-empty circuit
of S, s be a state ofA, andn be a natural number. Supposes is stabilizing andn ≥ the
stabilization time ofs. Then Result(s) = Following(s,n).

(6) LetSbe a non void circuit-like non empty many sorted signature,A be a non-empty circuit
of S, andsbe a state ofA. If s is stabilizing, then for every setx such thatx∈ InputVertices(S)
holds(Result(s))(x) = s(x).

(7) Let S1, S be non void circuit-like non empty many sorted signatures,A1 be a non-empty
circuit of S1, A be a non-empty circuit ofS, s be a state ofA, ands1 be a state ofA1. If
s1 = s�the carrier ofS1, then for every vertexv1 of S1 holdss1(v1) = s(v1).

(8) Let S1, S2 be non void circuit-like non empty many sorted signatures. Suppose
InputVertices(S1) misses InnerVertices(S2) and InputVertices(S2) misses InnerVertices(S1).
Let Sbe a non void circuit-like non empty many sorted signature. SupposeS= S1+·S2. Let
A1 be a non-empty circuit ofS1 andA2 be a non-empty circuit ofS2. SupposeA1 ≈ A2. Let A
be a non-empty circuit ofS. SupposeA = A1+·A2. Let s be a state ofA, s1 be a state ofA1,
ands2 be a state ofA2. Supposes1 = s�the carrier ofS1 ands2 = s�the carrier ofS2 ands1 is
stabilizing ands2 is stabilizing. Thens is stabilizing.

(9) Let S1, S2 be non void circuit-like non empty many sorted signatures. Suppose
InputVertices(S1) misses InnerVertices(S2) and InputVertices(S2) misses InnerVertices(S1).
Let Sbe a non void circuit-like non empty many sorted signature. SupposeS= S1+·S2. Let
A1 be a non-empty circuit ofS1 andA2 be a non-empty circuit ofS2. SupposeA1 ≈ A2. Let
A be a non-empty circuit ofS. SupposeA = A1+·A2. Let s be a state ofA ands1 be a state
of A1. Supposes1 = s�the carrier ofS1 ands1 is stabilizing. Lets2 be a state ofA2. Sup-
poses2 = s�the carrier ofS2 ands2 is stabilizing. Then the stabilization time ofs= max(the
stabilization time ofs1, the stabilization time ofs2).

(10) Let S1, S2 be non void circuit-like non empty many sorted signatures. Suppose
InputVertices(S1) misses InnerVertices(S2). Let Sbe a non void circuit-like non empty many
sorted signature. SupposeS= S1+·S2. Let A1 be a non-empty circuit ofS1 and A2 be a
non-empty circuit ofS2. SupposeA1 ≈ A2. Let A be a non-empty circuit ofS. Suppose
A= A1+·A2. Let sbe a state ofA ands1 be a state ofA1. Supposes1 = s�the carrier ofS1 and
s1 is stabilizing. Lets2 be a state ofA2. Supposes2 = Following(s, the stabilization time of
s1)�the carrier ofS2 ands2 is stabilizing. Thens is stabilizing.
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(11) Let S1, S2 be non void circuit-like non empty many sorted signatures. Suppose
InputVertices(S1) misses InnerVertices(S2). Let Sbe a non void circuit-like non empty many
sorted signature. SupposeS= S1+·S2. Let A1 be a non-empty circuit ofS1 and A2 be a
non-empty circuit ofS2. SupposeA1 ≈ A2. Let A be a non-empty circuit ofS. Suppose
A= A1+·A2. Let sbe a state ofA ands1 be a state ofA1. Supposes1 = s�the carrier ofS1 and
s1 is stabilizing. Lets2 be a state ofA2. Supposes2 = Following(s, the stabilization time of
s1)�the carrier ofS2 ands2 is stabilizing. Then the stabilization time ofs= (the stabilization
time ofs1)+ (the stabilization time ofs2).

(12) Let S1, S2, S be non void circuit-like non empty many sorted signatures. Suppose
InputVertices(S1) misses InnerVertices(S2) andS= S1+·S2. Let A1 be a non-empty circuit
of S1, A2 be a non-empty circuit ofS2, andA be a non-empty circuit ofS. SupposeA1 ≈ A2

andA= A1+·A2. Let sbe a state ofA ands1 be a state ofA1. Supposes1 = s�the carrier ofS1

ands1 is stabilizing. Lets2 be a state ofA2. Supposes2 = Following(s, the stabilization time
of s1)�the carrier ofS2 ands2 is stabilizing. Then Result(s)�the carrier ofS1 = Result(s1).

2. ONE-GATE CIRCUITS

We now state three propositions:

(13) Letx be a set,X be a non empty finite set,n be a natural number,p be a finite sequence
with lengthn, g be a function fromXn into X, ands be a state of 1GateCircuit(p,g). Then
s· p is an element ofXn.

(14) For all setsx1, x2, x3, x4 holds rng〈x1,x2,x3,x4〉= {x1,x2,x3,x4}.

(15) For all setsx1, x2, x3, x4, x5 holds rng〈x1,x2,x3,x4,x5〉= {x1,x2,x3,x4,x5}.

Let x1, x2, x3, x4 be sets. Then〈x1,x2,x3,x4〉 is a finite sequence with length 4. Letx5 be a set.
Then〈x1,x2,x3,x4,x5〉 is a finite sequence with length 5.

Let Sbe a many sorted signature. We say thatS is one-gate if and only if the condition (Def. 6)
is satisfied.

(Def. 6) There exists a non empty finite setX and there exists a natural numbern and there exists
a finite sequencep with length n and there exists a functionf from Xn into X such that
S= 1GateCircStr(p, f ).

Let S be a non empty many sorted signature and letA be an algebra overS. We say thatA is
one-gate if and only if the condition (Def. 7) is satisfied.

(Def. 7) There exists a non empty finite setX and there exists a natural numbern and there exists
a finite sequencep with length n and there exists a functionf from Xn into X such that
S= 1GateCircStr(p, f ) andA = 1GateCircuit(p, f ).

Let p be a finite sequence and letx be a set. One can verify that 1GateCircStr(p,x) is finite.
Let us note that every many sorted signature which is one-gate is also strict, non void, non

empty, unsplit, and finite and has arity held in gates.
One can verify that every non empty many sorted signature which is one-gate has also denotation

held in gates.
Let X be a non empty finite set, letn be a natural number, letp be a finite sequence with length

n, and let f be a function fromXn into X. Observe that 1GateCircStr(p, f ) is one-gate.
One can verify that there exists a many sorted signature which is one-gate.
Let Sbe an one-gate many sorted signature. Observe that every circuit ofSwhich is one-gate is

also strict and non-empty.
Let X be a non empty finite set, letn be a natural number, letp be a finite sequence with length

n, and let f be a function fromXn into X. One can check that 1GateCircuit(p, f ) is one-gate.
Let S be an one-gate many sorted signature. Observe that there exists a circuit ofS which is

one-gate and non-empty.
Let S be an one-gate many sorted signature. The functor OutputS yields a vertex ofS and is

defined by:
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(Def. 8) OutputS=
⋃

(the operation symbols ofS).

Let Sbe an one-gate many sorted signature. One can verify that OutputS is pair.
We now state several propositions:

(16) Let S be an one-gate many sorted signature,p be a finite sequence, andx be a set. If
S= 1GateCircStr(p,x), then OutputS= 〈〈p, x〉〉.

(17) For every one-gate many sorted signatureSholds InnerVertices(S) = {OutputS}.

(18) Let S be an one-gate many sorted signature,A be an one-gate circuit ofS, n be a natural
number,X be a finite non empty set,f be a function fromXn into X, andp be a finite sequence
with lengthn. If A = 1GateCircuit(p, f ), thenS= 1GateCircStr(p, f ).

(19) Let n be a natural number,X be a finite non empty set,f be a function fromXn into
X, p be a finite sequence with lengthn, and s be a state of 1GateCircuit(p, f ). Then
(Following(s))(Output1GateCircStr(p, f )) = f (s· p).

(20) LetSbe an one-gate many sorted signature,A be an one-gate circuit ofS, ands be a state
of A. Then Following(s) is stable.

Let S be a non void circuit-like non empty many sorted signature. Note that every non-empty
circuit of Swhich is one-gate has also a stabilization limit.

One can prove the following propositions:

(21) LetSbe an one-gate many sorted signature,A be an one-gate circuit ofS, ands be a state
of A. Then Result(s) = Following(s).

(22) LetSbe an one-gate many sorted signature,A be an one-gate circuit ofS, ands be a state
of A. Then the stabilization time ofs≤ 1.

In this article we present several logical schemes. The schemeOneGate1Exdeals with a setA ,
a non empty finite setB, and a unary functorF yielding an element ofB, and states that:

There exists an one-gate many sorted signatureSand there exists an one-gate circuit
Aof Ssuch that InputVertices(S)= {A} and for every statesof Aholds(Result(s))(OutputS)=
F (s(A))

for all values of the parameters.
The schemeOneGate2Exdeals with setsA , B, a non empty finite setC , and a binary functor

F yielding an element ofC , and states that:
There exists an one-gate many sorted signatureS and there exists an one-gate cir-
cuit A of S such that InputVertices(S) = {A ,B} and for every states of A holds
(Result(s))(OutputS) = F (s(A),s(B))

for all values of the parameters.
The schemeOneGate3Exdeals with setsA , B, C , a non empty finite setD, and a ternary functor

F yielding an element ofD, and states that:
There exists an one-gate many sorted signatureS and there exists an one-gate cir-
cuit A of S such that InputVertices(S) = {A ,B,C} and for every states of A holds
(Result(s))(OutputS) = F (s(A),s(B),s(C ))

for all values of the parameters.
The schemeOneGate4Exdeals with setsA , B, C , D, a non empty finite setE , and a 4-ary

functorF yielding an element ofE , and states that:
There exists an one-gate many sorted signatureSand there exists an one-gate circuit
A of S such that InputVertices(S) = {A ,B,C ,D} and for every states of A holds
(Result(s))(OutputS) = F (s(A),s(B),s(C ),s(D))

for all values of the parameters.
The schemeOneGate5Exdeals with setsA , B, C , D, E , a non empty finite setF , and a 5-ary

functorF yielding an element ofF , and states that:
There exists an one-gate many sorted signatureSand there exists an one-gate circuit
A of Ssuch that InputVertices(S) = {A ,B,C ,D,E} and for every states of A holds
(Result(s))(OutputS) = F (s(A),s(B),s(C ),s(D),s(E))

for all values of the parameters.
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3. MONO-SORTEDCIRCUITS

The following four propositions are true:

(23) For every constant functionf holds f = dom f 7−→ the value off .

(24) For all non empty setsX, Y and for all natural numbersn, m such thatn 6= 0 andXn = Ym

holdsX = Y andn = m.

(25) For all non empty many sorted signaturesS1, S2 holds every vertex ofS1 is a vertex of
S1+·S2.

(26) For all non empty many sorted signaturesS1, S2 holds every vertex ofS2 is a vertex of
S1+·S2.

Let X be a non empty finite set. A non void non empty unsplit many sorted signature with arity
held in gates with denotation held in gates is said to be a signature overX if it satisfies the condition
(Def. 9).

(Def. 9) There exists a circuitA of it such that the sorts ofA are constant and the value of the sorts
of A = X andA has denotation held in gates.

The following proposition is true

(27) Letn be a natural number,X be a non empty finite set,f be a function fromXn into X, and
p be a finite sequence with lengthn. Then 1GateCircStr(p, f ) is a signature overX.

Let X be a non empty finite set. Note that there exists a signature overX which is strict and
one-gate.

Let n be a natural number, letX be a non empty finite set, letf be a function fromXn into X,
and letp be a finite sequence with lengthn. Then 1GateCircStr(p, f ) is a strict signature overX.

Let X be a non empty finite set and letSbe a signature overX. A circuit of S is called a circuit
overX andS if:

(Def. 10) It has denotation held in gates and the sorts of it are constant and the value of the sorts of it
= X.

Let X be a non empty finite set and letSbe a signature overX. Note that every circuit overX
andS is non-empty and has denotation held in gates.

Next we state the proposition

(28) Let n be a natural number,X be a non empty finite set,f be a function fromXn into X,
and p be a finite sequence with lengthn. Then 1GateCircuit(p, f ) is a circuit overX and
1GateCircStr(p, f ).

Let X be a non empty finite set and letSbe an one-gate signature overX. One can verify that
there exists a circuit overX andSwhich is strict and one-gate.

Let X be a non empty finite set and letSbe a signature overX. Note that there exists a circuit
overX andSwhich is strict.

Let n be a natural number, letX be a non empty finite set, letf be a function fromXn into X,
and letp be a finite sequence with lengthn. Then 1GateCircuit(p, f ) is a strict circuit overX and
1GateCircStr(p, f ).

We now state four propositions:

(30)1 Let X be a non empty finite set,S1, S2 be signatures overX, A1 be a circuit overX andS1,
andA2 be a circuit overX andS2. ThenA1 ≈ A2.

(31) LetX be a non empty finite set,S1, S2 be signatures overX, A1 be a circuit overX andS1,
andA2 be a circuit overX andS2. ThenA1+·A2 is a circuit ofS1+·S2.

1 The proposition (29) has been removed.
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(32) LetX be a non empty finite set,S1, S2 be signatures overX, A1 be a circuit overX andS1,
andA2 be a circuit overX andS2. ThenA1+·A2 has denotation held in gates.

(33) LetX be a non empty finite set,S1, S2 be signatures overX, A1 be a circuit overX andS1,
andA2 be a circuit overX andS2. Then the sorts ofA1+·A2 are constant and the value of the
sorts ofA1+·A2 = X.

Let S1, S2 be finite non empty many sorted signatures. Observe thatS1+·S2 is finite.
Let X be a non empty finite set and letS1, S2 be signatures overX. One can verify thatS1+·S2

has denotation held in gates.
Let X be a non empty finite set and letS1, S2 be signatures overX. ThenS1+·S2 is a strict

signature overX.
Let X be a non empty finite set, letS1, S2 be signatures overX, let A1 be a circuit overX andS1,

and letA2 be a circuit overX andS2. ThenA1+·A2 is a strict circuit overX andS1+·S2.
The following propositions are true:

(34) For all setsx, y holds rk(x) ∈ rk(〈〈x, y〉〉) and rk(y) ∈ rk(〈〈x, y〉〉).

(35) LetSbe a finite non void non empty unsplit many sorted signature with arity held in gates
with denotation held in gates andA be a non-empty circuit ofS such thatA has denotation
held in gates. ThenA has a stabilization limit.

Let X be a non empty finite set and letSbe a finite signature overX. Note that every circuit over
X andShas a stabilization limit.

Now we present three schemes. The scheme1AryDefdeals with a non empty setA and a unary
functorF yielding an element ofA , and states that:

(i) There exists a functionf from A1 into A such that for every elementx of A
holds f (〈x〉) = F (x), and
(ii) for all functions f1, f2 from A1 into A such that for every elementx of A holds
f1(〈x〉) = F (x) and for every elementx of A holds f2(〈x〉) = F (x) holds f1 = f2

for all values of the parameters.
The scheme2AryDefdeals with a non empty setA and a binary functorF yielding an element

of A , and states that:
(i) There exists a functionf from A2 into A such that for all elementsx, y of A

holds f (〈x,y〉) = F (x,y), and
(ii) for all functions f1, f2 from A2 into A such that for all elementsx, y of A

holds f1(〈x,y〉) = F (x,y) and for all elementsx, y of A holds f2(〈x,y〉) = F (x,y)
holds f1 = f2

for all values of the parameters.
The scheme3AryDefdeals with a non empty setA and a ternary functorF yielding an element

of A , and states that:
(i) There exists a functionf from A3 into A such that for all elementsx, y, z of

A holds f (〈x,y,z〉) = F (x,y,z), and
(ii) for all functions f1, f2 from A3 into A such that for all elementsx, y, z

of A holds f1(〈x,y,z〉) = F (x,y,z) and for all elementsx, y, z of A holds f2(〈x,y,
z〉) = F (x,y,z) holds f1 = f2

for all values of the parameters.
One can prove the following three propositions:

(36) For every functionf and for every setx such thatx∈ dom f holds f · 〈x〉= 〈 f (x)〉.

(37) Let f be a function andx1, x2, x3, x4 be sets. Ifx1 ∈ dom f andx2 ∈ dom f andx3 ∈ dom f
andx4 ∈ dom f , then f · 〈x1,x2,x3,x4〉= 〈 f (x1), f (x2), f (x3), f (x4)〉.

(38) Let f be a function andx1, x2, x3, x4, x5 be sets. Supposex1 ∈ dom f andx2 ∈ dom f and
x3 ∈ dom f andx4 ∈ dom f andx5 ∈ dom f . Then f · 〈x1,x2,x3,x4,x5〉= 〈 f (x1), f (x2), f (x3),
f (x4), f (x5)〉.
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Now we present several schemes. The schemeOneGate1Resultdeals with a setA , a non empty
finite setB, a unary functorF yielding an element ofB, and a functionC from B1 into B, and
states that:

For every states of 1GateCircuit(〈A〉,C ) and for every elementa1 of B such that
a1 = s(A) holds(Result(s))(Output1GateCircStr(〈A〉,C )) = F (a1)

provided the parameters meet the following condition:
• For every functiong from B1 into B holdsg = C iff for every elementa1 of B holds

g(〈a1〉) = F (a1).
The schemeOneGate2Resultdeals with setsA , B, a non empty finite setC , a binary functorF

yielding an element ofC , and a functionD from C 2 into C , and states that:
For every states of 1GateCircuit(〈A ,B〉,D) and for all elementsa1, a2 of C such
thata1 = s(A) anda2 = s(B) holds(Result(s))(Output1GateCircStr(〈A ,B〉,D)) =
F (a1,a2)

provided the parameters meet the following requirement:
• For every functiong from C 2 into C holdsg = D iff for all elementsa1, a2 of C

holdsg(〈a1,a2〉) = F (a1,a2).
The schemeOneGate3Resultdeals with setsA , B, C , a non empty finite setD, a ternary functor

F yielding an element ofD, and a functionE from D3 into D, and states that:
Let s be a state of 1GateCircuit(〈A ,B,C 〉,E) anda1, a2, a3 be elements ofD. If
a1 = s(A) anda2 = s(B) anda3 = s(C ), then(Result(s))(Output1GateCircStr(〈A ,
B,C 〉,E)) = F (a1,a2,a3)

provided the following requirement is met:
• For every functiong from D3 into D holdsg = E iff for all elementsa1, a2, a3 of D

holdsg(〈a1,a2,a3〉) = F (a1,a2,a3).
The schemeOneGate4Resultdeals with setsA , B, C , D, a non empty finite setE , a 4-ary

functorF yielding an element ofE , and a functionF from E4 into E , and states that:
Let s be a state of 1GateCircuit(〈A ,B,C ,D〉,F ) and a1, a2, a3, a4 be ele-
ments ofE . If a1 = s(A) and a2 = s(B) and a3 = s(C ) and a4 = s(D), then
(Result(s))(Output1GateCircStr(〈A ,B,C ,D〉,F )) = F (a1,a2,a3,a4)

provided the following condition is met:
• Let g be a function fromE4 into E . Theng = F if and only if for all elementsa1,

a2, a3, a4 of E holdsg(〈a1,a2,a3,a4〉) = F (a1,a2,a3,a4).
The schemeOneGate5Resultdeals with setsA , B, C , D, E , a non empty finite setF , a 5-ary

functorF yielding an element ofF , and a functionG from F 5 into F , and states that:
Let sbe a state of 1GateCircuit(〈A ,B,C ,D,E〉,G) anda1, a2, a3, a4, a5 be elements
of F . Supposea1 = s(A) anda2 = s(B) anda3 = s(C ) anda4 = s(D) anda5 = s(E).
Then(Result(s))(Output1GateCircStr(〈A ,B,C ,D,E〉,G)) = F (a1,a2,a3,a4,a5)

provided the following condition is met:
• Let g be a function fromF 5 into F . Theng = G if and only if for all elementsa1,

a2, a3, a4, a5 of F holdsg(〈a1,a2,a3,a4,a5〉) = F (a1,a2,a3,a4,a5).

4. INPUT OF A COMPOUND CIRCUIT

The following propositions are true:

(39) Letn be a natural number,X be a non empty finite set,f be a function fromXn into X, p
be a finite sequence with lengthn, andSbe a signature overX. If rng p⊆ the carrier ofSand
Output1GateCircStr(p, f ) /∈ InputVertices(S), then InputVertices(S+·1GateCircStr(p, f )) =
InputVertices(S).

(40) Let X1, X2 be sets, X be a non empty finite set,n be a natural number,
f be a function from Xn into X, p be a finite sequence with lengthn, and
S be a signature overX. Suppose rngp = X1 ∪ X2 and X1 ⊆ the carrier of S
and X2 misses InnerVertices(S) and Output1GateCircStr(p, f ) /∈ InputVertices(S). Then
InputVertices(S+·1GateCircStr(p, f )) = InputVertices(S)∪X2.
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(41) Let x1 be a set,X be a non empty finite set,f be a function fromX1 into X, andS be a
signature overX. If x1 ∈ the carrier ofSand Output1GateCircStr(〈x1〉, f ) /∈ InputVertices(S),
then InputVertices(S+·1GateCircStr(〈x1〉, f )) = InputVertices(S).

(42) Let x1, x2 be sets, X be a non empty finite set, f be a function from
X2 into X, and S be a signature overX. Suppose x1 ∈ the carrier of S
and x2 /∈ InnerVertices(S) and Output1GateCircStr(〈x1,x2〉, f ) /∈ InputVertices(S). Then
InputVertices(S+·1GateCircStr(〈x1,x2〉, f )) = InputVertices(S)∪{x2}.

(43) Let x1, x2 be sets, X be a non empty finite set, f be a function from
X2 into X, and S be a signature overX. Suppose x2 ∈ the carrier of S
and x1 /∈ InnerVertices(S) and Output1GateCircStr(〈x1,x2〉, f ) /∈ InputVertices(S). Then
InputVertices(S+·1GateCircStr(〈x1,x2〉, f )) = InputVertices(S)∪{x1}.

(44) Let x1, x2 be sets, X be a non empty finite set,f be a function from X2

into X, and S be a signature overX. Suppose x1 ∈ the carrier of S and
x2 ∈ the carrier of S and Output1GateCircStr(〈x1,x2〉, f ) /∈ InputVertices(S). Then
InputVertices(S+·1GateCircStr(〈x1,x2〉, f )) = InputVertices(S).

(45) Let x1, x2, x3 be sets,X be a non empty finite set,f be a function fromX3 into X,
and S be a signature overX. Supposex1 ∈ the carrier ofS and x2 /∈ InnerVertices(S)
andx3 /∈ InnerVertices(S) and Output1GateCircStr(〈x1,x2,x3〉, f ) /∈ InputVertices(S). Then
InputVertices(S+·1GateCircStr(〈x1,x2,x3〉, f )) = InputVertices(S)∪{x2,x3}.

(46) Let x1, x2, x3 be sets,X be a non empty finite set,f be a function fromX3 into X,
and S be a signature overX. Supposex2 ∈ the carrier ofS and x1 /∈ InnerVertices(S)
andx3 /∈ InnerVertices(S) and Output1GateCircStr(〈x1,x2,x3〉, f ) /∈ InputVertices(S). Then
InputVertices(S+·1GateCircStr(〈x1,x2,x3〉, f )) = InputVertices(S)∪{x1,x3}.

(47) Let x1, x2, x3 be sets,X be a non empty finite set,f be a function fromX3 into X,
and S be a signature overX. Supposex3 ∈ the carrier ofS and x1 /∈ InnerVertices(S)
andx2 /∈ InnerVertices(S) and Output1GateCircStr(〈x1,x2,x3〉, f ) /∈ InputVertices(S). Then
InputVertices(S+·1GateCircStr(〈x1,x2,x3〉, f )) = InputVertices(S)∪{x1,x2}.

(48) Let x1, x2, x3 be sets,X be a non empty finite set,f be a function fromX3 into X,
and S be a signature overX. Supposex1 ∈ the carrier ofS and x2 ∈ the carrier ofS
andx3 /∈ InnerVertices(S) and Output1GateCircStr(〈x1,x2,x3〉, f ) /∈ InputVertices(S). Then
InputVertices(S+·1GateCircStr(〈x1,x2,x3〉, f )) = InputVertices(S)∪{x3}.

(49) Let x1, x2, x3 be sets,X be a non empty finite set,f be a function fromX3 into X,
and S be a signature overX. Supposex1 ∈ the carrier ofS and x3 ∈ the carrier ofS
andx2 /∈ InnerVertices(S) and Output1GateCircStr(〈x1,x2,x3〉, f ) /∈ InputVertices(S). Then
InputVertices(S+·1GateCircStr(〈x1,x2,x3〉, f )) = InputVertices(S)∪{x2}.

(50) Let x1, x2, x3 be sets,X be a non empty finite set,f be a function fromX3 into X,
and S be a signature overX. Supposex2 ∈ the carrier ofS and x3 ∈ the carrier ofS
andx1 /∈ InnerVertices(S) and Output1GateCircStr(〈x1,x2,x3〉, f ) /∈ InputVertices(S). Then
InputVertices(S+·1GateCircStr(〈x1,x2,x3〉, f )) = InputVertices(S)∪{x1}.

(51) Let x1, x2, x3 be sets,X be a non empty finite set,f be a function fromX3 into X,
and S be a signature overX. Supposex1 ∈ the carrier ofS and x2 ∈ the carrier ofS
and x3 ∈ the carrier ofS and Output1GateCircStr(〈x1,x2,x3〉, f ) /∈ InputVertices(S). Then
InputVertices(S+·1GateCircStr(〈x1,x2,x3〉, f )) = InputVertices(S).

5. RESULT OF A COMPOUND CIRCUIT

We now state the proposition
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(52) Let X be a non empty finite set,S be a finite signature overX, A be a circuit overX
andS, n be a natural number,f be a function fromXn into X, and p be a finite sequence
with length n. Suppose Output1GateCircStr(p, f ) /∈ InputVertices(S). Let s be a state of
A+·1GateCircuit(p, f ) and s′ be a state ofA. Supposes′ = s�the carrier ofS. Then the
stabilization time ofs≤ 1+ the stabilization time ofs′.

Now we present several schemes. The schemeComb1CircResultdeals with a setA , a non empty
finite setB, a unary functorF yielding an element ofB, a finite signatureC over B, a circuit D
overB andC , and a functionE from B1 into B, and states that:

Let s be a state ofD+·1GateCircuit(〈A〉,E) and s′ be a state ofD. Suppose
s′ = s�the carrier ofC . Let a1 be an element ofB. Suppose ifA ∈ InnerVertices(C ),
then a1 = (Result(s′))(A) and if A /∈ InnerVertices(C ), then a1 = s(A). Then
(Result(s))(Output1GateCircStr(〈A〉,E)) = F (a1)

provided the parameters meet the following conditions:
• For every functiong from B1 into B holdsg = E iff for every elementa1 of B holds

g(〈a1〉) = F (a1), and
• Output1GateCircStr(〈A〉,E) /∈ InputVertices(C ).

The schemeComb2CircResultdeals with setsA , B, a non empty finite setC , a binary functor
F yielding an element ofC , a finite signatureD overC , a circuitE overC andD, and a function
F from C 2 into C , and states that:

Let sbe a state ofE+·1GateCircuit(〈A ,B〉,F ) ands′ be a state ofE . Supposes′ =
s�the carrier ofD. Let a1, a2 be elements ofC . Suppose ifA ∈ InnerVertices(D),
thena1 = (Result(s′))(A) and if A /∈ InnerVertices(D), thena1 = s(A) and if B ∈
InnerVertices(D), thena2 = (Result(s′))(B) and ifB /∈ InnerVertices(D), thena2 =
s(B). Then(Result(s))(Output1GateCircStr(〈A ,B〉,F )) = F (a1,a2)

provided the following conditions are satisfied:
• For every functiong from C 2 into C holdsg = F iff for all elementsa1, a2 of C

holdsg(〈a1,a2〉) = F (a1,a2), and
• Output1GateCircStr(〈A ,B〉,F ) /∈ InputVertices(D).

The schemeComb3CircResultdeals with setsA , B, C , a non empty finite setD, a ternary
functorF yielding an element ofD, a finite signatureE overD, a circuitF overD andE , and a
functionG from D3 into D, and states that:

Let s be a state ofF +·1GateCircuit(〈A ,B,C 〉,G) ands′ be a state ofF . Suppose
s′ = s�the carrier ofE . Let a1, a2, a3 be elements ofD. Suppose that

(i) if A ∈ InnerVertices(E), thena1 = (Result(s′))(A),
(ii) if A /∈ InnerVertices(E), thena1 = s(A),

(iii) if B ∈ InnerVertices(E), thena2 = (Result(s′))(B),
(iv) if B /∈ InnerVertices(E), thena2 = s(B),
(v) if C ∈ InnerVertices(E), thena3 = (Result(s′))(C ), and

(vi) if C /∈ InnerVertices(E), thena3 = s(C ).
Then(Result(s))(Output1GateCircStr(〈A ,B,C 〉,G)) = F (a1,a2,a3)

provided the following conditions are met:
• For every functiong from D3 into D holdsg = G iff for all elementsa1, a2, a3 of D

holdsg(〈a1,a2,a3〉) = F (a1,a2,a3), and
• Output1GateCircStr(〈A ,B,C 〉,G) /∈ InputVertices(E).

The schemeComb4CircResultdeals with setsA , B, C , D, a non empty finite setE , a 4-ary
functorF yielding an element ofE , a finite signatureF overE , a circuitG overE andF , and a
functionH from E4 into E , and states that:

Let s be a state ofG+·1GateCircuit(〈A ,B,C ,D〉,H ) ands′ be a state ofG . Sup-
poses′ = s�the carrier ofF . Let a1, a2, a3, a4 be elements ofE . Suppose that
if A ∈ InnerVertices(F ), thena1 = (Result(s′))(A) and if A /∈ InnerVertices(F ),
then a1 = s(A) and if B ∈ InnerVertices(F ), then a2 = (Result(s′))(B) and
if B /∈ InnerVertices(F ), then a2 = s(B) and if C ∈ InnerVertices(F ), then
a3 = (Result(s′))(C ) and if C /∈ InnerVertices(F ), then a3 = s(C ) and if D ∈
InnerVertices(F ), thena4 = (Result(s′))(D) and ifD /∈ InnerVertices(F ), thena4 =
s(D). Then(Result(s))(Output1GateCircStr(〈A ,B,C ,D〉,H )) = F (a1,a2,a3,a4)
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provided the parameters meet the following conditions:
• Let g be a function fromE4 into E . Theng = H if and only if for all elementsa1,

a2, a3, a4 of E holdsg(〈a1,a2,a3,a4〉) = F (a1,a2,a3,a4), and
• Output1GateCircStr(〈A ,B,C ,D〉,H ) /∈ InputVertices(F ).

The schemeComb5CircResultdeals with setsA , B, C , D, E , a non empty finite setF , a 5-ary
functorF yielding an element ofF , a finite signatureG overF , a circuitH overF andG , and a
functionI from F 5 into F , and states that:

Let sbe a state ofH +·1GateCircuit(〈A ,B,C ,D,E〉,I ) ands′ be a state ofH . Sup-
poses′ = s�the carrier ofG . Let a1, a2, a3, a4, a5 be elements ofF . Suppose that
if A ∈ InnerVertices(G), then a1 = (Result(s′))(A) and if A /∈ InnerVertices(G),
then a1 = s(A) and if B ∈ InnerVertices(G), then a2 = (Result(s′))(B) and
if B /∈ InnerVertices(G), then a2 = s(B) and if C ∈ InnerVertices(G), then
a3 = (Result(s′))(C ) and if C /∈ InnerVertices(G), then a3 = s(C ) and if D ∈
InnerVertices(G), then a4 = (Result(s′))(D) and if D /∈ InnerVertices(G), then
a4 = s(D) and if E ∈ InnerVertices(G), then a5 = (Result(s′))(E) and if E /∈
InnerVertices(G), thena5 = s(E). Then(Result(s))(Output1GateCircStr(〈A ,B,C ,
D,E〉,I )) = F (a1,a2,a3,a4,a5)

provided the following conditions are met:
• Let g be a function fromF 5 into F . Theng = I if and only if for all elementsa1,

a2, a3, a4, a5 of F holdsg(〈a1,a2,a3,a4,a5〉) = F (a1,a2,a3,a4,a5), and
• Output1GateCircStr(〈A ,B,C ,D,E〉,I ) /∈ InputVertices(G).

6. INPUTSWITHOUT PAIRS

Let Sbe a non empty many sorted signature. We say thatShas nonpair inputs if and only if:

(Def. 11) InputVertices(S) has no pairs.

One can check thatN has no pairs. LetX be a set with no pairs. One can verify that every subset
of X has no pairs.

Let us observe that every function which is natural-yielding is also nonpair yielding.
Let us observe that every finite sequence of elements ofN is natural-yielding.
One can verify that there exists a finite sequence which is one-to-one and natural-yielding.
Let n be a natural number. Note that there exists a finite sequence with lengthn which is one-

to-one and natural-yielding.
Let p be a nonpair yielding finite sequence and letf be a set. Observe that 1GateCircStr(p, f )

has nonpair inputs.
One can verify that there exists an one-gate many sorted signature which has nonpair inputs. Let

X be a non empty finite set. One can check that there exists an one-gate signature overX which has
nonpair inputs.

Let Sbe a non empty many sorted signature with nonpair inputs. Note that InputVertices(S) has
no pairs.

Next we state the proposition

(53) LetSbe a non empty many sorted signature with nonpair inputs andx be a vertex ofS. If
x is pair, thenx∈ InnerVertices(S).

Let S be an unsplit non empty many sorted signature with arity held in gates. Observe that
InnerVertices(S) is relation-like.

Let S be an unsplit non empty non void many sorted signature with denotation held in gates.
One can check that InnerVertices(S) is relation-like.

Let S1, S2 be unsplit non empty many sorted signatures with arity held in gates with nonpair
inputs. Note thatS1+·S2 has nonpair inputs.

Next we state two propositions:

(54) For every non pair setx and for every binary relationRholdsx /∈ R.



PRELIMINARIES TO AUTOMATIC GENERATION OF. . . 11

(55) Let x1 be a set,X be a non empty finite set,f be a function fromX1 into X, and S
be a signature overX with nonpair inputs. Ifx1 ∈ the carrier ofS or x1 is non pair, then
S+·1GateCircStr(〈x1〉, f ) has nonpair inputs.

Let X be a non empty finite set, letSbe a signature overX with nonpair inputs, letx1 be a vertex
of S, and let f be a function fromX1 into X. One can verify thatS+·1GateCircStr(〈x1〉, f ) has
nonpair inputs.

Let X be a non empty finite set, letSbe a signature overX with nonpair inputs, letx1 be a non
pair set, and letf be a function fromX1 into X. Note thatS+·1GateCircStr(〈x1〉, f ) has nonpair
inputs.

We now state the proposition

(56) Letx1, x2 be sets,X be a non empty finite set,f be a function fromX2 into X, andS be
a signature overX with nonpair inputs. Supposex1 ∈ the carrier ofS or x1 is non pair but
x2 ∈ the carrier ofSor x2 is non pair. ThenS+·1GateCircStr(〈x1,x2〉, f ) has nonpair inputs.

Let X be a non empty finite set, letS be a signature overX with nonpair inputs, letx1 be
a vertex ofS, let n2 be a non pair set, and letf be a function fromX2 into X. One can check
thatS+·1GateCircStr(〈x1,n2〉, f ) has nonpair inputs andS+·1GateCircStr(〈n2,x1〉, f ) has nonpair
inputs.

Let X be a non empty finite set, letS be a signature overX with nonpair inputs, letx1, x2 be
vertices ofS, and let f be a function fromX2 into X. One can verify thatS+·1GateCircStr(〈x1,
x2〉, f ) has nonpair inputs.

We now state the proposition

(57) Letx1, x2, x3 be sets,X be a non empty finite set,f be a function fromX3 into X, andSbe
a signature overX with nonpair inputs. Suppose that

(i) x1 ∈ the carrier ofSor x1 is non pair,

(ii) x2 ∈ the carrier ofSor x2 is non pair, and

(iii) x3 ∈ the carrier ofSor x3 is non pair.

ThenS+·1GateCircStr(〈x1,x2,x3〉, f ) has nonpair inputs.

Let X be a non empty finite set, letS be a signature overX with nonpair inputs, letx1, x2 be
vertices ofS, let n be a non pair set, and letf be a function fromX3 into X. One can verify the
following observations:

∗ S+·1GateCircStr(〈x1,x2,n〉, f ) has nonpair inputs,

∗ S+·1GateCircStr(〈x1,n,x2〉, f ) has nonpair inputs, and

∗ S+·1GateCircStr(〈n,x1,x2〉, f ) has nonpair inputs.

Let X be a non empty finite set, letSbe a signature overX with nonpair inputs, letx be a vertex
of S, let n1, n2 be non pair sets, and letf be a function fromX3 into X. One can check the following
observations:

∗ S+·1GateCircStr(〈x,n1,n2〉, f ) has nonpair inputs,

∗ S+·1GateCircStr(〈n1,x,n2〉, f ) has nonpair inputs, and

∗ S+·1GateCircStr(〈n1,n2,x〉, f ) has nonpair inputs.

Let X be a non empty finite set, letSbe a signature overX with nonpair inputs, letx1, x2, x3 be
vertices ofS, and let f be a function fromX3 into X. One can check thatS+·1GateCircStr(〈x1,x2,
x3〉, f ) has nonpair inputs.
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