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The articles [10], [6], [13], [11], [9], [14], [2], [3], [7], [12], [5], [4], [8], and [1] provide the notation
and terminology for this paper.

1. CATEGORIES WITHTRIPLE-LIKE MORPHISMS

Let D1, D2, D be non empty sets and letx be an element of[: [:D1, D2 :], D :]. Thenx1,1 is an element
of D1. Thenx1,2 is an element ofD2.

Let D1, D2 be non empty sets and letx be an element of[:D1, D2 :]. Thenx2 is an element ofD2.
The following proposition is true

(1) LetC, D be category structures. Suppose the category structure ofC = the category struc-
ture ofD. If C is category-like, thenD is category-like.

Let I1 be a category structure. We say thatI1 has triple-like morphisms if and only if:

(Def. 1) For every morphismf of I1 there exists a setx such thatf = 〈〈〈〈dom f , cod f 〉〉, x〉〉.

Let us observe that there exists a strict category which has triple-like morphisms.
One can prove the following proposition

(2) LetC be a category structure with triple-like morphisms andf be a morphism ofC. Then
dom f = f1,1 and codf = f1,2 and f = 〈〈〈〈dom f , cod f 〉〉, f2〉〉.

Let C be a category structure with triple-like morphisms and letf be a morphism ofC. Then
f1,1 is an object ofC. Then f1,2 is an object ofC.

In this article we present several logical schemes. The schemeCatExdeals with non empty sets
A , B, a binary functorF yielding a set, and a ternary predicateP , and states that:

There exists a strict categoryC with triple-like morphisms such that
(i) the objects ofC = A ,

(ii) for all elementsa, b of A and for every elementf of B such thatP [a,b, f ]
holds〈〈〈〈a, b〉〉, f 〉〉 is a morphism ofC,
(iii) for every morphismm of C there exist elementsa, b of A and there exists an
elementf of B such thatm= 〈〈〈〈a, b〉〉, f 〉〉 andP [a,b, f ], and
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(iv) for all morphismsm1, m2 of C and for all elementsa1, a2, a3 of A and for
all elementsf1, f2 of B such thatm1 = 〈〈〈〈a1, a2〉〉, f1〉〉 andm2 = 〈〈〈〈a2, a3〉〉, f2〉〉 holds
m2 ·m1 = 〈〈〈〈a1, a3〉〉, F ( f2, f1)〉〉

provided the parameters have the following properties:
• For all elementsa, b, c of A and for all elementsf , g of B such thatP [a,b, f ] and

P [b,c,g] holdsF (g, f ) ∈ B andP [a,c,F (g, f )],
• Let a be an element ofA . Then there exists an elementf of B such that

(i) P [a,a, f ], and
(ii) for every elementb of A and for every elementg of B holds ifP [a,b,g], then

F (g, f ) = g and if P [b,a,g], thenF ( f ,g) = g,
and

• Let a, b, c, d be elements ofA and f , g, h be elements ofB. If P [a,b, f ] andP [b,c,g]
andP [c,d,h], thenF (h,F (g, f )) = F (F (h,g), f ).

The schemeCatUniqdeals with non empty setsA , B, a binary functorF yielding a set, and a
ternary predicateP , and states that:

Let C1, C2 be strict categories with triple-like morphisms. Suppose that the objects
of C1 = A and for all elementsa, b of A and for every elementf of B such that
P [a,b, f ] holds 〈〈〈〈a, b〉〉, f 〉〉 is a morphism ofC1 and for every morphismm of C1

there exist elementsa, b of A and there exists an elementf of B such thatm= 〈〈〈〈a,
b〉〉, f 〉〉 andP [a,b, f ] and for all morphismsm1, m2 of C1 and for all elementsa1, a2,
a3 of A and for all elementsf1, f2 of B such thatm1 = 〈〈〈〈a1, a2〉〉, f1〉〉 andm2 = 〈〈〈〈a2,
a3〉〉, f2〉〉 holdsm2 ·m1 = 〈〈〈〈a1, a3〉〉, F ( f2, f1)〉〉 and the objects ofC2 = A and for all
elementsa, b of A and for every elementf of B such thatP [a,b, f ] holds〈〈〈〈a, b〉〉, f 〉〉
is a morphism ofC2 and for every morphismm of C2 there exist elementsa, b of A
and there exists an elementf of B such thatm= 〈〈〈〈a, b〉〉, f 〉〉 andP [a,b, f ] and for all
morphismsm1, m2 of C2 and for all elementsa1, a2, a3 of A and for all elementsf1,
f2 of B such thatm1 = 〈〈〈〈a1, a2〉〉, f1〉〉 andm2 = 〈〈〈〈a2, a3〉〉, f2〉〉 holdsm2 ·m1 = 〈〈〈〈a1,
a3〉〉, F ( f2, f1)〉〉. ThenC1 = C2

provided the parameters have the following property:
• Let a be an element ofA . Then there exists an elementf of B such that

(i) P [a,a, f ], and
(ii) for every elementb of A and for every elementg of B holds ifP [a,b,g], then

F (g, f ) = g and if P [b,a,g], thenF ( f ,g) = g.
The schemeFunctorExdeals with categoriesA , B, a unary functorF yielding an object ofB,

and a unary functorG yielding a set, and states that:
There exists a functorF from A to B such that for every morphismf of A holds
F( f ) = G( f )

provided the following conditions are met:
• Let f be a morphism ofA . ThenG( f ) is a morphism ofB and for every morphism

g of B such thatg = G( f ) holds domg = F (dom f ) and codg = F (cod f ),
• For every objecta of A holdsG(ida) = idF (a), and
• For all morphismsf1, f2 of A and for all morphismsg1, g2 of B such thatg1 = G( f1)

andg2 = G( f2) and domf2 = cod f1 holdsG( f2 · f1) = g2 ·g1.
We now state two propositions:

(3) Let C1 be a category andC2 be a subcategory ofC1. SupposeC1 is a subcategory ofC2.
Then the category structure ofC1 = the category structure ofC2.

(4) For every categoryC and for every subcategoryD of C holds every subcategory ofD is a
subcategory ofC.

Let C1, C2 be categories. Let us assume that there exists a categoryC such thatC1 is a subcate-
gory ofC andC2 is a subcategory ofC. And let us assume that there exists an objecto1 of C1 such
thato1 is an object ofC2. The functorC1∩C2 yielding a strict category is defined by the conditions
(Def. 2).
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(Def. 2)(i) The objects ofC1∩C2 = (the objects ofC1)∩ (the objects ofC2),

(ii) the morphisms ofC1∩C2 = (the morphisms ofC1)∩ (the morphisms ofC2),

(iii) the dom-map ofC1∩C2 = (the dom-map ofC1)�(the morphisms ofC2),

(iv) the cod-map ofC1∩C2 = (the cod-map ofC1)�(the morphisms ofC2),

(v) the composition ofC1∩C2 = (the composition ofC1)�[: the morphisms ofC2, the mor-
phisms ofC2 :], and

(vi) the id-map ofC1∩C2 = (the id-map ofC1)�(the objects ofC2).

In the sequelC is a category andC1, C2 are subcategories ofC.
One can prove the following propositions:

(5) If the objects ofC1 meets the objects ofC2, thenC1∩C2 = C2∩C1.

(6) Suppose the objects ofC1 meets the objects ofC2. ThenC1∩C2 is a subcategory ofC1 and
C1∩C2 is a subcategory ofC2.

Let C, D be categories and letF be a functor fromC to D. The functor ImF yielding a strict
subcategory ofD is defined by the conditions (Def. 3).

(Def. 3)(i) The objects of ImF = rngObjF,

(ii) rngF ⊆ the morphisms of ImF, and

(iii) for every subcategoryE of D such that the objects ofE = rngObjF and rngF ⊆ the
morphisms ofE holds ImF is a subcategory ofE.

The following three propositions are true:

(7) Let C, D be categories,E be a subcategory ofD, andF be a functor fromC to D. If
rngF ⊆ the morphisms ofE, thenF is a functor fromC to E.

(8) For all categoriesC, D holds every functorF from C to D is a functor fromC to ImF.

(9) LetC, D be categories,E be a subcategory ofD, F be a functor fromC to E, andG be a
functor fromC to D. If F = G, then ImF = ImG.

2. CATEGORIAL CATEGORIES

Let I1 be a set. We say thatI1 is categorial if and only if:

(Def. 4) For every setx such thatx∈ I1 holdsx is a category.

One can verify that there exists a non empty set which is categorial. LetX be a non empty set.
Let us observe thatX is categorial if and only if:

(Def. 5) Every element ofX is a category.

Let X be a non empty categorial set. We see that the element ofX is a category.
LetC be a category. We say thatC is categorial if and only if the conditions (Def. 6) are satisfied.

(Def. 6)(i) The objects ofC are categorial,

(ii) for every objecta of C and for every categoryA such thata = A holds ida = 〈〈〈〈A, A〉〉, idA〉〉,
(iii) for every morphismmof C and for all categoriesA, B such thatA = dommandB = codm

there exists a functorF from A to B such thatm= 〈〈〈〈A, B〉〉, F〉〉, and

(iv) for all morphismsm1, m2 of C and for all categoriesA, B, C and for every functorF from
A to B and for every functorG from B toC such thatm1 = 〈〈〈〈A, B〉〉, F〉〉 andm2 = 〈〈〈〈B, C〉〉, G〉〉
holdsm2 ·m1 = 〈〈〈〈A, C〉〉, G·F〉〉.

Let us note that every category which is categorial has also triple-like morphisms.
Next we state two propositions:
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(10) LetC, D be categories. Suppose the category structure ofC = the category structure ofD.
If C is categorial, thenD is categorial.

(11) For every categoryC holds�̇(C,〈〈〈〈C, C〉〉, idC〉〉) is categorial.

Let us observe that there exists a strict category which is categorial.
Next we state two propositions:

(12) For every categorial categoryC holds every object ofC is a category.

(13) For every categorial categoryC and for every morphismf of C holds domf = f1,1 and
cod f = f1,2.

LetC be a categorial category and letmbe a morphism ofC. Thenm1,1 is a category. Thenm1,2
is a category.

We now state the proposition

(14) LetC1, C2 be categorial categories. Suppose the objects ofC1 = the objects ofC2 and the
morphisms ofC1 = the morphisms ofC2. Then the category structure ofC1 = the category
structure ofC2.

Let C be a categorial category. One can verify that every subcategory ofC is categorial.
The following proposition is true

(15) LetC, D be categorial categories. Suppose the morphisms ofC ⊆ the morphisms ofD.
ThenC is a subcategory ofD.

Let a be a set. Let us assume thata is a category. The functor cata yields a category and is
defined as follows:

(Def. 7) cata = a.

The following proposition is true

(16) For every categorial categoryC and for every objectc of C holds catc = c.

LetC be a categorial category and letmbe a morphism ofC. Thenm2 is a functor from catdomm
to catcodm.

Next we state two propositions:

(17) LetX be a categorial non empty set andY be a non empty set. Suppose that

(i) for all elementsA, B, C of X and for every functorF from A to B and for every functorG
from B to C such thatF ∈Y andG∈Y holdsG·F ∈Y, and

(ii) for every elementA of X holds idA ∈Y.

Then there exists a strict categorial categoryC such that

(iii) the objects ofC = X, and

(iv) for all elementsA, B of X and for every functorF from A to B holds 〈〈〈〈A, B〉〉, F〉〉 is a
morphism ofC iff F ∈Y.

(18) LetX be a categorial non empty set,Y be a non empty set, andC1, C2 be strict categorial
categories. Suppose that

(i) the objects ofC1 = X,

(ii) for all elementsA, B of X and for every functorF from A to B holds 〈〈〈〈A, B〉〉, F〉〉 is a
morphism ofC1 iff F ∈Y,

(iii) the objects ofC2 = X, and

(iv) for all elementsA, B of X and for every functorF from A to B holds 〈〈〈〈A, B〉〉, F〉〉 is a
morphism ofC2 iff F ∈Y.

ThenC1 = C2.
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Let I1 be a categorial category. We say thatI1 is full if and only if the condition (Def. 8) is
satisfied.

(Def. 8) Leta, b be categories. Supposea is an object ofI1 andb is an object ofI1. Let F be a
functor froma to b. Then〈〈〈〈a, b〉〉, F〉〉 is a morphism ofI1.

Let us note that there exists a categorial strict category which is full.
The following four propositions are true:

(19) LetC1, C2 be full categorial categories. Suppose the objects ofC1 = the objects ofC2.
Then the category structure ofC1 = the category structure ofC2.

(20) For every categorial non empty setA there exists a full categorial strict categoryC such
that the objects ofC = A.

(21) LetC be a categorial category andD be a full categorial category. Suppose the objects of
C⊆ the objects ofD. ThenC is a subcategory ofD.

(22) LetC be a category,D1, D2 be categorial categories,F1 be a functor fromC to D1, andF2

be a functor fromC to D2. If F1 = F2, then ImF1 = ImF2.

3. SLICE CATEGORIES

Let C be a category and leto be an object ofC. The functor Hom(o) yielding a subset of the
morphisms ofC is defined as follows:

(Def. 9) Hom(o) = (the cod-map ofC)−1({o}).

The functor hom(o,�) yields a subset of the morphisms ofC and is defined by:

(Def. 10) hom(o,�) = (the dom-map ofC)−1({o}).

Let C be a category and leto be an object ofC. Observe that Hom(o) is non empty and
hom(o,�) is non empty.

Next we state several propositions:

(23) For every categoryC and for every objecta of C and for every morphismf of C holds
f ∈ Hom(a) iff cod f = a.

(24) For every categoryC and for every objecta of C and for every morphismf of C holds
f ∈ hom(a,�) iff dom f = a.

(25) For every categoryC and for all objectsa, b of C holds hom(a,b) = hom(a,�)∩Hom(b).

(26) For every categoryC and for every morphismf of C holds f ∈ hom(dom f ,�) and f ∈
Hom(cod f ).

(27) For every categoryC and for every morphismf of C and for every elementg of
Hom(dom f ) holds f ·g∈ Hom(cod f ).

(28) For every categoryC and for every morphismf of C and for every elementg of
hom(cod f ,�) holdsg· f ∈ hom(dom f ,�).

LetC be a category and leto be an object ofC. The functor SliceCat(C,o) yields a strict category
with triple-like morphisms and is defined by the conditions (Def. 11).

(Def. 11)(i) The objects of SliceCat(C,o) = Hom(o),

(ii) for all elementsa, b of Hom(o) and for every morphismf of C such that domb = cod f
anda = b· f holds〈〈〈〈a, b〉〉, f 〉〉 is a morphism of SliceCat(C,o),

(iii) for every morphismm of SliceCat(C,o) there exist elementsa, b of Hom(o) and there
exists a morphismf of C such thatm= 〈〈〈〈a, b〉〉, f 〉〉 and domb = cod f anda = b· f , and

(iv) for all morphismsm1, m2 of SliceCat(C,o) and for all elementsa1, a2, a3 of Hom(o) and
for all morphismsf1, f2 of C such thatm1 = 〈〈〈〈a1, a2〉〉, f1〉〉 andm2 = 〈〈〈〈a2, a3〉〉, f2〉〉 holds
m2 ·m1 = 〈〈〈〈a1, a3〉〉, f2 · f1〉〉.
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The functor SliceCat(o,C) yielding a strict category with triple-like morphisms is defined by the
conditions (Def. 12).

(Def. 12)(i) The objects of SliceCat(o,C) = hom(o,�),

(ii) for all elementsa, b of hom(o,�) and for every morphismf of C such that domf = coda
and f ·a = b holds〈〈〈〈a, b〉〉, f 〉〉 is a morphism of SliceCat(o,C),

(iii) for every morphismm of SliceCat(o,C) there exist elementsa, b of hom(o,�) and there
exists a morphismf of C such thatm= 〈〈〈〈a, b〉〉, f 〉〉 and domf = coda and f ·a = b, and

(iv) for all morphismsm1, m2 of SliceCat(o,C) and for all elementsa1, a2, a3 of hom(o,�)
and for all morphismsf1, f2 of C such thatm1 = 〈〈〈〈a1, a2〉〉, f1〉〉 andm2 = 〈〈〈〈a2, a3〉〉, f2〉〉 holds
m2 ·m1 = 〈〈〈〈a1, a3〉〉, f2 · f1〉〉.

LetC be a category, leto be an object ofC, and letmbe a morphism of SliceCat(C,o). Thenm2
is a morphism ofC. Thenm1,1 is an element of Hom(o). Thenm1,2 is an element of Hom(o).

The following two propositions are true:

(29) LetC be a category,a be an object ofC, andm be a morphism of SliceCat(C,a). Then
m= 〈〈〈〈m1,1, m1,2〉〉, m2〉〉 and dom(m1,2) = cod(m2) andm1,1 = m1,2 ·m2 and domm= m1,1 and
codm= m1,2.

(30) LetC be a category,o be an object ofC, f be an element of Hom(o), anda be an object of
SliceCat(C,o). If a = f , then ida = 〈〈〈〈a, a〉〉, iddom f 〉〉.

LetC be a category, leto be an object ofC, and letmbe a morphism of SliceCat(o,C). Thenm2
is a morphism ofC. Thenm1,1 is an element of hom(o,�). Thenm1,2 is an element of hom(o,�).

One can prove the following two propositions:

(31) LetC be a category,a be an object ofC, andm be a morphism of SliceCat(a,C). Then
m= 〈〈〈〈m1,1, m1,2〉〉, m2〉〉 and dom(m2) = cod(m1,1) andm2 ·m1,1 = m1,2 and domm= m1,1 and
codm= m1,2.

(32) LetC be a category,o be an object ofC, f be an element of hom(o,�), anda be an object
of SliceCat(o,C). If a = f , then ida = 〈〈〈〈a, a〉〉, idcod f 〉〉.

4. FUNCTORSBETWEEN SLICE CATEGORIES

Let C be a category and letf be a morphism ofC. The functor SliceFunctor( f ) yields a functor
from SliceCat(C,dom f ) to SliceCat(C,cod f ) and is defined by:

(Def. 13) For every morphismm of SliceCat(C,dom f ) holds(SliceFunctor( f ))(m) = 〈〈〈〈 f ·m1,1, f ·
m1,2〉〉, m2〉〉.

The functor SliceContraFunctor( f ) yielding a functor from SliceCat(cod f ,C) to SliceCat(dom f ,C)
is defined by:

(Def. 14) For every morphismm of SliceCat(cod f ,C) holds(SliceContraFunctor( f ))(m) = 〈〈〈〈m1,1 ·
f , m1,2 · f 〉〉, m2〉〉.

Next we state two propositions:

(33) For every categoryC and for all morphismsf , g of C such that domg = cod f holds
SliceFunctor(g· f ) = SliceFunctor(g) ·SliceFunctor( f ).

(34) For every categoryC and for all morphismsf , g of C such that domg = cod f holds
SliceContraFunctor(g· f ) = SliceContraFunctor( f ) ·SliceContraFunctor(g).
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