Property of Complex Sequence and Continuity of Complex Function Takashi Mitsuishi Shinshu University Nagano Katsumi Wasaki Shinshu University Nagano Yasunari Shidama Shinshu University Nagano **Summary.** This article introduces properties of complex sequence and continuity of complex function. The first section shows convergence of complex sequence and constant complex sequence. In the next section, definition of continuity of complex function and properties of continuous complex function are shown. MML Identifier: CFCONT 1. WWW: http://mizar.org/JFM/Vol11/cfcont_1.html The articles [11], [14], [15], [3], [12], [2], [5], [4], [16], [7], [6], [13], [8], [1], [9], and [10] provide the notation and terminology for this paper. ## 1. Complex Sequence For simplicity, we follow the rules: n, m, k are natural numbers, x, X, X_1 are sets, g, x_0 , x_1 , x_2 are elements of \mathbb{C} , s_1 , s_2 , s_3 , s_4 , s_5 , s_6 are complex sequences, Y is a subset of \mathbb{C} , f, f_1 , f_2 , h, h_1 , h_2 are partial functions from \mathbb{C} to \mathbb{C} , r, s are real numbers, and N_1 is an increasing sequence of naturals. Let us consider h, s_3 . Let us assume that $\operatorname{rng} s_3 \subseteq \operatorname{dom} h$. The functor $h \cdot s_3$ yields a complex sequence and is defined as follows: (Def. 1) $h \cdot s_3 = (h \text{ qua function}) \cdot (s_3)$. Let us consider f, x_0 . We say that f is continuous in x_0 if and only if: (Def. 2) $x_0 \in \text{dom } f$ and for every s_1 such that $\text{rng } s_1 \subseteq \text{dom } f$ and s_1 is convergent and $\text{lim } s_1 = x_0$ holds $f \cdot s_1$ is convergent and $f_{x_0} = \text{lim}(f \cdot s_1)$. We now state a number of propositions: - $(2)^1$ $s_4 = s_5 s_6$ iff for every n holds $s_4(n) = s_5(n) s_6(n)$. - (3) $\operatorname{rng}(s_3 \uparrow n) \subseteq \operatorname{rng} s_3$. - (4) If $\operatorname{rng} s_3 \subseteq \operatorname{dom} f$, then $s_3(n) \in \operatorname{dom} f$. - (5) $x \in \operatorname{rng} s_3$ iff there exists n such that $x = s_3(n)$. - (6) $s_3(n) \in \operatorname{rng} s_3$. - (7) If s_4 is a subsequence of s_3 , then $\operatorname{rng} s_4 \subseteq \operatorname{rng} s_3$. ¹ The proposition (1) has been removed. - (8) If s_4 is a subsequence of s_3 and s_3 is non-zero, then s_4 is non-zero. - (9) $(s_4+s_5)N_1 = s_4N_1 + s_5N_1$ and $(s_4-s_5)N_1 = s_4N_1 s_5N_1$ and $(s_4s_5)N_1 = s_4N_1 (s_5N_1)$. - (10) $(g s_3) N_1 = g (s_3 N_1).$ - (11) $(-s_3) N_1 = -s_3 N_1$ and $|s_3| \cdot N_1 = |s_3 N_1|$. - (12) $(s_3 N_1)^{-1} = s_3^{-1} N_1$. - (13) $(s_4/s_3) N_1 = (s_4 N_1)/(s_3 N_1).$ - (14) If for every *n* holds $s_3(n) \in Y$, then rng $s_3 \subseteq Y$. - $(16)^2$ If rng $s_3 \subseteq \text{dom } f$, then $(f \cdot s_3)(n) = f_{s_3(n)}$. - (17) If rng $s_3 \subseteq \text{dom } f$, then $(f \cdot s_3) \uparrow n = f \cdot (s_3 \uparrow n)$. - (18) If $\operatorname{rng} s_3 \subseteq \operatorname{dom} h_1 \cap \operatorname{dom} h_2$, then $(h_1 + h_2) \cdot s_3 = h_1 \cdot s_3 + h_2 \cdot s_3$ and $(h_1 h_2) \cdot s_3 = h_1 \cdot s_3 h_2 \cdot s_3$ and $(h_1 h_2) \cdot s_3 = (h_1 \cdot s_3) (h_2 \cdot s_3)$. - (19) If $\operatorname{rng} s_3 \subseteq \operatorname{dom} h$, then $(g h) \cdot s_3 = g (h \cdot s_3)$. - (20) If $\operatorname{rng} s_3 \subseteq \operatorname{dom} h$, then $-h \cdot s_3 = (-h) \cdot s_3$. - (21) If $\operatorname{rng} s_3 \subseteq \operatorname{dom}(\frac{1}{h})$, then $h \cdot s_3$ is non-zero. - (22) If $\operatorname{rng} s_3 \subseteq \operatorname{dom}(\frac{1}{h})$, then $\frac{1}{h} \cdot s_3 = (h \cdot s_3)^{-1}$. - (23) If rng $s_3 \subseteq \text{dom } h$, then $\Re((h \cdot s_3) N_1) = \Re(h \cdot (s_3 N_1))$. - (24) If rng $s_3 \subseteq \text{dom } h$, then $\Im((h \cdot s_3) N_1) = \Im(h \cdot (s_3 N_1))$. - (25) If rng $s_3 \subseteq \text{dom } h$, then $(h \cdot s_3) N_1 = h \cdot (s_3 N_1)$. - (26) If rng $s_4 \subseteq \text{dom } h$ and s_5 is a subsequence of s_4 , then $h \cdot s_5$ is a subsequence of $h \cdot s_4$. - (27) If h is total, then $(h \cdot s_3)(n) = h_{s_2(n)}$. - (28) If *h* is total, then $h \cdot (s_3 \uparrow n) = (h \cdot s_3) \uparrow n$. - (29) If h_1 is total and h_2 is total, then $(h_1 + h_2) \cdot s_3 = h_1 \cdot s_3 + h_2 \cdot s_3$ and $(h_1 h_2) \cdot s_3 = h_1 \cdot s_3 h_2 \cdot s_3$ and $(h_1 h_2) \cdot s_3 = (h_1 \cdot s_3) (h_2 \cdot s_3)$. - (30) If *h* is total, then $(g h) \cdot s_3 = g (h \cdot s_3)$. - (31) If $\operatorname{rng} s_3 \subseteq \operatorname{dom}(h \upharpoonright X)$, then $(h \upharpoonright X) \cdot s_3 = h \cdot s_3$. - (32) If $\operatorname{rng} s_3 \subseteq \operatorname{dom}(h \upharpoonright X)$ and if $\operatorname{rng} s_3 \subseteq \operatorname{dom}(h \upharpoonright Y)$ or $X \subseteq Y$, then $(h \upharpoonright X) \cdot s_3 = (h \upharpoonright Y) \cdot s_3$. - (33) If $\operatorname{rng} s_3 \subseteq \operatorname{dom}(h \upharpoonright X)$ and $h^{-1}(\{0_{\mathbb{C}}\}) = \emptyset$, then $(\frac{1}{h} \upharpoonright X) \cdot s_3 = ((h \upharpoonright X) \cdot s_3)^{-1}$. Let us consider s_3 . Let us observe that s_3 is constant if and only if: (Def. 4)³ There exists g such that for every n holds $s_3(n) = g$. One can prove the following propositions: - (34) s_3 is constant iff there exists g such that $\operatorname{rng} s_3 = \{g\}$. - (35) s_3 is constant iff for every n holds $s_3(n) = s_3(n+1)$. - (36) s_3 is constant iff for all n, k holds $s_3(n) = s_3(n+k)$. ² The proposition (15) has been removed. ³ The definition (Def. 3) has been removed. - (37) s_3 is constant iff for all n, m holds $s_3(n) = s_3(m)$. - (38) $s_3 \uparrow k$ is a subsequence of s_3 . - (39) If s_4 is a subsequence of s_3 and s_3 is convergent, then s_4 is convergent. - (40) If s_4 is a subsequence of s_3 and s_3 is convergent, then $\lim s_4 = \lim s_3$. - (41) If s_3 is convergent and there exists k such that for every n such that $k \le n$ holds $s_4(n) = s_3(n)$, then s_4 is convergent. - (42) If s_3 is convergent and there exists k such that for every n such that $k \le n$ holds $s_4(n) = s_3(n)$, then $\lim s_3 = \lim s_4$. - (43) If s_3 is convergent, then $s_3 \uparrow k$ is convergent and $\lim (s_3 \uparrow k) = \lim s_3$. - (44) If s_3 is convergent and there exists k such that $s_3 = s_4 \uparrow k$, then s_4 is convergent. - (45) If s_3 is convergent and there exists k such that $s_3 = s_4 \uparrow k$, then $\lim s_4 = \lim s_3$. - (46) If s_3 is convergent and $\lim s_3 \neq 0_{\mathbb{C}}$, then there exists k such that $s_3 \uparrow k$ is non-zero. - (47) If s_3 is convergent and $\lim s_3 \neq 0_{\mathbb{C}}$, then there exists s_4 which is a subsequence of s_3 and non-zero. - (48) If s_3 is constant, then s_3 is convergent. - (49) If s_3 is constant and $g \in \operatorname{rng} s_3$ or s_3 is constant and there exists n such that $s_3(n) = g$, then $\lim s_3 = g$. - (50) If s_3 is constant, then for every n holds $\lim s_3 = s_3(n)$. - (51) If s_3 is convergent and $\lim s_3 \neq 0_\mathbb{C}$, then for every s_4 such that s_4 is a subsequence of s_3 and non-zero holds $\lim (s_4^{-1}) = (\lim s_3)^{-1}$. - (52) If s_3 is constant and s_4 is convergent, then $\lim(s_3 + s_4) = s_3(0) + \lim s_4$ and $\lim(s_3 s_4) = s_3(0) \lim s_4$ and $\lim(s_4 s_3) = \lim s_4 s_3(0)$ and $\lim(s_3 s_4) = s_3(0) \cdot \lim s_4$. The scheme CompSeqChoice concerns a binary predicate \mathcal{P} , and states that: There exists s_1 such that for every n holds $\mathcal{P}[n, s_1(n)]$ provided the parameters meet the following condition: • For every *n* there exists *g* such that $\mathcal{P}[n,g]$. ## 2. Continuity of Complex Sequence The following propositions are true: - (53) f is continuous in x_0 if and only if the following conditions are satisfied: - (i) $x_0 \in \text{dom } f$, and - (ii) for every s_1 such that $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$ and s_1 is convergent and $\lim s_1 = x_0$ and for every n holds $s_1(n) \neq x_0$ holds $f \cdot s_1$ is convergent and $f_{x_0} = \lim(f \cdot s_1)$. - (54) f is continuous in x_0 if and only if the following conditions are satisfied: - (i) $x_0 \in \text{dom } f$, and - (ii) for every r such that 0 < r there exists s such that 0 < s and for every x_1 such that $x_1 \in \text{dom } f$ and $|x_1 x_0| < s$ holds $|f_{x_1} f_{x_0}| < r$. - (55) Suppose f_1 is continuous in x_0 and f_2 is continuous in x_0 . Then $f_1 + f_2$ is continuous in x_0 and $f_1 f_2$ is continuous in x_0 and f_1 f_2 is continuous in x_0 . - (56) If f is continuous in x_0 , then g f is continuous in x_0 . - (57) If f is continuous in x_0 , then -f is continuous in x_0 . - (58) If f is continuous in x_0 and $f_{x_0} \neq 0_{\mathbb{C}}$, then $\frac{1}{f}$ is continuous in x_0 . - (59) If f_1 is continuous in x_0 and $(f_1)_{x_0} \neq 0_{\mathbb{C}}$ and f_2 is continuous in x_0 , then $\frac{f_2}{f_1}$ is continuous in x_0 . Let us consider f, X. We say that f is continuous on X if and only if: (Def. 5) $X \subseteq \text{dom } f$ and for every x_0 such that $x_0 \in X$ holds $f \mid X$ is continuous in x_0 . The following propositions are true: - (60) Let given X, f. Then f is continuous on X if and only if the following conditions are satisfied: - (i) $X \subseteq \text{dom } f$, and - (ii) for every s_1 such that $\operatorname{rng} s_1 \subseteq X$ and s_1 is convergent and $\lim s_1 \in X$ holds $f \cdot s_1$ is convergent and $f_{\lim s_1} = \lim (f \cdot s_1)$. - (61) f is continuous on X if and only if the following conditions are satisfied: - (i) $X \subseteq \text{dom } f$, and - (ii) for all x_0 , r such that $x_0 \in X$ and 0 < r there exists s such that 0 < s and for every x_1 such that $x_1 \in X$ and $|x_1 x_0| < s$ holds $|f_{x_1} f_{x_0}| < r$. - (62) f is continuous on X iff $f \mid X$ is continuous on X. - (63) If f is continuous on X and $X_1 \subseteq X$, then f is continuous on X_1 . - (64) If $x_0 \in \text{dom } f$, then f is continuous on $\{x_0\}$. - (65) Let given X, f_1 , f_2 . Suppose f_1 is continuous on X and f_2 is continuous on X. Then $f_1 + f_2$ is continuous on X and $f_1 f_2$ is continuous on X and f_1 and f_2 is continuous on f_2 . - (66) Let given X, X_1 , f_1 , f_2 . Suppose f_1 is continuous on X and f_2 is continuous on X_1 . Then $f_1 + f_2$ is continuous on $X \cap X_1$ and $f_1 f_2$ is continuous on $X \cap X_1$. - (67) For all g, X, f such that f is continuous on X holds g f is continuous on X. - (68) If f is continuous on X, then -f is continuous on X. - (69) If f is continuous on X and $f^{-1}(\{0_{\mathbb{C}}\}) = \emptyset$, then $\frac{1}{f}$ is continuous on X. - (70) If f is continuous on X and $(f \upharpoonright X)^{-1}(\{0_{\mathbb{C}}\}) = \emptyset$, then $\frac{1}{f}$ is continuous on X. - (71) If f_1 is continuous on X and $f_1^{-1}(\{0_{\mathbb{C}}\}) = \emptyset$ and f_2 is continuous on X, then $\frac{f_2}{f_1}$ is continuous on X. - (72) If f is total and for all x_1 , x_2 holds $f_{x_1+x_2} = f_{x_1} + f_{x_2}$ and there exists x_0 such that f is continuous in x_0 , then f is continuous on \mathbb{C} . Let us consider *X*. We say that *X* is compact if and only if: (Def. 6) For every s_1 such that $\operatorname{rng} s_1 \subseteq X$ there exists s_2 such that s_2 is a subsequence of s_1 and convergent and $\lim s_2 \in X$. We now state two propositions: - (73) For every f such that dom f is compact and f is continuous on dom f holds rng f is compact. - (74) If $Y \subseteq \text{dom } f$ and Y is compact and f is continuous on Y, then $f^{\circ}Y$ is compact. ## REFERENCES - Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/ JFM/Vol5/comseq_1.html. - [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html. - [3] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html. - [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html. - [5] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html. - [6] Czesław Byliński. The complex numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/complex1. html. - [7] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/seqm_3.html. - [8] Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. Property of complex functions. *Journal of Formalized Mathematics*, 11, 1999. http://mizar.org/JFM/Vol11/cfunct_1.html. - [9] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/comseq_2.html. - [10] Yasunari Shidama and Artur Korniłowicz. Convergence and the limit of complex sequences. Series. *Journal of Formalized Mathematics*, 9, 1997. http://mizar.org/JFM/Vo19/comseq_3.html. - [11] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. - [12] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html. - [13] Wojciech A. Trybulec. Pigeon hole principle. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4 html - [14] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. - [15] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html. - [16] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html. Received December 7, 1999 Published January 2, 2004