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1. StABILIZING CIRCUITS
One can prove the following proposition

(1) LetSbe anon void circuit-like non empty many sorted signatree a non-empty circuit
of S, sbe a state oA, andx be a set. Ik € InputVertice$S), then for every natural number
holds(Following(s,n))(x) = s(X).

Let Sbe a non void circuit-like non empty many sorted signatureAlbe a non-empty circuit
of S and letsbe a state oA. We say thasis stabilizing if and only if:

(Def. 1) There exists a natural numbesuch that Followings, n) is stable.

Let Sbe a non void circuit-like non empty many sorted signature and leé a non-empty
circuit of S, We say thaf is stabilizing if and only if:

(Def. 2) Every state o\ is stabilizing.
We say thafA has a stabilization limit if and only if:

(Def. 3) There exists a natural numhesuch that for every stateof A holds Followings, n) is
stable.

Let Sbe a non void circuit-like non empty many sorted signature. Observe that every non-empty
circuit of Swhich has a stabilization limit is also stabilizing.

Let Sbe a non void circuit-like non empty many sorted signatureAlbe a non-empty circuit
of S, and letsbe a state oA. Let us assume thatis stabilizing. The functor Resy#) yields a state
of Aand is defined by:

(Def. 4) Results) is stable and there exists a natural numbguch that Resuls) = Following(s, n).

1 © Association of Mizar Users
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Let Sbe a non void circuit-like non empty many sorted signatureAlbe a non-empty circuit
of S and lets be a state oA. Let us assume thatis stabilizing. The stabilization time &fis a
natural number and is defined by the conditions (Def. 5).

(Def.5)()) Following s, the stabilization time of) is stable, and

(i) for every natural numben such than < the stabilization time o§ holds Followingds, n)
is not stable.

We now state a number of propositions:

(2) LetSbe anon void circuit-like non empty many sorted signatree a non-empty circuit
of S, ands be a state oA. If sis stabilizing, then Resul) = Following(s,the stabilization
time of s).

(3) LetSbe anon void circuit-like non empty many sorted signatirkee a non-empty circuit
of S s be a state oA, andn be a natural number. If Followirig n) is stable, then the
stabilization time o < n.

(4) LetSbe anon void circuit-like non empty many sorted signatree a non-empty circuit
of S sbe a state of\, andn be a natural number. If Followirig n) is stable, then Resu#) =
Following(s, n).

(5) LetSbe anon void circuit-like non empty many sorted signatree a non-empty circuit
of S s be a state oA, andn be a natural number. Supposeés stabilizing andn > the
stabilization time of. Then Resulfs) = Following(s,n).

(6) LetSbe anon void circuit-like non empty many sorted signatAree a non-empty circuit
of S andsbe a state oA. If sis stabilizing, then for every setsuch thak € InputVerticegS)
holds(Results))(x) = s(x).

(7) LetS, She non void circuit-like non empty many sorted signatufgsbe a non-empty
circuit of S, A be a non-empty circuit 0§, s be a state oA, ands; be a state of;. If
s, = s|the carrier ofS;, then for every vertex; of S holdss;(v1) = s(vi).

(8) Let S, S be non void circuit-like non empty many sorted signatures. Suppose
InputVertice$S;) misses InnerVerticéS,) and InputVertice6s,) misses InnerVertic€sS; ).
Let Sbe a non void circuit-like non empty many sorted signature. Suppes&; +-S. Let
A; be a non-empty circuit & andA; be a non-empty circuit . Supposé\; =~ Ay. LetA
be a non-empty circuit d6. Supposed = A;+-A. Let sbe a state oA, s; be a state of,
ands, be a state ofy. Supposes; = s[the carrier ofS; ands, = s[the carrier ofS; ands; is
stabilizing ands; is stabilizing. Thersis stabilizing.

(9) Let S, S be non void circuit-like non empty many sorted signatures. Suppose

InputVertice$S;) misses InnerVerticéS,) and InputVertice6s,) misses InnerVertic€s; ).

Let Sbe a non void circuit-like non empty many sorted signature. Supfes&;+-S. Let

A; be a non-empty circuit db, andA; be a non-empty circuit 0%,. Supposed; ~ A;. Let

A be a non-empty circuit 08. Supposéd = A;+-Ax. Let sbe a state oA ands; be a state

of A;. Supposes; = s[the carrier ofS; ands,; is stabilizing. Lets, be a state of,. Sup-
poses, = s[the carrier 0ofS; ands; is stabilizing. Then the stabilization time s max(the
stabilization time of;, the stabilization time of;).

(10) Let S, S be non void circuit-like non empty many sorted signatures. Suppose
InputVertice$S;) misses InnerVerticéS,). Let Sbe a non void circuit-like non empty many
sorted signature. Suppose= S+-S. Let A; be a non-empty circuit 0§ and A; be a
non-empty circuit ofS. Supposer; ~ Ay. Let A be a non-empty circuit o6, Suppose
A=A;+-Ay. Letsbe a state oA ands; be a state oA;. Supposes; = s|the carrier ofS; and
s is stabilizing. Lets, be a state oA,. Supposes, = Following(s, the stabilization time of
s1) [the carrier of; ands; is stabilizing. Thersis stabilizing.
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(11) Let S, S be non void circuit-like non empty many sorted signatures. Suppose
InputVertice$S;) misses InnerVertic€S,). Let Sbe a non void circuit-like non empty many
sorted signature. Suppose= S+-S. Let A; be a non-empty circuit 0§ and A, be a
non-empty circuit ofS;. Suppose?; =~ Ay. Let A be a non-empty circuit 06 Suppose
A=A;+-Ay. Letsbe a state oA ands; be a state of;. Supposes; = s|the carrier ofS; and
s is stabilizing. Lets, be a state oh,. Supposes, = Following(s, the stabilization time of
s1) [the carrier ofS; ands; is stabilizing. Then the stabilization time 8= (the stabilization
time of s1) + (the stabilization time of;).

(12) LetS), &, S be non void circuit-like non empty many sorted signatures. Suppose
InputVertice$S;) misses InnerVerticéSy) andS= S;+-S,. Let A; be a non-empty circuit
of S, A, be a non-empty circuit 0%, andA be a non-empty circuit db. Supposed; ~ Ay
andA = A;+-A.. Letsbe a state oA ands; be a state of\;. Supposes; = s|the carrier 0fS;
ands; is stabilizing. Lets; be a state of;. Supposes, = Following(s, the stabilization time
of s1) [the carrier of$; ands; is stabilizing. Then Resuf) [the carrier ofS; = Results;).

2. ONE-GATE CIRCUITS

We now state three propositions:

(13) Letx be a setX be a non empty finite set be a natural numbep be a finite sequence
with lengthn, g be a function fromX" into X, ands be a state of 1GateCircyfi,g). Then
s- pis an element oK".

(14) For all setxq, X2, X3, X4 holds rngxi, X2, X3,Xa) = {X1,X2,X3,Xa }.
(15) For all setxq, X2, X3, X4, X5 holds rngxi, X2, X3, X4, Xs5) = {X1,X2,X3,X4,X5}.

Let x1, X2, X3, X4 be sets. TheKixs, X2, X3, X4) is a finite sequence with length 4. Letbe a set.
Then(x1,%2,X3,X4,Xs) is a finite sequence with length 5.

Let Sbe a many sorted signature. We say that one-gate if and only if the condition (Def. 6)
is satisfied.

(Def. 6) There exists a non empty finite séand there exists a natural numlreand there exists
a finite sequence with lengthn and there exists a functioh from X" into X such that
S= 1GateCircStfp, f).

Let Sbe a non empty many sorted signature anddiée an algebra oves. We say thatA is
one-gate if and only if the condition (Def. 7) is satisfied.

(Def. 7) There exists a non empty finite sénd there exists a natural numbyeand there exists
a finite sequence with lengthn and there exists a functiof from X" into X such that
S=1GateCircStfp, f) andA = 1GateCircuitp, f).

Let p be a finite sequence and lebe a set. One can verify that 1GateCir¢BiK) is finite.

Let us note that every many sorted signature which is one-gate is also strict, non void, non
empty, unsplit, and finite and has arity held in gates.

One can verify that every non empty many sorted signature which is one-gate has also denotation
held in gates.

Let X be a non empty finite set, latbe a natural number, lgtbe a finite sequence with length
n, and letf be a function fronX" into X. Observe that 1GateCirc$fr, f) is one-gate.

One can verify that there exists a many sorted signature which is one-gate.

Let Sbe an one-gate many sorted signature. Observe that every cir&uitlith is one-gate is
also strict and non-empty.

Let X be a non empty finite set, latbe a natural number, lgtbe a finite sequence with length
n, and letf be a function fronX" into X. One can check that 1GateCirdyit f) is one-gate.

Let Sbe an one-gate many sorted signature. Observe that there exists a cirgwithath is
one-gate and non-empty.

Let Sbe an one-gate many sorted signature. The functor O8tpietds a vertex ofS and is
defined by:



PRELIMINARIES TO AUTOMATIC GENERATION OF. .. 4

(Def. 8) Outpu=J(the operation symbols &).

Let Sbe an one-gate many sorted signature. One can verify that CRitppair.
We now state several propositions:

(16) LetSbe an one-gate many sorted signatysege a finite sequence, andbe a set. If
S= 1GateCircStp, x), then OutpuS= (p, x}.

(17) For every one-gate many sorted signaihelds InnerVerticeS) = {OutputS}.

(18) LetSbe an one-gate many sorted signatdsdye an one-gate circuit &, n be a natural
numberX be a finite non empty set,be a function fronX" into X, andp be a finite sequence
with lengthn. If A= 1GateCircuitp, f), thenS= 1GateCircStfp, ).

(19) Letn be a natural numbeiX be a finite non empty sef, be a function fromx" into
X, p be a finite sequence with length ands be a state of 1GateCircyp, f). Then
(Following(s)) (Output1GateCircStp, f)) = f(s- p).

(20) LetSbe an one-gate many sorted signatét®e an one-gate circuit @&, ands be a state
of A. Then Followinds) is stable.

Let Sbe a non void circuit-like non empty many sorted signature. Note that every non-empty
circuit of Swhich is one-gate has also a stabilization limit.
One can prove the following propositions:

(21) LetSbe an one-gate many sorted signatét®e an one-gate circuit @&, ands be a state
of A. Then Resuls) = Following(s).

(22) LetSbe an one-gate many sorted signatét®e an one-gate circuit @&, ands be a state
of A. Then the stabilization time a&f< 1.

In this article we present several logical schemes. The scltame&atelExleals with a sef,
a non empty finite seB, and a unary functof yielding an element o3, and states that:
There exists an one-gate many sorted signgbaned there exists an one-gate circuit
Aof Ssuch that InputVerticéS) = {4} and for every stateof A holds(Results))(OutputS) =
F(s(A))
for all values of the parameters.
The schem®neGate2Exieals with sets?, B, a non empty finite sef’, and a binary functor
F yielding an element of’, and states that:
There exists an one-gate many sorted signaBuaed there exists an one-gate cir-
cuit A of Ssuch that InputVerticé$) = {4, B} and for every stats of A holds
(Resulfs))(OutputS) = F(s(4),s(B))
for all values of the parameters.
The schem®neGate3Exieals with sets1, B, C, a non empty finite seb, and a ternary functor
T yielding an element o0, and states that:
There exists an one-gate many sorted signa@aad there exists an one-gate cir-
cuit A of Ssuch that InputVerticés) = {4, B, C} and for every stats of A holds
(Resulfs))(OutputS) = F(s(4),s(B),s(C))
for all values of the parameters.
The schem@®neGate4Exdeals with sets2, B, C, D, a non empty finite seE, and a 4-ary
functor F yielding an element of, and states that:
There exists an one-gate many sorted signabaned there exists an one-gate circuit
A of Ssuch that InputVerticés) = {4, B, C, D} and for every stats of A holds
(Results))(OutputS) = F(s(A4),s(B),s(C),s(D))
for all values of the parameters.
The schem®neGate5Exieals with sets, B, C, D, E, a non empty finite sef, and a 5-ary
functor ¥ yielding an element off , and states that:
There exists an one-gate many sorted signabaned there exists an one-gate circuit
A of Ssuch that InputVerticés) = {4, B, C, D, E} and for every stats of A holds
(Results))(OutputS) = F(s(4),(B),s(C),s(D),s(E))
for all values of the parameters.
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3. MONO-SORTEDCIRCUITS
The following four propositions are true:

(23) For every constant functiohholds f = domf —— the value off.

(24) For all non empty sets, Y and for all natural numbenrg msuch than # 0 andX" =Y™
holdsX =Y andn=m.

(25) For all non empty many sorted signatufs S holds every vertex 0§ is a vertex of
S+S.

(26) For all non empty many sorted signatufs S holds every vertex 0% is a vertex of
S+S.

Let X be a non empty finite set. A non void nhon empty unsplit many sorted signature with arity
held in gates with denotation held in gates is said to be a signaturXaf/satisfies the condition
(Def. 9).

(Def. 9) There exists a circuf of it such that the sorts & are constant and the value of the sorts
of A= X andA has denotation held in gates.

The following proposition is true

(27) Letnbe a natural numbeX be a non empty finite sef,be a function fronX" into X, and
p be a finite sequence with length Then 1GateCircStp, f) is a signature ovex.

Let X be a non empty finite set. Note that there exists a signature>owerich is strict and
one-gate.

Let n be a natural number, 1& be a non empty finite set, ldtbe a function fromX" into X,
and letp be a finite sequence with length Then 1GateCircStp, f) is a strict signature ovex.

Let X be a non empty finite set and IBbe a signature ovet. A circuit of Sis called a circuit
overX andSif:

(Def. 10) It has denotation held in gates and the sorts of it are constant and the value of the sorts of it
=X.

Let X be a non empty finite set and I8te a signature oveX. Note that every circuit ovex
andSis non-empty and has denotation held in gates.
Next we state the proposition

(28) Letn be a natural numbeK be a non empty finite sef, be a function fromX" into X,
and p be a finite sequence with length Then 1GateCircufp, f) is a circuit overX and
1GateCircStfp, f).

Let X be a non empty finite set and IBthe an one-gate signature owér One can verify that
there exists a circuit ovet andSwhich is strict and one-gate.

Let X be a non empty finite set and I8te a signature oveX. Note that there exists a circuit
overX andSwhich is strict.

Let n be a natural number, I8¢ be a non empty finite set, Iétbe a function fromX" into X,
and letp be a finite sequence with length Then 1GateCircufp, f) is a strict circuit oveiX and
1GateCircStp, f).

We now state four propositions:

(30[] Let X be a non empty finite sef, S be signatures oveX, A; be a circuit oveiX andS,
andA; be a circuit oveXX andS,. ThenA; ~ Ao.

(31) LetX be anon empty finite sef, S be signatures oveX, A; be a circuit oveliX and$S,
andA; be a circuit oveXX andS,. ThenA;+-As is a circuit of§+-S,.

1 The proposition (29) has been removed.
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(32) LetX be a non empty finite se®;, S be signatures ovet, A; be a circuit oveX andS,
andA; be a circuit oveX andS,. ThenA;+-A, has denotation held in gates.

(33) LetX be a non empty finite sef, S be signatures oveX, A; be a circuit oveliX and$S,
andA, be a circuit ovelX andS,. Then the sorts o\, +-A, are constant and the value of the
sorts ofA;+-Ax = X.

Let S, S be finite non empty many sorted signatures. ObserveShatS; is finite.

Let X be a non empty finite set and I8, S, be signatures ovet. One can verify tha+-S
has denotation held in gates.

Let X be a non empty finite set and I8, S be signatures oveX. Then$+-S; is a strict
signature ovekK.

Let X be a non empty finite set, I8, S be sighatures ovef, let A; be a circuit oveiX andS,
and letA; be a circuit oveX andS,. ThenA;+-A; is a strict circuit oveX andS+-S.

The following propositions are true:

(34) For all setx, y holds rkx) € rk({x, y)) and rky) € rk({x, y}).

(35) LetShbe a finite non void non empty unsplit many sorted signature with arity held in gates
with denotation held in gates ambe a non-empty circuit 06 such thatA has denotation
held in gates. TheA has a stabilization limit.

Let X be a non empty finite set and Bbe a finite signature ové¢. Note that every circuit over
X andShas a stabilization limit.
Now we present three schemes. The sch@AwyDefdeals with a non empty sét and a unary
functor ¥ yielding an element off, and states that:
() There exists a functiori from 4% into 4 such that for every elememntof 4
holds f({x)) = ¥ (x), and
(i) forall functions f1, f, from 4t into 4 such that for every elemerbf 4 holds
f1((x)) = F(x) and for every elementof 4 holds f2((x)) = #(x) holds f; = f
for all values of the parameters.
The schem@AryDefdeals with a non empty set and a binary functofF yielding an element
of 4, and states that:
() There exists a functiori from 42 into 4 such that for all elements y of 4
holdsf({x,y)) = F(x,y), and
(i) for all functions f1, f, from 42 into 4 such that for all elements y of 4
holds f1({x,y)) = F(x,y) and for all elements, y of 4 holds f2({x,y)) = F(X,y)
holds fj_ = f2
for all values of the parameters.
The schem@AryDefdeals with a non empty set and a ternary functof yielding an element
of 4, and states that:
() There exists a functiori from 42 into 4 such that for all elements y, z of
A4 holdsf({x,y,2)) = F(x,Y,2), and
(i) for all functions f1, f, from 42 into 4 such that for all elements, y, z
of 4 holds f1((x,y,2)) = F(X,y,2) and for all elementsg, y, z of 4 holds f2((x,y,
2)) = F(x,Y,2) holds f1 = fa
for all values of the parameters.
One can prove the following three propositions:

(36) For every functiorf and for every set such thai € domf holds f - (x) = (f(x)).

(37) Letf be afunction andy, X2, X3, X4 be sets. Ii; € domf andx, € domf andxs € domf
andxs € domf, thenf - (Xq,%2,x3,X4) = (f(x1), f(x2), f(X3), f(Xa)).

(38) Letf be a function andy, X2, X3, X4, X5 be sets. Suppose € domf andx, € domf and
x3 € domf andx4 € domf andxs € domf. Thenf - (X1, X2,X3,X4,%Xs5) = (f(x1), f(X2), f (X3),
f(xa), f(xs)).
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Now we present several schemes. The schemeGate1Resutteals with a sefl, a non empty
finite set8, a unary functor¥ yielding an element of8, and a functionC from 8! into 8, and
states that:

For every states of 1GateCircuif(-2), C) and for every elemerd; of B such that
a1 = s(A4) holds(Results))(Output1GateCircS((2),C)) = F (a1)
provided the parameters meet the following condition:

e For every functiorg from B into B holdsg = ( iff for every elementy of B holds

o((an)) = 7 (an).
The schem®neGate2Resutteals with sets1, B, a non empty finite saf, a binary functorf
yielding an element of’, and a functiond from ¢? into C, and states that:
For every states of 1GateCircuif(4, B), D) and for all elementsy, a; of C such
thata; = s(A4) anda; = s(‘B) holds(Results))(Output 1GateCircS{(4, B), D)) =
F(a1,a2)

provided the parameters meet the following requirement:

e For every functiong from (? into ¢ holdsg = D iff for all elementsay, a, of C

holdsg((a1,a2)) = F (a1, a2).
The schem®neGate3Resulteals with sets1, B, C, a non empty finite seD, a ternary functor
¥ yielding an element o>, and a function from D3 into D, and states that:
Let s be a state of 1GateCirc(it4, B, C), E) anday, ap, ag be elements ofD. If
a1 = S(4) anday = s(B) andag = s(C), then(Results))(Output 1GateCircS( 4,
$7C>7£)) = T(a173'27a3)

provided the following requirement is met:

e For every functiorg from 22 into D holdsg =  iff for all elementsay, a, ag of D

holdsg((a1,a2,a3)) = ¥ (a1, a2,3).
The schemeéOneGate4Resulieals with sets2, B, C, D, a non empty finite seE, a 4-ary
functor ¥ yielding an element of, and a function from £* into £, and states that:
Let s be a state of 1GateCircy{ta,B,C, D), F) and a1, ap, as, a4 be ele-
ments of £. If a; = s(A4) anday = s(B) and az = s(C) and as = (D), then
(Results))(Output1GateCircStA4, B, C, D), F)) = F (a1,a2,83,84)

provided the following condition is met:

e Letg be a function fromg?* into £. Theng = ¥ if and only if for all elementsay,

ap, ag, a4 Of £ holdsg((ay,ap,a3,a4)) = F (&1,82,83,a4).

The schem®neGate5Resutteals with sets, B, C, D, E, a hon empty finite sef , a 5-ary
functor ¥ yielding an element ofF , and a functiong from #° into ¥, and states that:

Letsbe a state of 1GateCirc{t4, B, C, D, E), G) anday, ay, ag, as, as be elements

of 7. Supposey = s(A4) andap = s(‘B) andaz = s(C) andas = (D) andas = S(E).

Then(Results))(Output 1GateCircS{(4, B, C, D, E), G)) = F (a1,a2,a3,a4,8s)
provided the following condition is met:

e Letgbe a function from# > into F. Theng = G if and only if for all elementsay,

a, as, au, as of ¥ holdsg((ay,ap,a3,a4,85)) = F (a1, a2, 83,84, 8s).

4. INPUT OF ACOMPOUND CIRCUIT
The following propositions are true:

(39) Letnbe a natural numbeK be a non empty finite sef, be a function fromX" into X, p
be a finite sequence with lengthandSbe a signature ovet. If rng p C the carrier ofSand
Output1GateCircStp, f) ¢ InputVertice$S), then InputVertice&S+- 1GateCircStp, f)) =
InputVertice$S).

(40) Let X3, X be sets, X be a non empty finite seth be a natural number,
f be a function from X" into X, p be a finite sequence with length, and
S be a signature ovelX. Suppose rng = X3 U Xy and X; C the carrier of S
and X; misses InnerVertic€S) and OutputlGateCircSip, f) ¢ InputVertice$S). Then
InputVerticegS+- 1GateCircStfp, f)) = InputVerticegS) U Xo.
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(41) Letx; be a setX be a non empty finite sef, be a function fromX* into X, andShe a
signature oveK. If x; € the carrier ofSand Output1GateCircSix; ), f) ¢ InputVertice$S),
then InputVertice&S+- 1GateCircSti(xy), f)) = InputVerticegS).

(42) Let x1, X be sets, X be a non empty finite set,f be a function from
X? into X, and S be a signature overX. Suppose x; € the carrier of S
and x; ¢ InnerVertice$S) and Output1GateCircSiixs,X2), f) ¢ InputVerticegS). Then
InputVertice§S+- 1GateCircStf(x1, X2), f)) = InputVerticegS) U {xz}.

(43) Let x1, X be sets, X be a non empty finite set,f be a function from
X2 into X, and S be a signature overX. Suppose xo € the carrier of S
and x; ¢ InnerVertice$S) and Output1GateCircSiixi,X2), f) ¢ InputVerticegS). Then
InputVertice$S+- 1GateCircStf(x1, X2), f)) = InputVertice$S) U {x1 }.

(44) Let xq, xo» be sets,X be a non empty finite setf be a function fromX?
into X, and S be a signature overX. Suppose x; € the carrier of S and
X € the carrier of S and OutputlGateCircSftx1,x2), f) ¢ InputVertice$S). Then
InputVertice§S+- 1GateCircStf(x1, X2), f)) = InputVerticess).

(45) Letxy, X2, X3 be sets,X be a non empty finite setf be a function fromX3 into X,
and S be a signature oveX. Supposex; € the carrier ofS and x; ¢ InnerVertice$S)
andxs ¢ InnerVertice$S) and Output1GateCircSiixy, X2, X3), f) ¢ InputVerticegS). Then
InputVertice$S+- 1GateCircStf(x1, X2, X3), f)) = InputVertice$S) U {x2, x3}.

(46) Letxy, X, X3 be sets,X be a non empty finite setf be a function fromX?3 into X,
and S be a signature oveX. Supposex; € the carrier ofS and x; ¢ InnerVertice$S)
andxz ¢ InnerVertice$S) and Output 1GateCircStix1, X2, Xs), ) ¢ InputVerticegS). Then
InputVertice$S+- 1GateCircStf(x1, X2, X3), f)) = InputVertice$S) U {x1,xs}.

(47) Letxy, X2, X3 be sets X be a non empty finite setf be a function fromX?2 into X,
and S be a signature oveX. Supposexs € the carrier ofS and x; ¢ InnerVertice$S)
andxy ¢ InnerVertice$S) and Output1GateCircSiixy, X2, X3), f) ¢ InputVertice$S). Then
InputVertice$S+- 1GateCircStf(x1, X2, X3), f)) = InputVertice$S) U {x1,x2}.

(48) Letxi, X, X3 be sets,X be a non empty finite setf be a function fromX?3 into X,
and S be a signature oveX. Supposex; € the carrier ofS and x, € the carrier ofS
andxz ¢ InnerVertice$S) and Output1GateCircStix1, X2, X3), ) ¢ InputVerticegS). Then
InputVertice$S+- 1GateCircStf(x1, X2, X3), T)) = InputVertice$S) U {x3}.

(49) Letxy, X2, X3 be sets X be a non empty finite setf be a function fromX2 into X,
and S be a signature oveX. Supposex; € the carrier ofS and x3 € the carrier ofS
andxy ¢ InnerVertice$S) and Output1GateCircSiixq, X2, X3), f) ¢ InputVertice$S). Then
InputVertice$S+- 1GateCircStf(xq, X2, X3), f)) = InputVerticeS) U {x.}.

(50) Letxi, X, X3 be sets,X be a non empty finite setf be a function fromX?3 into X,
and S be a signature oveX. Supposex; € the carrier ofS and x3 € the carrier ofS
andx; ¢ InnerVertice$S) and Output1GateCircStix1, X2, X3), ) ¢ InputVerticegS). Then
InputVerticegS+- 1GateCircStf(x1, X2, X3), f)) = InputVertice$S) U {x }.

(51) Letxy, X2, X3 be sets,X be a non empty finite setf be a function fromX?2 into X,
and S be a signature oveX. Supposex; € the carrier ofS and x, € the carrier ofS
andxs € the carrier ofS and Output1GateCircStix1, X2, X3), f) ¢ InputVertice$S). Then
InputVertice§S+- 1GateCircStf(x1, X2, X3), f)) = InputVerticegs).

5. RESULT OF ACOMPOUND CIRCUIT

We now state the proposition
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(52) LetX be a non empty finite sef be a finite signature oveX, A be a circuit overx
andS, n be a natural numberf, be a function fromX" into X, and p be a finite sequence
with lengthn. Suppose OutputlGateCirc8irf) ¢ InputVerticesS). Let s be a state of
A+-1GateCircuitp, f) ands' be a state ofA. Supposes’ = s|the carrier ofS. Then the
stabilization time of < 1+ the stabilization time of'.

Now we present several schemes. The schéoreb1CircResulieals with a sel, a non empty
finite setB, a unary functorf yielding an element of3, a finite signature” over B, a circuit D
over B and(, and a functiorE from 3! into B, and states that:
Let s be a state ofD+-1GateCircuif(4),E) and s be a state ofD. Suppose
s = sfthe carrier ofC. Let a; be an element oB. Suppose if2 € InnerVertice$C),
then a; = (Resul{s))(A) and if 4 ¢ InnerVertice$C), then a; = s(4). Then
(Resulfs))(Output1GateCircSt.4), E)) = F (a1)

provided the parameters meet the following conditions:

e For every functiorg from 3% into B holdsg = ‘£ iff for every elementy of B holds

9((a1)) = 7 (a), and
e OutputlGateCircS{(4), £) ¢ InputVertice$C).
The schem&omb2CircResultleals with sets7, B, a non empty finite sef’, a binary functor
F yielding an element of’, a finite signatureD over C, a circuit’£ over C andD, and a function
¥ from C? into C, and states that:
Letsbe a state of£+- 1GateCircuif(4, B), ¥ ) ands be a state oft. Suppose =
s|the carrier ofD. Let a1, ap be elements of". Suppose if4 € InnerVertice$D),
thena; = (Resul{s'))(2) and if 4 ¢ InnerVertice$D), thena; = s(4) and if B €
InnerVertice$D), thena, = (Results))(B) and if B ¢ InnerVertice$D), thena, =
s(B). Then(Resulfs))(Output1GateCircSt{.4, B), F)) = ¥ (a1,a2)

provided the following conditions are satisfied:

e For every functiorg from 2 into ¢ holdsg = # iff for all elementsay, a; of C

holdsg({a1,a2)) = ¥ (a1,a2), and

e OutputlGateCircS{(4,B), F) ¢ InputVerticesD).

The schemeComb3CircResultleals with sets7, B, C, a non empty finite sef, a ternary
functor ¥ yielding an element of), a finite signatureE over D, a circuit ¥ over D andE, and a
function G from D into D, and states that:

Let s be a state off +- 1GateCircuif(4, B, C), G) ands be a state off . Suppose
s = s|the carrier ofE. Let ay, ap, ag be elements o). Suppose that

(i) if 4 € InnerVertice$E), thena; = (Resul{s))(4),

(i) if 4 ¢ InnerVertice$), thena; =s(4),
(i) if B < InnerVertice$Z), thenay = (Resul{s))(B),
(iv) if B¢ InnerVertice$E), thenay = s(‘B),

(v) if C € InnerVertice$E), thenag = (Results))(C), and
(vi) if C ¢ InnerVertice$E), thenag = s(C).

Then(Results))(Output 1GateCircSt{.4, B, C), G)) = F (a1, a2, a3)
provided the following conditions are met:

e For every functiorg from 92 into D holdsg = g iff for all elementsay, ap, az of D

holdsg((a, az, as)) = 7 (a1, 8, as), and

e OutputlGateCircSt(A4, B, C), G) ¢ InputVertice$E).

The scheme&Comb4CircResultleals with sets2, B, C, D, a non empty finite seE, a 4-ary
functor 7 yielding an element of, a finite signaturef over £, a circuit G overE£ and ¥, and a
function # from £% into £, and states that:

Let s be a state of7+- 1GateCircuit(4, B, C, D), #) ands be a state of5. Sup-
poses = s|the carrier of F. Let a;, ap, ag, a4 be elements ofE. Suppose that
if 4 € InnerVertice$¥ ), thena; = (Resul{s'))(A4) and if 4 ¢ InnerVertice$¥ ),
then a; = s(4) and if B € InnerVertice$¥ ), then a; = (Results))(B) and
if B ¢ InnerVertice$¥), then a, = s(B) and if C € InnerVertice$¥ ), then
az = (Resulfs))(C) and if C ¢ InnerVertice$¥ ), thenaz = s(C) and if D €
InnerVertice$¥ ), thenay = (Resul(s)) (D) and if D ¢ InnerVertice$F ), thenay =
S(D). Then(Results))(Output 1GateCircS¢A, B, C, D), H)) = F (a1, 82,83,84)
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provided the parameters meet the following conditions:
e Letg be a function fromE* into £. Theng = A if and only if for all elementsay,
ap, ag, a4 of £ holdsg({a1,a,a3,a4)) = F (a1,a2,a3,a4), and
e OutputlGateCircS{(A4, B, C, D), H) ¢ InputVerticeg T ).

The schem&omb5CircResulleals with sets1, B, C, D, ‘E, a non empty finite sef, a 5-ary
functor ¥ yielding an element off, a finite signatures over ¥, a circuit#/ over ¥ andG, and a
function I from #° into #, and states that:

Letsbe a state of{+- 1GateCircuif{4, B, C, D, E), I) ands be a state of{. Sup-
poses = s[the carrier ofG. Let a1, a, as, as, as be elements off . Suppose that
if 4 € InnerVertice$G), thena; = (Resulfs'))(A) and if 4 ¢ InnerVertice$g),
then a; = s(A4) and if B € InnerVertice$G), then a; = (Results))(B) and
if B ¢ InnerVertice$G), then a; = s(B) and if C € InnerVertice$G), then
az = (Results))(C) and if C ¢ InnerVertice$G), thenaz = s(C) and if D €
InnerVertice$G), then as = (Results))(D) and if D ¢ InnerVertice$G), then
as = S(D) and if £ € InnerVertice$G), thenas = (Resul{s))(E) and if £ ¢
InnerVertice$G), thenas = s(E). Then(Resulfs))(Output1GateCircS{(.4, B, C,
D, E),I)) = F(a1,a2,a3,84,85)
provided the following conditions are met:

e Let g be a function from#° into . Theng = I if and only if for all elementsay,

ap, ag, a4, as of F holdsg((a1,a,as,24,85)) = ¥ (a1,a2,a3,a4,85), and

e OutputlGateCircS{(4,B,C, D, E), I) ¢ InputVerticesG).

6. INPUTSWITHOUT PAIRS

Let Sbe a non empty many sorted sighature. We saySiheats nonpair inputs if and only if:
(Def. 11) InputVertice&S) has no pairs.

One can check th&f has no pairs. LeX be a set with no pairs. One can verify that every subset
of X has no pairs.

Let us observe that every function which is natural-yielding is also nonpair yielding.

Let us observe that every finite sequence of elememsisfhatural-yielding.

One can verify that there exists a finite sequence which is one-to-one and natural-yielding.

Let n be a natural number. Note that there exists a finite sequence with lemgifch is one-
to-one and natural-yielding.

Let p be a nonpair yielding finite sequence andfldie a set. Observe that 1GateCir¢$tif )
has nonpair inputs.

One can verify that there exists an one-gate many sorted signature which has nonpair inputs. Let
X be a non empty finite set. One can check that there exists an one-gate signatotevbnen has
nonpair inputs.

Let Sbe a non empty many sorted signature with nonpair inputs. Note that InputVéeBites
no pairs.

Next we state the proposition

(53) LetSbe a non empty many sorted signature with nonpair inputxdmela vertex ofs. If
X is pair, therx € InnerVertice$S).

Let S be an unsplit non empty many sorted signature with arity held in gates. Observe that
InnerVerticesS) is relation-like.

Let Sbe an unsplit non empty non void many sorted signature with denotation held in gates.
One can check that InnerVerti¢& is relation-like.

Let S, S be unsplit non empty many sorted signatures with arity held in gates with nonpair
inputs. Note thag;+-S has nonpair inputs.

Next we state two propositions:

(54) For every non pair setand for every binary relatioR holdsx ¢ R.
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(55) Letx; be a setX be a non empty finite setf be a function fromx?! into X, and S
be a signature ovexX with nonpair inputs. Ifx; € the carrier ofS or x; is non pair, then
S+-1GateCircStf(x1), f) has nonpair inputs.

Let X be a non empty finite set, I8be a signature ovet with nonpair inputs, lex; be a vertex
of S and letf be a function fromX?! into X. One can verify thaB+- 1GateCircSti(x,), f) has
nonpair inputs.

Let X be a non empty finite set, I&be a signature ovet with nonpair inputs, lek; be a non
pair set, and lef be a function fromX* into X. Note thatS+- 1GateCircSif(x;), f) has nonpair
inputs.

We now state the proposition

(56) Letxy, x» be setsX be a non empty finite sef, be a function fromX? into X, andS be
a signature oveK with nonpair inputs. Supposa < the carrier ofS or x; is non pair but
Xz € the carrier ofSor x; is non pair. Thers+- 1GateCircStf(x1, x2), f) has nonpair inputs.

Let X be a non empty finite set, |& be a signature oveX with nonpair inputs, let; be
a vertex ofS let n, be a non pair set, and ldt be a function fromX2 into X. One can check
that S+- 1GateCircStf(xy, n2), f) has nonpair inputs an8- 1GateCircSt(nz,x1), f) has nonpair
inputs.

Let X be a non empty finite set, I&be a signature oveX with nonpair inputs, lek;, x be
vertices ofS, and letf be a function fromX? into X. One can verify thaB+- 1GateCircStf(xy,
X2), f) has nonpair inputs.

We now state the proposition

(57) Letxy, X, X3 be setsX be a non empty finite sef, be a function fromX? into X, andSbhe
a signature oveX with nonpair inputs. Suppose that
(i) xp €the carrier ofSor x; is non pair,
(i) x € the carrier ofSor x is non pair, and
(i)  x3 € the carrier ofSor x3 is non pair.
ThenS+- 1GateCircStf(x1, 2, X3), f) has nonpair inputs.
Let X be a non empty finite set, I&be a signature oveX with nonpair inputs, lek;, xo be

vertices ofS, let n be a non pair set, and létbe a function fromX2 into X. One can verify the
following observations:

% St-1GateCircStf(xq, 2, n), f) has nonpair inputs,
% St-1GateCircStf(xq, n,X2), ) has nonpair inputs, and
% St-1GateCircStf(n,xy,X2), ) has nonpair inputs.

Let X be a non empty finite set, I&be a signature ovet with nonpair inputs, lex be a vertex
of S letny, np be non pair sets, and I&tbe a function fronX? into X. One can check the following
observations:

x  St-1GateCircStf(x, ny, nz), f) has nonpair inputs,
x  St-1GateCircStf(n1, X, nz), f) has nonpair inputs, and
x  St-1GateCircStf(ni, nz,X), f) has nonpair inputs.

Let X be a non empty finite set, I&be a signature ovet with nonpair inputs, lek;, X2, X3 be
vertices ofS, and letf be a function fromX3 into X. One can check th&+- 1GateCircSif(xy, Xo,
x3), f) has nonpair inputs.



(1

2]

(Bl

(4]

(3]

[

(8]
&)

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

PRELIMINARIES TO AUTOMATIC GENERATION OF. .. 12

REFERENCES

Grzegorz Bancerek. The fundamental properties of natural numidetsnal of Formalized Mathematicd, 1989./http://mizar.
org/JFM/Voll/nat_1.html}

Grzegorz Bancerek. Sequences of ordinal numbédairnal of Formalized Mathematicg4, 1989. http://mizar.org/JFM/Voll/
ordinal2.htmll

Grzegorz Bancerek. Tarski’s classes and rankeurnal of Formalized Mathematic®, 1990. http://mizar.org/JFM/Vol2/
classesl.htmll

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite seqdewmced.of Formalized Mathematics
1,1989.http://mizar.org/JFM/Voll/finseq_1.htmll

Grzegorz Bancerek and Yatsuka Nakamura. Full adder circuit. Pddurnal of Formalized Mathematic3, 1995.http://mizar.
org/JFM/Vol7/facirc_1.htmll

Czestaw Bylnski. Functions and their basic propertidsurnal of Formalized Mathematic$, 1989/http://mizar.org/JFM/Voll/
funct_1.html.

Czestaw Bylhski. Functions from a set to a séburnal of Formalized Mathematic, 1989 http://mizar.org/JFM/Voll/funct
2.htmll

Czestaw Bylhski. Partial functionsJournal of Formalized Mathematics, 1989 http://mizar.org/JFM/Voll/partfunl.html]

Czestaw Bylhski. Some basic properties of setdournal of Formalized Mathematicd, 1989. http://mizar.org/JFM/Voll/
zfmisc_1.html,

Czestaw Bylnski. Finite sequences and tuples of elements of a non-emptyJsetmal of Formalized Mathematicg, 1990.http:
//mizar.org/JFM/Vol2/finseq_2.htmll

Jing-Chao Chen. A small computer model with push-down staglrnal of Formalized Mathematic1, 1999 http://mizar.org/
JFM/Volll/scmpds_1.html}

Agata Darmochwalt. Finite setournal of Formalized Mathematic$, 1989.http://mizar.org/JFM/Voll/finset_1.html}

Jarostaw Kotowicz. Monotone real sequences. Subsequeimesal of Formalized Mathematic$, 1989/http://mizar.org/JFM/
Voll/segm_3.html|

Jarostaw Kotowicz. The limit of a real function at infinityournal of Formalized Mathematic®, 1990./http://mizar.org/JFM/
Vol2/limfuncl.htmll

Yatsuka Nakamura and Grzegorz Bancerek. Combining of circiotsrnal of Formalized Mathematic®, 1995http://mizar.org/
JFM/Vol7/circcomb.htmll

Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circdisymal of Formalized
Mathematics6, 1994/http://mizar.orqg/JFM/Vol6/pre_circ.html.

Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circultsyrhal of Formalized
Mathematics6, 1994/http://mizar.orqg/JFM/Vol6/msafree2.html.

Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Introduction to circuileuthal of Formalized
Mathematics7, 1995/http://mizar.orqg/JFM/Vol7/circuit2.html.

Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetiosirnal of Formalized Mathematic§, 1993/http://mizar.org/JFM/
Vol5/binarith.html,

Andrzej Trybulec. Enumerated setkurnal of Formalized Mathematic$, 1989 http://mizar.org/JFM/Voll/enumsetl.html}

Andrzej Trybulec. Tarski Grothendieck set theodpurnal of Formalized Mathematicéxiomatics, 1989http://mizar.org/JFM/
Axiomatics/tarski.html.

Andrzej Trybulec. Many-sorted set3ournal of Formalized Mathematic§, 1993.http://mizar.org/JFM/Vol5/pboole.html.

Andrzej Trybulec. Many sorted algebra3ournal of Formalized Mathematic§, 1994.http://mizar.org/JFM/Vol6/msualg_1.
htmll

Andrzej Trybulec. Moore-Smith convergenciaurnal of Formalized Mathematic8, 1996 /http://mizar.org/JFM/Vol8/yellow_|
6.htmll

Andrzej Trybulec. Subsets of real numbedsurnal of Formalized MathematicAddenda, 2008http://mizar.org/JFM/Addenda/
numbers.htmll

Wojciech A. Trybulec. Groupslournal of Formalized Mathematicg, 1990/http://mizar.org/JFM/Vol2/group_1.html|

Zinaida Trybulec. Properties of subselsurnal of Formalized Mathematic$, 1989 http://mizar.org/JFM/Voll/subset_1.htmll


http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/ordinal2.html
http://mizar.org/JFM/Vol1/ordinal2.html
http://mizar.org/JFM/Vol2/classes1.html
http://mizar.org/JFM/Vol2/classes1.html
http://mizar.org/JFM/Vol1/finseq_1.html
http://mizar.org/JFM/Vol7/facirc_1.html
http://mizar.org/JFM/Vol7/facirc_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/partfun1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol2/finseq_2.html
http://mizar.org/JFM/Vol2/finseq_2.html
http://mizar.org/JFM/Vol11/scmpds_1.html
http://mizar.org/JFM/Vol11/scmpds_1.html
http://mizar.org/JFM/Vol1/finset_1.html
http://mizar.org/JFM/Vol1/seqm_3.html
http://mizar.org/JFM/Vol1/seqm_3.html
http://mizar.org/JFM/Vol2/limfunc1.html
http://mizar.org/JFM/Vol2/limfunc1.html
http://mizar.org/JFM/Vol7/circcomb.html
http://mizar.org/JFM/Vol7/circcomb.html
http://mizar.org/JFM/Vol6/pre_circ.html
http://mizar.org/JFM/Vol6/msafree2.html
http://mizar.org/JFM/Vol7/circuit2.html
http://mizar.org/JFM/Vol5/binarith.html
http://mizar.org/JFM/Vol5/binarith.html
http://mizar.org/JFM/Vol1/enumset1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol5/pboole.html
http://mizar.org/JFM/Vol6/msualg_1.html
http://mizar.org/JFM/Vol6/msualg_1.html
http://mizar.org/JFM/Vol8/yellow_6.html
http://mizar.org/JFM/Vol8/yellow_6.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Vol2/group_1.html
http://mizar.org/JFM/Vol1/subset_1.html

PRELIMINARIES TO AUTOMATIC GENERATION OF. .. 13

[28] Edmund Woronowicz. Relations and their basic propertisirnal of Formalized Mathematic4, 1989./http://mizar.org/JFM/
Voll/relat_1.html}

Received July 26, 2002

Published January 2, 2004


http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	preliminaries to automatic generation of … By grzegorz bancerek and adam naumowicz

