Categorial Categories and Slice Categories

Grzegorz Bancerek Institute of Mathematics Polish Academy of Sciences

Summary. By categorial categories we mean categories with categories as objects and morphisms of the form (C_1, C_2, F) , where C_1 and C_2 are categories and F is a functor from C_1 into C_2 .

MML Identifier: CAT_5.

WWW: http://mizar.org/JFM/Vol6/cat_5.html

The articles [10], [6], [13], [11], [9], [14], [2], [3], [7], [12], [5], [4], [8], and [1] provide the notation and terminology for this paper.

1. CATEGORIES WITH TRIPLE-LIKE MORPHISMS

Let D_1 , D_2 , D be non empty sets and let x be an element of $[:[:D_1, D_2:], D:]$. Then $x_{1,1}$ is an element of D_1 . Then $x_{1,2}$ is an element of D_2 .

Let D_1 , D_2 be non empty sets and let x be an element of $[:D_1, D_2:]$. Then x_2 is an element of D_2 . The following proposition is true

(1) Let C, D be category structures. Suppose the category structure of C = the category structure of D. If C is category-like, then D is category-like.

Let I_1 be a category structure. We say that I_1 has triple-like morphisms if and only if:

(Def. 1) For every morphism f of I_1 there exists a set x such that $f = \langle \langle \text{dom } f, \text{cod } f \rangle, x \rangle$.

Let us observe that there exists a strict category which has triple-like morphisms. One can prove the following proposition

(2) Let C be a category structure with triple-like morphisms and f be a morphism of C. Then $\text{dom } f = f_{1,1}$ and $\text{cod } f = f_{1,2}$ and $f = \langle \langle \text{dom } f, \text{cod } f \rangle, f_2 \rangle$.

Let C be a category structure with triple-like morphisms and let f be a morphism of C. Then $f_{1,1}$ is an object of C. Then $f_{1,2}$ is an object of C.

In this article we present several logical schemes. The scheme CatEx deals with non empty sets \mathcal{A} , \mathcal{B} , a binary functor \mathcal{F} yielding a set, and a ternary predicate \mathcal{P} , and states that:

There exists a strict category C with triple-like morphisms such that

- (i) the objects of $C = \mathcal{A}$,
- (ii) for all elements a, b of \mathcal{A} and for every element f of \mathcal{B} such that $\mathcal{P}[a,b,f]$ holds $\langle \langle a,b \rangle, f \rangle$ is a morphism of C,
- (iii) for every morphism m of C there exist elements a, b of \mathcal{A} and there exists an element f of \mathcal{B} such that $m = \langle \langle a, b \rangle, f \rangle$ and $\mathcal{P}[a, b, f]$, and

(iv) for all morphisms m_1 , m_2 of C and for all elements a_1 , a_2 , a_3 of A and for all elements f_1 , f_2 of B such that $m_1 = \langle \langle a_1, a_2 \rangle, f_1 \rangle$ and $m_2 = \langle \langle a_2, a_3 \rangle, f_2 \rangle$ holds $m_2 \cdot m_1 = \langle \langle a_1, a_3 \rangle, \mathcal{F}(f_2, f_1) \rangle$

provided the parameters have the following properties:

- For all elements a, b, c of \mathcal{A} and for all elements f, g of \mathcal{B} such that $\mathcal{P}[a,b,f]$ and $\mathcal{P}[b,c,g]$ holds $\mathcal{F}(g,f) \in \mathcal{B}$ and $\mathcal{P}[a,c,\mathcal{F}(g,f)]$,
- Let a be an element of \mathcal{A} . Then there exists an element f of \mathcal{B} such that
 - (i) $\mathcal{P}[a,a,f]$, and
 - (ii) for every element b of $\mathcal A$ and for every element g of $\mathcal B$ holds if $\mathcal P[a,b,g]$, then $\mathcal F(g,f)=g$ and if $\mathcal P[b,a,g]$, then $\mathcal F(f,g)=g$,
- Let a, b, c, d be elements of \mathcal{A} and f, g, h be elements of \mathcal{B} . If $\mathcal{P}[a, b, f]$ and $\mathcal{P}[b, c, g]$ and $\mathcal{P}[c, d, h]$, then $\mathcal{F}(h, \mathcal{F}(g, f)) = \mathcal{F}(\mathcal{F}(h, g), f)$.

The scheme CatUniq deals with non empty sets \mathcal{A} , \mathcal{B} , a binary functor \mathcal{F} yielding a set, and a ternary predicate \mathcal{P} , and states that:

Let C_1 , C_2 be strict categories with triple-like morphisms. Suppose that the objects of $C_1 = \mathcal{A}$ and for all elements a, b of \mathcal{A} and for every element f of \mathcal{B} such that $\mathcal{P}[a,b,f]$ holds $\langle\langle a,b\rangle,f\rangle$ is a morphism of C_1 and for every morphism m of C_1 there exist elements a, b of \mathcal{A} and there exists an element f of \mathcal{B} such that $m = \langle\langle a,b\rangle,f\rangle$ and $\mathcal{P}[a,b,f]$ and for all morphisms m_1,m_2 of C_1 and for all elements a_1,a_2,a_3 of \mathcal{A} and for all elements f_1,f_2 of \mathcal{B} such that $m_1 = \langle\langle a_1,a_2\rangle,f_1\rangle$ and $m_2 = \langle\langle a_2,a_3\rangle,f_2\rangle$ holds $m_2 \cdot m_1 = \langle\langle a_1,a_3\rangle,\mathcal{F}(f_2,f_1)\rangle$ and the objects of $C_2 = \mathcal{A}$ and for all elements a, b of \mathcal{A} and for every element f of \mathcal{B} such that $\mathcal{P}[a,b,f]$ holds $\langle\langle a,b\rangle,f\rangle$ is a morphism of C_2 and for every morphism m of C_2 there exist elements a, b of \mathcal{A} and there exists an element f of \mathcal{B} such that $m = \langle\langle a,b\rangle,f\rangle$ and $\mathcal{P}[a,b,f]$ and for all morphisms m_1,m_2 of C_2 and for all elements a_1,a_2,a_3 of \mathcal{A} and for all elements f_1,f_2 of \mathcal{B} such that $m_1 = \langle\langle a_1,a_2\rangle,f_1\rangle$ and $m_2 = \langle\langle a_2,a_3\rangle,f_2\rangle$ holds $m_2 \cdot m_1 = \langle\langle a_1,a_3\rangle,\mathcal{F}(f_2,f_1)\rangle$. Then $C_1 = C_2$

provided the parameters have the following property:

- Let a be an element of \mathcal{A} . Then there exists an element f of \mathcal{B} such that
 - (i) $\mathcal{P}[a,a,f]$, and
 - (ii) for every element b of $\mathcal A$ and for every element g of $\mathcal B$ holds if $\mathcal P[a,b,g]$, then $\mathcal F(g,f)=g$ and if $\mathcal P[b,a,g]$, then $\mathcal F(f,g)=g$.

The scheme FunctorEx deals with categories \mathcal{A} , \mathcal{B} , a unary functor \mathcal{F} yielding an object of \mathcal{B} , and a unary functor \mathcal{G} yielding a set, and states that:

There exists a functor F from $\mathcal A$ to $\mathcal B$ such that for every morphism f of $\mathcal A$ holds $F(f)=\mathcal G(f)$

provided the following conditions are met:

- Let f be a morphism of \mathcal{A} . Then $\mathcal{G}(f)$ is a morphism of \mathcal{B} and for every morphism g of \mathcal{B} such that $g = \mathcal{G}(f)$ holds dom $g = \mathcal{F}(\text{dom } f)$ and $\text{cod } g = \mathcal{F}(\text{cod } f)$,
- For every object a of \mathcal{A} holds $\mathcal{G}(\mathrm{id}_a) = \mathrm{id}_{\mathcal{F}(a)}$, and
- For all morphisms f_1 , f_2 of \mathcal{A} and for all morphisms g_1 , g_2 of \mathcal{B} such that $g_1 = \mathcal{G}(f_1)$ and $g_2 = \mathcal{G}(f_2)$ and dom $f_2 = \operatorname{cod} f_1$ holds $\mathcal{G}(f_2 \cdot f_1) = g_2 \cdot g_1$.

We now state two propositions:

- (3) Let C_1 be a category and C_2 be a subcategory of C_1 . Suppose C_1 is a subcategory of C_2 . Then the category structure of C_1 = the category structure of C_2 .
- (4) For every category *C* and for every subcategory *D* of *C* holds every subcategory of *D* is a subcategory of *C*.

Let C_1 , C_2 be categories. Let us assume that there exists a category C such that C_1 is a subcategory of C and C_2 is a subcategory of C. And let us assume that there exists an object o_1 of C_1 such that o_1 is an object of C_2 . The functor $C_1 \cap C_2$ yielding a strict category is defined by the conditions (Def. 2).

- (Def. 2)(i) The objects of $C_1 \cap C_2 =$ (the objects of $C_1) \cap$ (the objects of C_2),
 - (ii) the morphisms of $C_1 \cap C_2 =$ (the morphisms of C_1) \cap (the morphisms of C_2),
 - (iii) the dom-map of $C_1 \cap C_2 = (\text{the dom-map of } C_1) \upharpoonright (\text{the morphisms of } C_2),$
 - (iv) the cod-map of $C_1 \cap C_2 =$ (the cod-map of C_1) \(\text{(the morphisms of } C_2\),
 - (v) the composition of $C_1 \cap C_2$ = (the composition of C_1) | [: the morphisms of C_2 , the morphisms of C_2 :], and
 - (vi) the id-map of $C_1 \cap C_2 = (\text{the id-map of } C_1) \upharpoonright (\text{the objects of } C_2).$

In the sequel C is a category and C_1 , C_2 are subcategories of C. One can prove the following propositions:

- (5) If the objects of C_1 meets the objects of C_2 , then $C_1 \cap C_2 = C_2 \cap C_1$.
- (6) Suppose the objects of C_1 meets the objects of C_2 . Then $C_1 \cap C_2$ is a subcategory of C_1 and $C_1 \cap C_2$ is a subcategory of C_2 .

Let C, D be categories and let F be a functor from C to D. The functor Im F yielding a strict subcategory of D is defined by the conditions (Def. 3).

- (Def. 3)(i) The objects of Im F = rng Obj F,
 - (ii) $\operatorname{rng} F \subseteq \operatorname{the morphisms of Im} F$, and
 - (iii) for every subcategory E of D such that the objects of $E = \operatorname{rng} \operatorname{Obj} F$ and $\operatorname{rng} F \subseteq \operatorname{the}$ morphisms of E holds $\operatorname{Im} F$ is a subcategory of E.

The following three propositions are true:

- (7) Let C, D be categories, E be a subcategory of D, and F be a functor from C to D. If rng $F \subseteq$ the morphisms of E, then F is a functor from C to E.
- (8) For all categories C, D holds every functor F from C to D is a functor from C to Im F.
- (9) Let C, D be categories, E be a subcategory of D, F be a functor from C to E, and G be a functor from C to D. If F = G, then Im F = Im G.

2. CATEGORIAL CATEGORIES

Let I_1 be a set. We say that I_1 is categorial if and only if:

(Def. 4) For every set x such that $x \in I_1$ holds x is a category.

One can verify that there exists a non empty set which is categorial. Let *X* be a non empty set. Let us observe that *X* is categorial if and only if:

(Def. 5) Every element of X is a category.

Let *X* be a non empty categorial set. We see that the element of *X* is a category. Let *C* be a category. We say that *C* is categorial if and only if the conditions (Def. 6) are satisfied.

- (Def. 6)(i) The objects of C are categorial,
 - (ii) for every object a of C and for every category A such that a = A holds $id_a = \langle \langle A, A \rangle, id_A \rangle$,
 - (iii) for every morphism m of C and for all categories A, B such that A = dom m and B = cod m there exists a functor F from A to B such that $m = \langle \langle A, B \rangle, F \rangle$, and
 - (iv) for all morphisms m_1 , m_2 of C and for all categories A, B, C and for every functor F from A to B and for every functor G from B to C such that $m_1 = \langle \langle A, B \rangle, F \rangle$ and $m_2 = \langle \langle B, C \rangle, G \rangle$ holds $m_2 \cdot m_1 = \langle \langle A, C \rangle, G \cdot F \rangle$.

Let us note that every category which is categorial has also triple-like morphisms. Next we state two propositions:

- (10) Let C, D be categories. Suppose the category structure of C = the category structure of D. If C is categorial, then D is categorial.
- (11) For every category *C* holds $\circlearrowright(C, \langle\langle C, C \rangle, \mathrm{id}_C \rangle)$ is categorial.

Let us observe that there exists a strict category which is categorial.

Next we state two propositions:

- (12) For every categorial category C holds every object of C is a category.
- (13) For every categorial category C and for every morphism f of C holds dom $f = f_{1,1}$ and $\operatorname{cod} f = f_{1,2}$.

Let C be a categorial category and let m be a morphism of C. Then $m_{1,1}$ is a category. Then $m_{1,2}$ is a category.

We now state the proposition

(14) Let C_1 , C_2 be categorial categories. Suppose the objects of C_1 = the objects of C_2 and the morphisms of C_1 = the morphisms of C_2 . Then the category structure of C_1 = the category structure of C_2 .

Let *C* be a categorial category. One can verify that every subcategory of *C* is categorial. The following proposition is true

(15) Let C, D be categorial categories. Suppose the morphisms of $C \subseteq$ the morphisms of D. Then C is a subcategory of D.

Let a be a set. Let us assume that a is a category. The functor cat a yields a category and is defined as follows:

(Def. 7) cat a = a.

The following proposition is true

(16) For every categorial category C and for every object c of C holds cat c = c.

Let C be a categorial category and let m be a morphism of C. Then m_2 is a functor from cat dom m to catcod m.

Next we state two propositions:

- (17) Let X be a categorial non empty set and Y be a non empty set. Suppose that
 - (i) for all elements A, B, C of X and for every functor F from A to B and for every functor G from B to C such that $F \in Y$ and $G \in Y$ holds $G \cdot F \in Y$, and
- (ii) for every element A of X holds $id_A \in Y$.

Then there exists a strict categorial category C such that

- (iii) the objects of C = X, and
- (iv) for all elements A, B of X and for every functor F from A to B holds $\langle \langle A, B \rangle, F \rangle$ is a morphism of C iff $F \in Y$.
- (18) Let X be a categorial non empty set, Y be a non empty set, and C_1 , C_2 be strict categorial categories. Suppose that
 - (i) the objects of $C_1 = X$,
- (ii) for all elements A, B of X and for every functor F from A to B holds $\langle \langle A, B \rangle, F \rangle$ is a morphism of C_1 iff $F \in Y$,
- (iii) the objects of $C_2 = X$, and
- (iv) for all elements A, B of X and for every functor F from A to B holds $\langle \langle A, B \rangle, F \rangle$ is a morphism of C_2 iff $F \in Y$.

Then
$$C_1 = C_2$$
.

Let I_1 be a categorial category. We say that I_1 is full if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let a, b be categories. Suppose a is an object of I_1 and b is an object of I_1 . Let F be a functor from a to b. Then $\langle \langle a, b \rangle, F \rangle$ is a morphism of I_1 .

Let us note that there exists a categorial strict category which is full.

The following four propositions are true:

- (19) Let C_1 , C_2 be full categorial categories. Suppose the objects of C_1 = the objects of C_2 . Then the category structure of C_1 = the category structure of C_2 .
- (20) For every categorial non empty set A there exists a full categorial strict category C such that the objects of C = A.
- (21) Let C be a categorial category and D be a full categorial category. Suppose the objects of $C \subseteq$ the objects of D. Then C is a subcategory of D.
- (22) Let C be a category, D_1 , D_2 be categorial categories, F_1 be a functor from C to D_1 , and F_2 be a functor from C to D_2 . If $F_1 = F_2$, then Im $F_1 = \text{Im } F_2$.

3. SLICE CATEGORIES

Let C be a category and let o be an object of C. The functor Hom(o) yielding a subset of the morphisms of C is defined as follows:

(Def. 9) $\text{Hom}(o) = (\text{the cod-map of } C)^{-1}(\{o\}).$

The functor $hom(o, \square)$ yields a subset of the morphisms of C and is defined by:

(Def. 10) $hom(o, \Box) = (the dom-map of C)^{-1}(\{o\}).$

Let C be a category and let o be an object of C. Observe that $\operatorname{Hom}(o)$ is non empty and $\operatorname{hom}(o,\Box)$ is non empty.

Next we state several propositions:

- (23) For every category C and for every object a of C and for every morphism f of C holds $f \in \text{Hom}(a)$ iff cod f = a.
- (24) For every category C and for every object a of C and for every morphism f of C holds $f \in \text{hom}(a, \square)$ iff dom f = a.
- (25) For every category C and for all objects a, b of C holds $hom(a,b) = hom(a,\Box) \cap Hom(b)$.
- (26) For every category C and for every morphism f of C holds $f \in \text{hom}(\text{dom } f, \square)$ and $f \in \text{Hom}(\text{cod } f)$.
- (27) For every category C and for every morphism f of C and for every element g of $\operatorname{Hom}(\operatorname{dom} f)$ holds $f \cdot g \in \operatorname{Hom}(\operatorname{cod} f)$.
- (28) For every category C and for every morphism f of C and for every element g of $hom(cod f, \square)$ holds $g \cdot f \in hom(dom f, \square)$.

Let C be a category and let o be an object of C. The functor SliceCat(C, o) yields a strict category with triple-like morphisms and is defined by the conditions (Def. 11).

- (Def. 11)(i) The objects of SliceCat(C, o) = Hom(o),
 - (ii) for all elements a, b of $\operatorname{Hom}(o)$ and for every morphism f of C such that $\operatorname{dom} b = \operatorname{cod} f$ and $a = b \cdot f$ holds $\langle \langle a, b \rangle, f \rangle$ is a morphism of $\operatorname{SliceCat}(C, o)$,
 - (iii) for every morphism m of SliceCat(C,o) there exist elements a, b of Hom(o) and there exists a morphism f of C such that $m = \langle \langle a, b \rangle, f \rangle$ and dom $b = \operatorname{cod} f$ and $a = b \cdot f$, and
 - (iv) for all morphisms m_1 , m_2 of SliceCat(C,o) and for all elements a_1 , a_2 , a_3 of Hom(o) and for all morphisms f_1 , f_2 of C such that $m_1 = \langle \langle a_1, a_2 \rangle, f_1 \rangle$ and $m_2 = \langle \langle a_2, a_3 \rangle, f_2 \rangle$ holds $m_2 \cdot m_1 = \langle \langle a_1, a_3 \rangle, f_2 \cdot f_1 \rangle$.

The functor SliceCat(o, C) yielding a strict category with triple-like morphisms is defined by the conditions (Def. 12).

- (Def. 12)(i) The objects of SliceCat(o,C) = hom(o, \square),
 - (ii) for all elements a, b of hom (o, \square) and for every morphism f of C such that dom $f = \operatorname{cod} a$ and $f \cdot a = b$ holds $\langle \langle a, b \rangle, f \rangle$ is a morphism of SliceCat(o, C),
 - (iii) for every morphism m of SliceCat(o,C) there exist elements a, b of hom (o,\Box) and there exists a morphism f of C such that $m = \langle \langle a, b \rangle, f \rangle$ and dom $f = \operatorname{cod} a$ and $f \cdot a = b$, and
 - (iv) for all morphisms m_1 , m_2 of SliceCat(o, C) and for all elements a_1 , a_2 , a_3 of hom (o, \Box) and for all morphisms f_1 , f_2 of C such that $m_1 = \langle \langle a_1, a_2 \rangle, f_1 \rangle$ and $m_2 = \langle \langle a_2, a_3 \rangle, f_2 \rangle$ holds $m_2 \cdot m_1 = \langle \langle a_1, a_3 \rangle, f_2 \cdot f_1 \rangle$.

Let C be a category, let o be an object of C, and let m be a morphism of SliceCat(C, o). Then m_2 is a morphism of C. Then $m_{1,1}$ is an element of $\operatorname{Hom}(o)$. Then $m_{1,2}$ is an element of $\operatorname{Hom}(o)$. The following two propositions are true:

- (29) Let C be a category, a be an object of C, and m be a morphism of SliceCat(C,a). Then $m = \langle \langle m_{1,1}, m_{1,2} \rangle, m_2 \rangle$ and dom $(m_{1,2}) = \operatorname{cod}(m_2)$ and $m_{1,1} = m_{1,2} \cdot m_2$ and dom $m = m_{1,1}$ and $\operatorname{cod} m = m_{1,2}$.
- (30) Let *C* be a category, *o* be an object of *C*, *f* be an element of $\operatorname{Hom}(o)$, and *a* be an object of $\operatorname{SliceCat}(C, o)$. If a = f, then $\operatorname{id}_a = \langle \langle a, a \rangle, \operatorname{id}_{\operatorname{dom} f} \rangle$.

Let C be a category, let o be an object of C, and let m be a morphism of SliceCat(o, C). Then m_2 is a morphism of C. Then $m_{1,1}$ is an element of hom (o, \Box) . Then $m_{1,2}$ is an element of hom (o, \Box) . One can prove the following two propositions:

- (31) Let C be a category, a be an object of C, and m be a morphism of SliceCat(a,C). Then $m = \langle \langle m_{1,1}, m_{1,2} \rangle, m_2 \rangle$ and dom $(m_2) = \operatorname{cod}(m_{1,1})$ and $m_2 \cdot m_{1,1} = m_{1,2}$ and dom $m = m_{1,1}$ and $\operatorname{cod} m = m_{1,2}$.
- (32) Let *C* be a category, *o* be an object of *C*, *f* be an element of hom (o, \square) , and *a* be an object of SliceCat(o, C). If a = f, then $id_a = \langle \langle a, a \rangle, id_{cod} f \rangle$.

4. FUNCTORS BETWEEN SLICE CATEGORIES

Let C be a category and let f be a morphism of C. The functor SliceFunctor(f) yields a functor from SliceCat(C, dom f) to SliceCat(C, cod f) and is defined by:

(Def. 13) For every morphism m of SliceCat(C, dom f) holds (SliceFunctor(f)) $(m) = \langle \langle f \cdot m_{1,1}, f \cdot m_{1,2} \rangle, m_2 \rangle$.

The functor SliceContraFunctor(f) yielding a functor from SliceCat(cod f, C) to SliceCat(dom f, C) is defined by:

(Def. 14) For every morphism m of SliceCat(cod f, C) holds (SliceContraFunctor(f))(m) = $\langle \langle m_{1,1} \cdot f, m_{1,2} \cdot f \rangle, m_2 \rangle$.

Next we state two propositions:

- (33) For every category C and for all morphisms f, g of C such that dom g = cod f holds $SliceFunctor(g \cdot f) = SliceFunctor(g) \cdot SliceFunctor(f)$.
- (34) For every category C and for all morphisms f, g of C such that dom g = cod f holds $SliceContraFunctor(g \cdot f) = SliceContraFunctor(f) \cdot SliceContraFunctor(g).$

REFERENCES

- Grzegorz Bancerek and Agata Darmochwał. Comma category. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/ Vol4/commacat.html.
- [2] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Czesław Byliński. Introduction to categories and functors. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/cat 1.html.
- [5] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc 1.html.
- [7] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [8] Czesław Byliński. Subcategories and products of categories. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cat_2.html.
- [9] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/domain_1.html.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [11] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/moart_1.html.
- [12] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fraenkel.html.
- [13] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [14] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received October 24, 1994

Published January 2, 2004