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Summary. This article introduces properties of complex sequence and continuity of
complex function. The first section shows convergence of complex sequence and constant
complex sequence. In the next section, definition of continuity of complex function and prop-
erties of continuous complex function are shown.
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The articlesl[11],[[14],[115],[[8],[[12] [[2],[[5],14],[116],[1¥],[16], 11B],[8],[[1],[[9], and [10] provide
the notation and terminology for this paper.

1. COMPLEX SEQUENCE

For simplicity, we follow the rulesn, m, k are natural numbers, X, X; are setsg, Xo, X1, X2 are
elements ofC, 51, S, S3, 4, S5, S are complex sequencésjs a subset o, f, f1, fo, h, hy, hp are

partial

functions fronC to C, r, sare real numbers, arid is an increasing sequence of naturals.

Let us consideh, s3. Let us assume that nsg C domh. The functorh- s;3 yields a complex
sequence and is defined as follows:

(Def. 1)

h-s;3 = (h quafunction)-(sg).

Let us consideff, xg. We say thaff is continuous inxg if and only if:

(Def. 2)

Xo € domf and for everys; such that rng; C domf ands; is convergent and lirsp = Xg

holdsf -s; is convergent andy, = lim(f -s).

We now state a number of propositions:

(ZE] s = S5 — S iff for every n holdssy(n) = s5(n) — ss(n).

®)
(4)
(®)
(6)
()

rg(ss Tn) C rngss.

If rngss € domf, thensz(n) € domf.

X € rngss iff there existsn such thak = s3(n).
s3(n) € Mgss.

If &4 is a subsequence 6f, then rngy C rngss.

1 The proposition (1) has been removed.
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(8) If o4 is a subsequence ef ands; is non-zero, thes, is non-zero.
(9) (sa+35) N1 =54 N1 +55 Ny and(ss —5) N1 =54 Ny — 55 Ny and(sq S5) Ny =54 Np (S5 Nw).
(10) (g9s3) N1 =9g(ssNp).
(11) (—s3) Ny = —s3 Ny and|sg| Ny = [s3 Ny .
(

(

(12) (ssNp)t=s371Ny.

S4/53) N1 = (S4N1)/(s3 Ny).

(14) |If for everynholdssz(n) €Y, thenrngss C Y.
(16f] 1f rngss C domf, then(f - s3)(n) = fey(n)-

(A7) Ifrngss C domf, then(f-s3)Tn="f-(s31n).

(13)

(18) Ifrngss C domhyndomhy, then(hy+hy)-ss=h1-ss+hz-ssand(hs —hp)-ss=hy-s3—
h-szand(hy hy) -s3 = (hy - s3) (h2 - s3).

(19) Ifrngss € domh, then(gh)-s3 =g (h-s3).

(20) Ifrngss € domh, then—h-s3 = (—h)-s;.

(21) If mgss C dom(#), thenh- sz is non-zero.

(22) Ifrngss C dom(#), then? -s3= (h-s3)71

(23) Ifrngss C domh, thenO((h-s3) Np) = O (h- (s3Ny)).

(24) If rngss C domh, thenD((h-s3) Np) = O(h- (s3Ny)).

(25) Ifrngsz C domh, then(h-s3) Ny =h- (s3Ng).

(26) If rngsy € domh andss is a subsequence &f, thenh- s5 is a subsequence bf .
(27) Ifhistotal, then(h-s3)(n) = hg, ).

(28) Ifhistotal, therh-(s3Tn)=(h-s3)Tn.

(29) If hy istotal anchy is total, then(hy +hy) -ss=h; -3+ hz-sgand(hy —hp) - ss =hy - 53—
hy-szand(hy hy) -s3 = (hy - s3) (h2 - s3).

(30) Ifhistotal, then(gh)-s3 =g (h-s3).
(31) Ifrngsz € dom(h(X), then(h/X) -s3=h-sg.
(32) Ifrngss € dom(h[X) and if rngss € dom(h|Y) or X C Y, then(h[X)-s3 = (h[Y) - s3.
(33) If mgss C dom(h[X) andh~%({0c}) = 0, then(#X) - s3 = ((h[X) -s3) L.
Let us consides;. Let us observe that is constant if and only if:
(Def. 4 There existg such that for every holdssz(n) = g.
One can prove the following propositions:
(34) sz is constant iff there existg such that rngs = {g}.
(35) s3is constant iff for everyr holdssz(n) = s3(n+1).
(36) s3is constant iff for alln, k holdssz(n) = s3(n+ k).

2 The proposition (15) has been removed.
3 The definition (Def. 3) has been removed.
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(37) sz is constant iff for alln, mholdssz(n) = s3(m).

(838) s37Tkis asubsequence ef.

(39) If s4is asubsequence sf ands; is convergent, thes, is convergent.
(40) If s4is a subsequence sf ands; is convergent, then lirgy, = lim s3.

(41) If 3 is convergent and there exidtsuch that for every such thatk < n holdsss(n) =
s3(n), thens, is convergent.

(42) If 53 is convergent and there exidkssuch that for every such thatkk < n holdssy(n) =
s3(n), then limsg = lim 4.

(43) If sz is convergent, thess T kis convergent and liifsz 1K) = lim sz.

(44) If sz is convergent and there exitsuch thats = 4 Tk, thens, is convergent.
(45) |If s3is convergent and there exi#tsuch thatss = 4 Tk, then limsy = lim s3.
(46) If s3is convergent and lirss # Oc, then there existk such thas; T k is non-zero.

(47) If s3is convergent and lirss # Oc, then there exists,; which is a subsequence sf and
non-zero.

(48) If s3 is constant, thess is convergent.

(49) If sz is constant and € rngs; or s is constant and there existsuch thatz(n) = g, then
limsz3=g.
(50) If sz is constant, then for everyholds limsz = s3(n).

(51) If szis convergent and lirss # Oc, then for everys, such thak, is a subsequence ef and
non-zero holds lirts; 1) = (limsg) 1.

(52) If s3is constant andy is convergent, then lifigs + s4) = s3(0) +limsg and lim(s —s4) =
$3(0) —lim sy and lim(ss — s3) = lim s4 — s3(0) and lim(sz s4) = s3(0) - lim 4.

The schem&ompSeqChoiceoncerns a binary predica#® and states that:
There exists; such that for every holds®[n, s;(n))
provided the parameters meet the following condition:
e For everyn there existg such that?[n, g).

2. CONTINUITY OF COMPLEX SEQUENCE
The following propositions are true:

(53) fis continuous inKg if and only if the following conditions are satisfied:
(i) Xo€domf,and
(i) for everys; such that rng C domf ands; is convergent and lirsy = xg and for everyn
holdss; (n) # xg holds f - 51 is convergent andy, = lim(f - ;).
(54) fis continuous ing if and only if the following conditions are satisfied:
(i) Xo€domf,and
(i) foreveryr such that G< r there existssuch that G< sand for everyg such thak; € domf
and|x1 —Xo| < sholds|fy, — fy,| <.

(55) Supposd; is continuous iy and f; is continuous inkg. Thenf; + f is continuous iy
andf, — f, is continuous ing and f; fp is continuous irxg.

(56) If f is continuous irxg, theng f is continuous irxg.
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(57) If f is continuous inKg, then— f is continuous ing.

(58) If fis continuous ik and fy, # Oc, then% is continuous inKg.

(59) If f1is continuous inkg and(f1)y, # Oc and f, is continuous o, then% is continuous
in Xo.

Let us considerf, X. We say thaff is continuous orX if and only if:
(Def.5) X C domf and for everyxg such thatg € X holds f [X is continuous ing.

The following propositions are true:

(60) Let givenX, f. Thenf is continuous orX if and only if the following conditions are
satisfied:

(i) X Cdomf,and

(i) for everys; such that rng; C X ands; is convergent and lirsy € X holdsf - s is conver-
gent andfjims, = lim(f -sp).

(61) fis continuous oiX if and only if the following conditions are satisfied:
(i) X Cdomf,and

(i) for all g, r such thatxg € X and 0< r there exists such that < sand for everyx; such
thatx; € X and|x; —Xo| < sholds|fy, — fx,| <.

(62) f is continuous oX iff f[X is continuous orX.
(63) If f is continuous orX andX; C X, thenf is continuous orX;.
(64) If xg € domf, thenf is continuous o{Xp}.

(65) LetgivenX, f1, fo. Supposds is continuous ofX andf; is continuous oiX. Thenf; + f;
is continuous orX and f; — f2 is continuous orX and f; fo is continuous orX.

(66) Let givenX, X;, f1, fo. Supposef; is continuous orX and f; is continuous orX;. Then
f1 + f2 is continuous orX N X; and f; — f, is continuous orX N X; and f1 f; is continuous
onXNXi.

(67) Forallg, X, f such thatf is continuous orX holdsg f is continuous orX.
(68) If f is continuous orX, then—f is continuous orX.

(69) If f is continuous orX andf~1({0¢}) = 0, then% is continuous orX.
(70) If f is continuous orX and(f[X)~1({0c}) =0, then% is continuous orX.

(71) If f is continuous orX and f; ~1({0¢}) = 0 and f, is continuous orX, then% is contin-
uous onX.

(72) If f is total and for allxy, X2 holds fy, 1y, = fy, + fx, and there existgg such thatf is
continuous irxg, thenf is continuous ort.

Let us consideK. We say thaX is compact if and only if:

(Def. 6) For everys; such that rng; C X there existss, such thats; is a subsequence sf and
convergent and lire, € X.

We now state two propositions:

(73) For everyf such that donf is compact and is continuous on dorf holds rngf is com-
pact.

(74) IfY Cdomf andY is compact and is continuous orY, thenf°Y is compact.
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