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The articles [20], [10], [23], [24], [3], [8], [13], [9], [18], [1], [19], [15], [4], [7], [14], [17], [2],
[21], [12], [5], [11], [22], and [6] provide the notation and terminology for this paper.

1. PRELIMINARIES

We follow the rules:X, x, y, z are sets andn, m, k, k′, d′ are natural numbers.
We now state two propositions:

(1) For all real numbersx, y such thatx < y there exists a real numberz such thatx < z and
z< y.

(2) For all real numbersx, y there exists a real numberz such thatx < z andy < z.

The schemeFrSet 1 2deals with a non empty setA , a non empty setB, a binary functorF
yielding an element ofA , and a binary predicateP , and states that:

{F (x,y);x ranges over elements ofB,y ranges over elements ofB : P [x,y]} ⊆ A
for all values of the parameters.

Let B be a set and letA be a subset ofB. Then 2A is a subset of 2B.
Let X be a set. A subset ofX is an element of 2X.
Let d be a real natural number. Let us observe thatd is zero if and only if:

(Def. 1) d 6> 0.

Let d be a natural number. Let us observe thatd is zero if and only if:

(Def. 2) d 6≥ 1.

Let us observe that there exists a natural number which is non zero.
In the sequeld is a non zero natural number.
Let us considerd. Note that Segd is non empty.
In the sequeli, i0 denote elements of Segd.
Let us considerX. Let us observe thatX is trivial if and only if:

(Def. 3) For allx, y such thatx∈ X andy∈ X holdsx = y.

We now state the proposition
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(4)1 {x,y} is trivial iff x = y.

Let us observe that there exists a set which is non trivial and finite.
Let X be a non trivial set and letY be a set. Note thatX∪Y is non trivial andY∪X is non trivial.
Let us note thatR is non trivial.
Let X be a non trivial set. One can check that there exists a subset ofX which is non trivial and

finite.
Next we state the proposition

(5) If X is trivial andX∪{y} is non trivial, then there existsx such thatX = {x}.

Now we present two schemes. The schemeNonEmptyFinitedeals with a non empty setA , a
non empty finite subsetB of A , and a unary predicateP , and states that:

P [B]
provided the following requirements are met:

• For every elementx of A such thatx∈ B holdsP [{x}], and
• Let x be an element ofA andB be a non empty finite subset ofA . If x∈B andB⊆B

andx /∈ B andP [B], thenP [B∪{x}].
The schemeNonTrivialFinitedeals with a non trivial setA , a non trivial finite subsetB of A ,

and a unary predicateP , and states that:
P [B]

provided the following conditions are satisfied:
• For all elementsx, y of A such thatx∈ B andy∈ B andx 6= y holdsP [{x,y}], and
• Let x be an element ofA andB be a non trivial finite subset ofA . If x∈B andB⊆B

andx /∈ B andP [B], thenP [B∪{x}].
One can prove the following proposition

(6) X = 2 iff there existx, y such thatx∈X andy∈X andx 6= y and for everyzsuch thatz∈X
holdsz= x or z= y.

Let X, Y be finite sets. One can check thatX−. Y is finite.
Next we state three propositions:

(7) m is even iffn is even iffm+n is even.

(8) Let X, Y be finite sets. SupposeX missesY. Then cardX is even iff cardY is even if and
only if card(X∪Y) is even.

(9) For all finite setsX, Y holds cardX is even iff cardY is even iff card(X−. Y) is even.

Let us considern. ThenR n can be characterized by the condition:

(Def. 4) For everyx holdsx∈ R n iff x is a function from Segn into R.

We use the following convention:l , r, l ′, r ′, x denote elements ofR d, G1 denotes a non trivial
finite subset ofR, andl1, r1, l ′1, r ′1, x1 denote real numbers.

Let us considerd, x, i. Thenx(i) is a real number.

2. GRATINGS, CELLS, CHAINS, CYCLES

Let us considerd. A function from Segd into 2R is said to be ad-dimensional grating if:

(Def. 5) For everyi holds it(i) is non trivial and finite.

In the sequelG is ad-dimensional grating.
Let us considerd, G, i. ThenG(i) is a non trivial finite subset ofR.
Next we state several propositions:

1 The proposition (3) has been removed.
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(10) x∈ ∏G iff for every i holdsx(i) ∈G(i).

(11) ∏G is finite.

(12) For every non empty finite subsetX of R there existsr1 such thatr1 ∈ X and for everyx1

such thatx1 ∈ X holdsr1 ≥ x1.

(13) For every non empty finite subsetX of R there existsl1 such thatl1 ∈ X and for everyx1

such thatx1 ∈ X holdsl1 ≤ x1.

(14) There existl1, r1 such thatl1 ∈ G1 and r1 ∈ G1 and l1 < r1 and for everyx1 such that
x1 ∈G1 holdsl1 6< x1 or x1 6< r1.

(15) There existl1, r1 such thatl1 ∈ G1 and r1 ∈ G1 and r1 < l1 and for everyx1 such that
x1 ∈G1 holdsx1 6< r1 andl1 6< x1.

Let us considerG1. An element of[:R, R :] is called a gap ofG1 if it satisfies the condition
(Def. 6).

(Def. 6) There existl1, r1 such that

(i) it = 〈〈l1, r1〉〉,
(ii) l1 ∈G1,

(iii) r1 ∈G1, and

(iv) l1 < r1 and for everyx1 such thatx1 ∈G1 holdsl1 6< x1 or x1 6< r1 or r1 < l1 and for every
x1 such thatx1 ∈G1 holdsl1 6< x1 andx1 6< r1.

Next we state several propositions:

(16) 〈〈l1, r1〉〉 is a gap ofG1 if and only if the following conditions are satisfied:

(i) l1 ∈G1,

(ii) r1 ∈G1, and

(iii) l1 < r1 and for everyx1 such thatx1 ∈G1 holdsl1 6< x1 or x1 6< r1 or r1 < l1 and for every
x1 such thatx1 ∈G1 holdsl1 6< x1 andx1 6< r1.

(17) If G1 = {l1, r1}, then〈〈l ′1, r ′1〉〉 is a gap ofG1 iff l ′1 = l1 andr ′1 = r1 or l ′1 = r1 andr ′1 = l1.

(18) If x1 ∈G1, then there existsr1 such that〈〈x1, r1〉〉 is a gap ofG1.

(19) If x1 ∈G1, then there existsl1 such that〈〈l1, x1〉〉 is a gap ofG1.

(20) If 〈〈l1, r1〉〉 is a gap ofG1 and〈〈l1, r ′1〉〉 is a gap ofG1, thenr1 = r ′1.

(21) If 〈〈l1, r1〉〉 is a gap ofG1 and〈〈l ′1, r1〉〉 is a gap ofG1, thenl1 = l ′1.

(22) If r1 < l1 and〈〈l1, r1〉〉 is a gap ofG1 andr ′1 < l ′1 and〈〈l ′1, r ′1〉〉 is a gap ofG1, thenl1 = l ′1 and
r1 = r ′1.

Let us considerd, l , r. The functor cell(l , r) yields a non empty subset ofR d and is defined as
follows:

(Def. 7) cell(l , r) = {x :
∧

i (l(i) ≤ x(i) ∧ x(i) ≤ r(i)) ∨
∨

i (r(i) < l(i) ∧ (x(i) ≤ r(i) ∨ l(i) ≤
x(i)))}.

We now state several propositions:

(23) x ∈ cell(l , r) iff for every i holds l(i) ≤ x(i) and x(i) ≤ r(i) or there existsi such that
r(i) < l(i) butx(i)≤ r(i) or l(i)≤ x(i).

(24) If for everyi holdsl(i)≤ r(i), thenx∈ cell(l , r) iff for every i holdsl(i)≤ x(i) andx(i)≤
r(i).
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(25) If there existsi such thatr(i) < l(i), thenx∈ cell(l , r) iff there existsi such thatr(i) < l(i)
butx(i)≤ r(i) or l(i)≤ x(i).

(26) l ∈ cell(l , r) andr ∈ cell(l , r).

(27) cell(x,x) = {x}.

(28) If for everyi holdsl ′(i) ≤ r ′(i), then cell(l , r) ⊆ cell(l ′, r ′) iff for every i holdsl ′(i) ≤ l(i)
andl(i)≤ r(i) andr(i)≤ r ′(i).

(29) If for every i holdsr(i) < l(i), then cell(l , r) ⊆ cell(l ′, r ′) iff for every i holdsr(i) ≤ r ′(i)
andr ′(i) < l ′(i) andl ′(i)≤ l(i).

(30) Suppose for everyi holds l(i) ≤ r(i) and for everyi holdsr ′(i) < l ′(i). Then cell(l , r) ⊆
cell(l ′, r ′) if and only if there existsi such thatr(i)≤ r ′(i) or l ′(i)≤ l(i).

(31) If for everyi holdsl(i)≤ r(i) or for everyi holdsl(i) > r(i), then cell(l , r) = cell(l ′, r ′) iff
l = l ′ andr = r ′.

Let us considerd, G, k. Let us assume thatk≤ d. The functork-cells(G) yielding a finite non
empty subset of 2R

d
is defined by the condition (Def. 8).

(Def. 8) k-cells(G) = {cell(l , r) :
∨

X :subset ofSegd (cardX = k ∧
∧

i (i ∈ X ∧ l(i) < r(i) ∧ 〈〈l(i),
r(i)〉〉 is a gap ofG(i) ∨ i /∈X ∧ l(i) = r(i) ∧ l(i)∈G(i))) ∨ k = d ∧

∧
i (r(i) < l(i) ∧ 〈〈l(i),

r(i)〉〉 is a gap ofG(i))}.

We now state a number of propositions:

(32) Supposek≤ d. Let A be a subset ofR d. ThenA ∈ k-cells(G) if and only if there exist
l , r such thatA = cell(l , r) but there exists a subsetX of Segd such that cardX = k and for
everyi holdsi ∈ X andl(i) < r(i) and〈〈l(i), r(i)〉〉 is a gap ofG(i) or i /∈ X andl(i) = r(i) and
l(i) ∈G(i) or k = d and for everyi holdsr(i) < l(i) and〈〈l(i), r(i)〉〉 is a gap ofG(i).

(33) Supposek≤ d. Then cell(l , r) ∈ k-cells(G) if and only if one of the following conditions
is satisfied:

(i) there exists a subsetX of Segd such that cardX = k and for everyi holds i ∈ X and
l(i) < r(i) and〈〈l(i), r(i)〉〉 is a gap ofG(i) or i /∈ X andl(i) = r(i) andl(i) ∈G(i), or

(ii) k = d and for everyi holdsr(i) < l(i) and〈〈l(i), r(i)〉〉 is a gap ofG(i).

(34) Supposek≤ d and cell(l , r) ∈ k-cells(G). Then

(i) for every i holdsl(i) < r(i) and〈〈l(i), r(i)〉〉 is a gap ofG(i) or l(i) = r(i) andl(i) ∈ G(i),
or

(ii) for every i holdsr(i) < l(i) and〈〈l(i), r(i)〉〉 is a gap ofG(i).

(35) If k≤ d and cell(l , r) ∈ k-cells(G), then for everyi holdsl(i) ∈G(i) andr(i) ∈G(i).

(36) If k≤ d and cell(l , r) ∈ k-cells(G), then for everyi holds l(i) ≤ r(i) or for everyi holds
r(i) < l(i).

(37) For every subsetA of R d holdsA∈ 0-cells(G) iff there existsx such thatA= cell(x,x) and
for everyi holdsx(i) ∈G(i).

(38) cell(l , r) ∈ 0-cells(G) iff l = r and for everyi holdsl(i) ∈G(i).

(39) Let A be a subset ofR d. ThenA ∈ d-cells(G) if and only if there existl , r such that
A = cell(l , r) but for everyi holds〈〈l(i), r(i)〉〉 is a gap ofG(i) but for everyi holdsl(i) < r(i)
or for everyi holdsr(i) < l(i).

(40) cell(l , r) ∈ d-cells(G) iff for every i holds〈〈l(i), r(i)〉〉 is a gap ofG(i) but for everyi holds
l(i) < r(i) or for everyi holdsr(i) < l(i).
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(41) Supposed = d′ + 1. Let A be a subset ofR d. ThenA ∈ d′-cells(G) if and only if there
existl , r, i0 such thatA= cell(l , r) andl(i0) = r(i0) andl(i0)∈G(i0) and for everyi such that
i 6= i0 holdsl(i) < r(i) and〈〈l(i), r(i)〉〉 is a gap ofG(i).

(42) Supposed = d′ + 1. Then cell(l , r) ∈ d′-cells(G) if and only if there existsi0 such that
l(i0) = r(i0) andl(i0) ∈G(i0) and for everyi such thati 6= i0 holdsl(i) < r(i) and〈〈l(i), r(i)〉〉
is a gap ofG(i).

(43) Let A be a subset ofR d. ThenA∈ 1-cells(G) if and only if there existl , r, i0 such that
A = cell(l , r) and l(i0) < r(i0) or d = 1 andr(i0) < l(i0) and〈〈l(i0), r(i0)〉〉 is a gap ofG(i0)
and for everyi such thati 6= i0 holdsl(i) = r(i) andl(i) ∈G(i).

(44) cell(l , r) ∈ 1-cells(G) if and only if there existsi0 such thatl(i0) < r(i0) or d = 1 and
r(i0) < l(i0) but 〈〈l(i0), r(i0)〉〉 is a gap ofG(i0) but for everyi such thati 6= i0 holdsl(i) = r(i)
andl(i) ∈G(i).

(45) Supposek ≤ d and k′ ≤ d and cell(l , r) ∈ k-cells(G) and cell(l ′, r ′) ∈ k′-cells(G) and
cell(l , r)⊆ cell(l ′, r ′). Let giveni. Then

(i) l(i) = l ′(i) andr(i) = r ′(i), or

(ii) l(i) = l ′(i) andr(i) = l ′(i), or

(iii) l(i) = r ′(i) andr(i) = r ′(i), or

(iv) l(i)≤ r(i) andr ′(i) < l ′(i) andr ′(i)≤ l(i) andr(i)≤ l ′(i).

(46) Supposek < k′ and k′ ≤ d and cell(l , r) ∈ k-cells(G) and cell(l ′, r ′) ∈ k′-cells(G) and
cell(l , r) ⊆ cell(l ′, r ′). Then there existsi such thatl(i) = l ′(i) andr(i) = l ′(i) or l(i) = r ′(i)
andr(i) = r ′(i).

(47) LetX, X′ be subsets of Segd. Suppose that

(i) cell(l , r)⊆ cell(l ′, r ′),

(ii) for every i holdsi ∈X andl(i) < r(i) and〈〈l(i), r(i)〉〉 is a gap ofG(i) or i /∈X andl(i) = r(i)
andl(i) ∈G(i), and

(iii) for every i holds i ∈ X′ and l ′(i) < r ′(i) and〈〈l ′(i), r ′(i)〉〉 is a gap ofG(i) or i /∈ X′ and
l ′(i) = r ′(i) andl ′(i) ∈G(i).

Then

(iv) X ⊆ X′,

(v) for everyi such thati ∈ X or i /∈ X′ holdsl(i) = l ′(i) andr(i) = r ′(i), and

(vi) for every i such thati /∈ X andi ∈ X′ holdsl(i) = l ′(i) andr(i) = l ′(i) or l(i) = r ′(i) and
r(i) = r ′(i).

Let us considerd, G, k. A k-cell of G is an element ofk-cells(G).
Let us considerd, G, k. A k-chain ofG is a subset ofk-cells(G).
Let us considerd, G, k. The functor 0kG yields ak-chain ofG and is defined by:

(Def. 9) 0kG = /0.

Let us considerd, G. The functorΩG yields ad-chain ofG and is defined by:

(Def. 10) ΩG = d-cells(G).

Let us considerd, G, k and letC1, C2 be k-chains ofG. ThenC1−. C2 is a k-chain ofG. We
introduceC1 +C2 as a synonym ofC1−. C2.

Let us considerd, G. The infinite cell ofG yielding ad-cell of G is defined by:

(Def. 11) There existl , r such that the infinite cell ofG = cell(l , r) and for everyi holdsr(i) < l(i)
and〈〈l(i), r(i)〉〉 is a gap ofG(i).

Next we state two propositions:
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(48) If cell(l , r) is a d-cell of G, then cell(l , r) = the infinite cell ofG iff for every i holds
r(i) < l(i).

(49) cell(l , r) = the infinite cell ofG iff for every i holdsr(i) < l(i) and〈〈l(i), r(i)〉〉 is a gap of
G(i).

The schemeChainInddeals with a non zero natural numberA , a A-dimensional gratingB, a
natural numberC , a C -chainD of B, and a unary predicateP , and states that:

P [D]
provided the parameters meet the following requirements:

• P [0C B],
• For everyC -cell A of B such thatA∈ D holdsP [{A}], and
• For all C -chainsC1, C2 of B such thatC1 ⊆ D andC2 ⊆ D andP [C1] andP [C2]

holdsP [C1 +C2].
Let us considerd, G, k and letA be ak-cell of G. The functorA? yielding ak+1-chain ofG is

defined by:

(Def. 12) A? = {B;B ranges overk+1-cells ofG: A⊆ B}.

The following proposition is true

(50) For everyk-cell A of G and for everyk+1-cellB of G holdsB∈ A? iff A⊆ B.

Let us considerd, G, k and letC be ak+1-chain ofG. The functor∂C yields ak-chain ofG and
is defined as follows:

(Def. 13) ∂C = {A;A ranges overk-cells ofG: k+1≤ d ∧ card(A?∩C)is odd}.

We introduceĊ as a synonym of∂C.
Let us considerd, G, k, letC be ak+1-chain ofG, and letC′ be ak-chain ofG. We say thatC′

boundsC if and only if:

(Def. 14) C′ = ∂C.

Next we state a number of propositions:

(51) For everyk-cell A of G and for everyk+ 1-chainC of G holdsA∈ ∂C iff k+ 1≤ d and
card(A?∩C) is odd.

(52) If k+1 > d, then for everyk+1-chainC of G holds∂C = 0kG.

(53) If k+1≤ d, then for everyk-cell A of G and for everyk+1-cellB of G holdsA∈ ∂{B} iff
A⊆ B.

(54) If d = d′+1, then for everyd′-cell A of G holds cardA? = 2.

(55) For everyd-dimensional gratingG and for every 0+1-cellB of G holds card∂{B}= 2.

(56) ΩG = (0dG)c and 0dG = (ΩG)c.

(57) For everyk-chainC of G holdsC+0kG = C.

(58) For everyk-chainC of G holdsC+C = 0kG.

(59) For everyd-chainC of G holdsCc = C+ΩG.

(60) ∂0k+1G = 0kG.

(61) For everyd′+1-dimensional gratingG holds∂ΩG = 0d′G.

(62) For allk+1-chainsC1, C2 of G holds∂(C1 +C2) = ∂C1 +∂C2.

(63) For everyd′+1-dimensional gratingG and for everyd′+1-chainC of G holds∂(Cc) = ∂C.
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(64) For everyk+1+1-chainC of G holds∂∂C = 0kG.

Let us considerd, G, k. A k-chain ofG is called ak-cycle ofG if:

(Def. 15) k = 0 and card it is even or there existsk′ such thatk = k′+1 and there exists ak′+1-chain
C of G such thatC = it and∂C = 0k′G.

Next we state three propositions:

(65) For everyk+1-chainC of G holdsC is ak+1-cycle ofG iff ∂C = 0kG.

(66) If k > d, then everyk-chain ofG is ak-cycle ofG.

(67) For every 0-chainC of G holdsC is a 0-cycle ofG iff cardC is even.

Let us considerd, G, k and letC be ak+ 1-cycle ofG. Then∂C can be characterized by the
condition:

(Def. 16) ∂C = 0kG.

Let us considerd, G, k. Then 0kG is ak-cycle ofG.
Let us considerd, G. ThenΩG is ad-cycle ofG.
Let us considerd, G, k and letC1, C2 be k-cycles ofG. ThenC1−. C2 is a k-cycle of G. We

introduceC1 +C2 as a synonym ofC1−. C2.
One can prove the following proposition

(68) For everyd-cycleC of G holdsCc is ad-cycle ofG.

Let us considerd, G, k and letC be ak+1-chain ofG. Then∂C is ak-cycle ofG.

3. GROUPS ANDHOMOMORPHISMS

Let us considerd, G, k. The functork-Chains(G) yielding a strict Abelian group is defined by the
conditions (Def. 17).

(Def. 17)(i) The carrier ofk-Chains(G) = 2k-cells(G),

(ii) 0k-Chains(G) = 0kG, and

(iii) for all elementsA, B of k-Chains(G) and for allk-chainsA′, B′ of G such thatA = A′ and
B = B′ holdsA+B = A′+B′.

Let us considerd, G, k. A k-grchain ofG is an element ofk-Chains(G).
One can prove the following proposition

(69) For every setx holdsx is ak-chain ofG iff x is ak-grchain ofG.

Let us considerd, G, k. The functor∂ yielding a homomorphism from(k+ 1)-Chains(G) to
k-Chains(G) is defined as follows:

(Def. 18) For every elementA of (k+ 1)-Chains(G) and for everyk+ 1-chainA′ of G such that
A = A′ holds∂(A) = ∂A′.
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