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1. PRELIMINARIES

We follow the rulesiX, x, y, zare sets and, m, k, k', d’ are natural numbers.
We now state two propositions:

(1) For all real numbersg, y such thaix < y there exists a real numbersuch thatx < z and
z<y.

(2) For all real numbers, y there exists a real numbesuch thak < zandy < z.

The schemé-rSet 1 2deals with a non empty set, a non empty seB, a binary functor¥
yielding an element ofd, and a binary predicat®, and states that:
{F (x,y);x ranges over elements & y ranges over elements &: P[x,y]} C 4
for all values of the parameters.
Let B be a set and lek be a subset d8. Then 2 is a subset of 2
Let X be a set. A subset &€ is an element of 2.
Letd be areal natural number. Let us observe thiatzero if and only if:

(Def. 1) d#0.
Letd be a natural number. Let us observe tthig zero if and only if:
(Def.2) d 21

Let us observe that there exists a natural number which is non zero.
In the sequetl is a non zero natural number.

Let us consided. Note that Sed is non empty.

In the sequel, ig denote elements of Sdg

Let us consideK. Let us observe tha( is trivial if and only if:

(Def. 3) For allx, y such thax € X andy € X holdsx =Y.

We now state the proposition
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(4H {x,y} is trivial iff x=y.

Let us observe that there exists a set which is non trivial and finite.

Let X be a non trivial set and |&t be a set. Note tha€ UY is non trivial andY U X is non trivial.
Let us note thaR is non trivial.

Let X be a non trivial set. One can check that there exists a sub3etwich is non trivial and
finite.

Next we state the proposition

(5) If Xis trivial andX U {y} is non trivial, then there existssuch thaiX = {x}.

Now we present two schemes. The schévemEmptyFinitedeals with a non empty set, a
non empty finite subse® of 4, and a unary predicatg, and states that:
P[B]
provided the following requirements are met:
e For every element of 4 such tha € B8 holds?[{x}], and

e Letxbe an element off andB be a non empty finite subset gf If xe BandB C B
andx ¢ B and?[B], then?[BU {x}].

The scheméonTrivialFinite deals with a non trivial sefl, a non trivial finite subseB of 4,
and a unary predicatg, and states that:

P[B]
provided the following conditions are satisfied:

e For all elements, y of 4 such thai € B andy € B andx # y holds?[{x,y}], and

e Letxbe an element oft andB be a non trivial finite subset d. If x€ B andB C B
andx ¢ B and?[B], then?[BU {x}].

One can prove the following proposition

(6) X = 2 iff there existx, y such thak € X andy € X andx # y and for every such thatz € X
holdsz=xorz=y.

Let X, Y be finite sets. One can check thatY is finite.
Next we state three propositions:

(7) miseveniffnis even iffm+nis even.

(8) LetX,Y be finite sets. Supposé missesy. Then carK is even iff cardr is even if and
only if card X UY) is even.

(9) For all finite set, Y holds carX is even iff card is even iff cardX~Y) is even.
Let us considen. Then® " can be characterized by the condition:

(Def. 4) For every holdsx € R" iff xis a function from Seginto R.

We use the following convention; r, I/, r’, x denote elements &/ 9, G; denotes a non trivial
finite subset ok, andly, ry, 17, r{, X1 denote real numbers.

Let us consided, x, i. Thenx(i) is a real number.

2. GRATINGS, CELLS, CHAINS, CYCLES

Let us consided. A function from Segl into 28 is said to be a-dimensional grating if:
(Def. 5) For every holds if(i) is non trivial and finite.

In the sequet is ad-dimensional grating.

Let us consided, G, i. ThenG(i) is a non trivial finite subset dR.
Next we state several propositions:

1 The proposition (3) has been removed.
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(10) xe [ Giff for everyi holdsx(i) € Gi).
(11) nGisfinite.

(12) For every non empty finite subs¢tof R there existg; such that; € X and for everyx;
such thatx; € X holdsry > x;.

(13) For every non empty finite subs¢tof R there existd; such that; € X and for everyx;
such that; € X holdsl; < x;.

(14) There existy, r; such thatl;, € G; andry € Gy andl; < r1 and for everyx; such that
X1 € G1 h0|dS|1 7f X1 Or X3 7( ri.

(15) There existy, r; such thatl; € Gy andry; € G; andry < |3 and for everyx; such that
X1 € G1 holdsxy £ r1 andly £ x1.

Let us consideG;. An element of R, R is called a gap of5; if it satisfies the condition
(Def. 6).

(Def. 6) There exisly, r1 such that
@) it={(,r1),
(i) 1y €Gy,
(i) ry€Gy,and

(iv) 11 <rq and for everyk; such thatk; € Gy holdsly £ x1 orx; £ ri orrq < lq and for every
X1 such thak; € Gy holdsly £ x; andxg « ry.

Next we state several propositions:
(16) (l1,r1) is a gap ofG; if and only if the following conditions are satisfied:
() 1€y,

(i) ri1e€Gy,and

(i) 1y < rq and for every; such thak; € Gy holdsly £ x3 orxg £ rq orrq < I and for every
X1 such thak; € Gy holdsly £ x; andxy £ r1.

(17) 1f Gy ={ly,r1}, then(l},r}) isagap ofGy iff 17 =11 andr] =ryorl; =rg andry =1;.
(18) If x; € G, then there exists such that{xs, r1) is a gap ofG;.

(19) Ifxq € Gy, then there existl such thatl1, x;) is a gap ofG;.

(20) If {l1,r1) is a gap ofGy and(l4, r}) is a gap ofGy, thenry =rj.

(21) If (I, r1) isagap ofGy and(l}, r1) is a gap ofGy, thenly = 3.

(22) Ifry <lyand(ly, r1) is agap ofGy andr} <17 and(l}, r}) is a gap ofGy, thenl; =1 and
ri=rj.

Let us consided, |, r. The functor celll,r) yields a non empty subset @& and is defined as
follows:

(Def. 7) celll,r) ={x: A; (I() <x(i) A x(0) <r(@i)) Vv Vi (r(i) <Ii) A x(0) <r(i) v I(i) <
x(1))}-

We now state several propositions:

(23) x e cell(l,r) iff for every i holds|(i) < x(i) andx(i) < r(i) or there existd such that
r(i) <I(i) butx(i) <r(i) orl(i) <x(i).

(24) If for everyi holdsl (i) <r(i), thenx € cell(l,r) iff for every i holdsl (i) < x(i) andx(i) <

r(i).
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(25) If there exists such that (i) < I(i), thenx € cell(l,r) iff there existd such thar (i) < 1(i)
butx(i) <r(i) orl(i) < x(i).

(26) 1 ecell(l,r) andr € cell(l,r).
(27) celix,x) = {x}.

(28) If for everyi holdsl’(i) <r'(i), then cel(l,r) C cell(l’,r") iff for every i holdsl’(i) <I(i)
andl(i) <r(i) andr(i) <r'(i).

(29) If for everyi holdsr(i) < I(i), then cel(l,r) C cell(l’,r") iff for every i holdsr (i) <r'(i)
andr’(i) <I'(i) andl’(i) <I(i).

(30) Suppose for everiyholds! (i) < r(i) and for everyi holdsr’(i) <1'(i). Then cel(l,r) C
cell(I’,r’) if and only if there exists such that (i) <r’(i) orl’(i) <I(i).

(31) Iffor everyi holdsl (i) <r(i) or for everyi holdsl (i) > r(i), then cel(l,r) = cell(l’,r’) iff
[ =I"andr =r".

Let us consided, G, k. Let us assume th&t< d. The functork-cells(G) yielding a finite non
empty subset of % is defined by the condition (Def. 8).

(Def. 8) k-cellgG) = {cell(l,r) : Vx.supset ofsegt (CATAX =Kk A A; (i€ X Al
r(i))yisagapolG(i) Vig X Al(i)=r(i) Al(i)eG(i)) Vk=dA A (r(i
r(i)) is a gap ofG(i))}.

We now state a number of propositions:

(32) Supposé < d. Let A be a subset oRY. ThenA € k-cellsG) if and only if there exist
[, r such thatA = cell(l,r) but there exists a subsktof Segd such that car = k and for
everyi holdsi € X andl (i) < r(i) and{l(i), r(i)) isa gap ofG(i) ori ¢ X andl (i) =r(i) and
[(i) € G(i) ork = d and for every holdsr (i) < I(i) and(l (i), r(i)) is a gap ofG(i).

(33) Supposé& < d. Then cel(l,r) € k-cells(G) if and only if one of the following conditions
is satisfied:

(i) there exists a subset of Seqd such that card = k and for everyi holdsi € X and
[(i) <r(i)and(l(i), r(i)) isagap ofG(i) ori ¢ X andl (i) = r(i) andI (i) € G(i), or

(i) k=d and for every holdsr(i) < I(i) and{l (i), r(i)) is a gap ofG(i).
(34) Suppos& <dand celll,r) € k-cellsG). Then

(i) foreveryi holdsl (i) < r(i) and{I(i), r(i)) is a gap ofG(i) or I (i) = r(i) andl (i) € G(i),
or

(i) foreveryiholdsr(i) < 1(i) and{l(i), r(i)) is a gap ofG(i).
(35) Ifk<dandcelll,r) € k-cell§(G), then for everyi holdsl (i) € G(i) andr (i) € G(i).
(36) Ifk<dandcelll,r) € k-cellgG), then for everyi holdsl(i) <r(i) or for everyi holds
r(i) <I(i).
(37) For every subsét of ® 9 holdsA < 0-cell§G) iff there existsx such thai = cell(x,x) and
for everyi holdsx(i) € G(i).
(38) celll,r) € 0-cellG) iff | =r and for everyi holdsl (i) € G(i).

(39) LetA be a subset of?. ThenA ¢ d-cells(G) if and only if there exist, r such that
A=cell(l,r) but for everyi holds(l (i), r(i)) is a gap ofG(i) but for everyi holdsl (i) < r(i)
or for everyi holdsr (i) < 1(i).

(40) celll,r) € d-cell§G) iff for everyi holds{I (i), r(i)} is a gap ofG(i) but for everyi holds
[(i) < r(i) or for everyi holdsr (i) <I(i).
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(41) Suppose = d’ +1. Let A be a subset oR9. ThenA € d’-cellgG) if and only if there
existl, r, ig such thatA = cell(l,r) andl(ig) = r(ip) andl(ip) € G(ip) and for everyi such that
i #io holdsl(i) < r(i) and{I(i), r(i)) is a gap ofG(i).

(42) Supposea = d' + 1. Then cel(l,r) € d’-cell§G) if and only if there existsp such that
[(io) =r(ip) andl(ig) € G(ip) and for everyi such that # i holdsl (i) < r(i) and{I(i), r(i))
is a gap ofG(i).

(43) LetAbe a subset oR?. ThenA ¢ 1-cell§G) if and only if there exist, r, ip such that
A=cell(l,r) andl(ig) < r(ig) ord =1 andr(ig) < I(ig) and{I(io), r(io)} is a gap ofG(io)
and for everyi such that # ig holdsl (i) =r(i) andI (i) € G(i).

(44) celll,r) € 1-cell§G) if and only if there existdp such that (ig) < r(ig) ord =1 and
r(io) < I(io) but{l(io), r(io)} is a gap ofG(ip) but for everyi such that # ig holdsl (i) =r(i)
andl (i) € G(i).

(45) Suppose&k < d andk’ < d and celll,r) € k-cells(G) and cel(l’,r’) € K-cells§G) and
cell(l,r) Ccell(l’,r"). Letgiveni Then

() 1)) =1(i) andr(i) = r'(i), o

(i) 1()) =1"() andr (i) =1"(i), 0

@iy 1({)=r ()andr(l): (),or

(iv) 1(i) <r(i)andr’(i) <I'(i) andr’(i) <I(i) andr (i) <I'(i).

(46) Suppos& < k' andk’ < d and celll,r) € k-cells(G) and celll’,r
cell(l,r) C cell(l’,r’"). Then there existssuch that (i) = I’(i) andr (i)
andr(i) =r'(i).

(47) LetX, X’ be subsets of Sefy Suppose that

@) cell(l,r) Ccell(l’,r"),

(i) foreveryiholdsi € X andl (i) <r(i) and{l(i), r(i)) isagap ofs(i) ori ¢ X andI (i) =r(i)
andl(i) € G(i), and

(iii)  for everyi holdsi € X" andl’(i) < r'(i) and(l’(i), r'(i)) is a gap ofG(i) ori ¢ X" and
(i) = r'(i) andl’(i) € G(i).
Then

(iv) XcCX,

(v) foreveryi such thai € X ori ¢ X" holdsl (i) =1'(i) andr(i) =r'(i), and

(vi) for everyi such thai ¢ X andi € X’ holdsl (i) =1'(i) andr(i) = I'(i) or I (i) = r'(i) and
r(i)y=r'(i).

Let us consided, G, k. A k-cell of G is an element ok-cell§G).

Let us consided, G, k. A k-chain ofG is a subset ok-cell§G).
Let us consided, G, k. The functor QG yields ak-chain ofG and is defined by:

(Def.9) QG =0.

") € K-cellgG) and
=I'@i)orl(i)=r'(i)

Let us consided, G. The functorQG yields ad-chain ofG and is defined by:
(Def. 10) QG =d-cell§G).

Let us consided, G, k and letC;, C, be k-chains of G. ThenC;~C; is ak-chain of G. We
introduceC; +C; as a synonym of; -Cs.
Let us consided, G. The infinite cell ofG yielding ad-cell of G is defined by:

(Def. 11) There exist, r such that the infinite cell o& = cell(l,r) and for everyi holdsr (i) < 1(i)
and(l(i), r(i)) is a gap ofG(i).

Next we state two propositions:
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(48) If cell(l,r) is ad-cell of G, then celll,r) = the infinite cell ofG iff for every i holds
r(i) <I(i).

(49) celll,r) =the infinite cell ofG iff for every i holdsr (i) < I(i) and (I (i), r(i)) is a gap of
G(i).

The scheme&haininddeals with a non zero natural numb@r a 4-dimensional gratings, a
natural numbe(, a C-chainD of B, and a unary predicatg, and states that:
P[D]
provided the parameters meet the following requirements:
o P[0c3B],
e For everyC-cell A of B such thatA € D holdsP[{A}], and
e For all C-chainsCy, C; of B such thatC; C D andC, C D and ?[C;] and P[Cy]
holds?[C; 4 Cy).
Let us consided, G, k and letA be ak-cell of G. The functorA* yielding ak + 1-chain ofG is
defined by:

(Def. 12) A* = {B;Branges ovek+ 1-cells ofG: A C B}.
The following proposition is true
(50) For everyk-cell A of G and for everyk+ 1-cell B of G holdsB € A* iff ACB.

Let us consided, G, k and letC be ak+ 1-chain ofG. The functordC yields ak-chain ofG and
is defined as follows:

(Def. 13) oC = {A;Aranges ovek-cells of G: k+1 < d A card A*NC)is odd}.

We introduceC as a synonym odC.
Let us consided, G, k, letC be ak+ 1-chain ofG, and letC’ be ak-chain ofG. We say tha€C’
bound<C if and only if:

(Def. 14) C' =0C.
Next we state a number of propositions:

(51) For everyk-cell A of G and for everyk+ 1-chainC of G holdsA € oC iff k+1 <d and
cardA*NC) is odd.

(52) Ifk+1>d, then for everjk+ 1-chainC of G holdsoC = 0kG.

(53) Ifk+1<d,then for evenk-cell A of G and for everyk+ 1-cell B of G holdsA € d{B} iff
ACB.

(54) Ifd=d + 1, then for everyd’-cell A of G holds cardh* = 2.

(55) For everyd-dimensional gratings and for every 6+ 1-cell B of G holds card{B} = 2.
(56) QG = (04G)°and QG = (QG)°.

(57) For evenk-chainC of G holdsC +0,G =C.

(58) For everk-chainC of G holdsC +C = 0kG.

(59) For everyd-chainC of G holdsC® = C + QG.

(60) 90y, 1G = OG.

(61) For everyd’ + 1-dimensional grating holdsdQG = 04 G.

(62) For allk+ 1-chainsC;, C; of G holdsd(Cy +Cy) = dC; + 0C,.

(63) Forevend +1-dimensional grating and for everyd’ + 1-chainC of G holdsd(C®) = adC.
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(64) For everk+ 1+ 1-chainC of G holdsdoC = 0xG.
Let us consided, G, k. A k-chain ofG is called &-cycle of G if:

(Def. 15) k=0 and cardit is even or there exi&fssuch thak = k' + 1 and there existski + 1-chain
C of G such thaC =it anddC = Oy G.

Next we state three propositions:

(65) For evenk+ 1-chainC of G holdsC is ak+ 1-cycle ofG iff dC = 0xG.
(66) If k> d, then evenk-chain ofG is ak-cycle of G.
(67) For every 0-chai of G holdsC is a 0-cycle ofG iff cardC is even.

Let us consided, G, k and letC be ak+ 1-cycle of G. ThendC can be characterized by the
condition:

(Def. 16) 9C = O,G.

Let us consided, G, k. Then QG is ak-cycle of G.
Let us consided, G. ThenQG is ad-cycle of G.

Let us consided, G, k and letC;, C, be k-cycles of G. ThenC;-C; is ak-cycle of G. We
introduceC; +C; as a synonym of; -Cs.
One can prove the following proposition

(68) For everyd-cycleC of G holdsC° is ad-cycle ofG.

Let us consided, G, k and letC be ak+ 1-chain ofG. ThendC is ak-cycle of G.

3. GROUPS ANDHOMOMORPHISMS

Let us consided, G, k. The functork-ChaingG) yielding a strict Abelian group is defined by the
conditions (Def. 17).

(Def. 17)(i)  The carrier ok-ChaingG) = 2k cellSG)|
(i) Ox-chaings) = kG, and

(i)  for all elementsA, B of k-ChaingG) and for allk-chainsA’, B’ of G such thatA = A’ and
B=B holdsA+B=A'+B.

Let us consided, G, k. A k-grchain ofG is an element ok- ChaingG).
One can prove the following proposition

(69) For every sex holdsx is ak-chain ofG iff x is ak-grchain ofG.

Let us consided, G, k. The functord yielding a homomorphism fronk 4+ 1)-ChaingG) to
k-ChaingG) is defined as follows:

(Def. 18) For every elemerh of (k+ 1)-ChaingG) and for everyk + 1-chainA’ of G such that
A=A holdsd(A) = 0A'.
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