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Summary. We define and prove some simple facts on Cartesian categories and its
duals co-Cartesian categories. The Cartesian category is defined as a category with the fixed
terminal object, the fixed projections, and the binary products. Catéybas finite products
if and only if C has a terminal object and for every paijb of objects ofC the product x b
exists. We say that a categd®yhas a finite product if every finite family of objects Gfhas
a product. Our work is based on ideas [of|[10], where the algebraic properties of the proof
theory are investigated. The terminal object of a Cartesian cat€ymrgenoted byic. The
binary product ofa andb is written asa x b. The projections of the product are written as
pri(a,b) and aspry(a, b). We define the productsx g of arrowsf :a— & andg: b — b’ as
< f.pry,g-pro>axb—a xb'.

Co-Cartesian category is defined dually to the Cartesian category. Dual to a terminal
object is an initial object, and to products are coproducts. The initial object of a Cartesian
categonyC is written asOc. Binary coproduct of andb is written asa+ b. Injections of the
coproduct are written d@g1(a,b) and asn,(a,b).

MML Identifier: CAT_4.

WWW: http://mizar.org/JFM/Vol4d/cat_4.html

The articles([12],[5],[[13],[[8],[[11],[14],12],.[3],[9],[[1],[6], [4], and 7] provide the notation and
terminology for this paper.

1. PRELIMINARIES

In this papeio, m, r denote sets.
Let us consideo, m, r.

(Def. 1) [(o,m) — r]is a function from[: {0}, {m} ] into {r}.

Let C be a category and let, b be objects ofC. Let us observe that andb are isomorphic if
and only if the conditions (Def. 2) are satisfied.

(Def. 2)(i) hom(a,b) # 0,
(i)  hom(b,a) # 0, and

(iii)  there exists a morphisnfi from a to b and there exists a morphisfhfrom b to a such that
f-f'=idpandf’-f =id,.

2. CARTESIAN CATEGORIES

LetC be a category. We say thathas finite product if and only if the condition (Def. 3) is satisfied.

1 © Association of Mizar Users


http://mizar.org/JFM/Vol4/cat_4.html

CARTESIAN CATEGORIES 2

(Def. 3) Letl be a finite set an& be a function from into the objects o€. Then there exists an
objecta of C and there exists a projections famiy from a ontol such that codF’(k) = F
andais a product w.r.tF’.

The following proposition is true

(1) LetC be a category. The@ has finite product if and only if the following conditions are
satisfied:

(i) there exists an object & which is terminal, and

(i) for all objectsa, b of C there exists an objectof C and there exist morphisng, p, of C
such that donp; = ¢ and donp, = c and codp; = a and codo, = b andc is a product w.r.t.
p1 andp;.

We consider Cartesian category structures as extensions of category structure as systems

( objects, morphisms, a dom-map, a cod-map, a composition, an id-map, a terminal, a product,
a 1st-projection, a 2nd-projection
where the objects and the morphisms constitute non empty sets, the dom-map and the cod-map
are functions from the morphisms into the objects, the compaosition is a partial functiort fhem
morphismsthe morphisms to the morphisms, the id-map is a function from the objects into the
morphisms, the terminal is an element of the objects, the product is a functior. themobjects
the objectg:into the objects, and the 1st-projection and the 2nd-projection are functiong frem
objects the objectg:into the morphisms.

LetC be a Cartesian category structure. The funétoyields an object o€ and is defined by:

(Def. 4) 1¢ = the terminal ofC.
Leta, b be objects o€. The functora x b yields an object o€ and is defined by:
(Def. 5) ax b= (the product ofC)({a, b)).
The functorm (a x b) yields a morphism of and is defined by:
(Def. 6) Tt (axb) = (the 1st-projection of)({a, b}).
The functormy(a x b) yielding a morphism o€ is defined as follows:
(Def. 7) m(ax b) = (the 2nd-projection of)({a, b)).

Let us consideo, m. The functord¢(0,m) yielding a strict Cartesian category structure is
defined as follows:

(Def. 8) (¢(0,m) = ({0}, {m},{m} — o, {m} — 0, (m,m) — m, {0} — m,Extrac(0), [{0,0) —
0}, [{0,0) — m],{0}0).

Next we state the proposition
(2) The category structure 6fc(o,m) = ¢(o,m).

Let us observe that there exists a Cartesian category structure which is strict and category-like.
Let o, mbe sets. Observe thai.(o,m) is category-like.
One can prove the following propositions:

(3) For every object of Oc(0,m) holdsa = o.

(4) For all objectsa, b of O¢(0,m) holdsa = b.

(5) For every morphisni of O¢(0,m) holdsf = m.

(6) For all morphismd, g of )¢(0,m) holds f = g.

(7) For all objects, b of O¢(0,m) and for every morphisnf of ©¢(0,m) holds f € hom(a, b).
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(8) For all objectsa, b of ¢)¢(0,m) holds every morphism ab(0,m) is a morphism froma to
b.

(9) For all objectsa, b of “c(0,m) holds honta, b) # 0.
(10) Every object of ¢(0,m) is terminal.

(11) For every objeat of ()¢(0,m) and for all morphismg;, p2 of O¢(0,m) holdsc is a product
w.r.t. p1 andp,.

Let I, be a category-like Cartesian category structure. We saytlimtCartesian if and only if
the conditions (Def. 9) are satisfied.

(Def. 9)()) The terminal oty is terminal, and

(i)  for all objectsa, b of I3 holds cod(the 1st-projection df)({a, b)) = a and cod (the
2nd-projection ofl1)({a, b)) = b and (the product of;)({a, b)) is a product w.r.t. (the 1st-
projection ofl1)((a, b)) and (the 2nd-projection df)({a, b)).

One can prove the following proposition
(12) For all set®, mholds?¢(o,m) is Cartesian.

One can check that there exists a category-like Cartesian category structure which is strict and
Cartesian.

A Cartesian category is a Cartesian category-like Cartesian category structure.

We follow the rulesC denotes a Cartesian category and, c, d, e, sdenote objects df.

Next we state three propositions:

(13) 1cisterminal.
(14) For all morphismgy, f> fromato 1¢ holds f; = f;.
(15) homa,1c) #0.
Let us conside€, a.
(Def. 10) termais a morphism fromato 1c.
We now state several propositions:
(16) terma= |?(1c).
(17) domterna=aand codterna= 1c.
(18) homa,1c) = {terma}.
(19) dommy(axb)=axbandcody(axb)=a
(20) domm(ax b) =axband codnp(axb)=nh.

Let us conside€, a, b. Thenty(ax b) is a morphism fromax b to a. Thentp(ax b) is a
morphism froma x b to b.
The following four propositions are true:

(21) honf{ax b,a) # 0 and honfa x b,b) # 0.

(22) axbisaproduct w.rtmm(axb) andm(ax b).

(23) C has finite product.

(24) If hom(a,b) # 0 and hontb,a) # 0, thenty (a x b) is retraction andi(a x b) is retraction.
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Let us consideC, a, b, ¢, let f be a morphism frone to a, and letg be a morphism frone to b.
Let us assume that hdimya) # 0 and hontc,b) # 0. The functor(f,g) yielding a morphism from
ctoax bis defined as follows:

(Def. 11) m(axb)-(f,g) = f andrmp(axb)-(f,g) =g.
We now state several propositions:
(25) If hom(c,a) # 0 and honfc,b) = 0, then hongc,a x b) #£ 0.
(26) (m(axb),T(ax b)) =idaxp.

(27) Letf be a morphism frone to a, g be a morphism frone to b, andh be a morphism from
dtoc. If hom(c,a) # 0 and hontc,b) # 0 and honid, c) # 0, then(f -h,g-h) = (f,g) - h.

(28) Letf, kbe morphisms frone to a andg, h be morphisms frone to b. If hom(c,a) # 0 and
hom(c,b) # 0 and(f,g) = (k,h), thenf =kandg=h.

(29) Letf be a morphism frone to a andg be a morphism frone to b. If hom(c,a) # 0 and if
hom(c,b) # 0 and if f is monic org is monic, then(f, g) is monic.

(30) homa,ax 1c) # 0 and honfa, 1c x a) # 0.

Let us consideC, a. The functorA(a) yielding a morphism froml: x a to a is defined as
follows:

(Def. 12) A(a) =p(1c x a).

The functorA~1(a) yields a morphism frona to 1c x a and is defined by:
(Def. 13) A~1(a) = (terma,idy).

The functorp(a) yielding a morphism frona x 1¢ to ais defined as follows:
(Def. 14) p(a) =m(ax 1c).

The functorp~1(a) yields a morphism frona to a x 1c and is defined by:
(Def. 15) p~1(a) = (id,, terma).

Next we state two propositions:

(31) A(a)-A(a)=idaandA~1(a)-A(a) =idi.xa andp(a)-p~1(a) =ida andp~1(a)-p(a) =
idas 1.

(32) aandax 1c are isomorphic and and1c x a are isomorphic.

Let us consideC, a, b. The functor Switcka) yields a morphism frona x b to b x a and is
defined by:

(Def. 16) Switclia) = (Tb(ax b), Tm(ax b)).
We now state three propositions:
(33) hom{axb,bxa)=#0.
(34) Switch@) - Switch(b) = idpxa.
(835) axbandbx aare isomorphic.

Let us consideC, a. The functorA(a) yields a morphism froma to a x a and is defined as
follows:

(Def. 17) A(a) = (ida, ida).
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We now state two propositions:
(36) homa,axa) #0.
(37) For every morphisnfi from a to b such that horte, b) # 0 holds(f, f) = A(b) - f.

Let us considelC, a, b, c. The functora((a,b),c) yielding a morphism froma x b x ¢ to
ax (bxc) is defined as follows:

(Def. 18) a((a,b),c) = (m(axb) -m((axb)xc),(m(axb) -m((axb)xc),m((axb)xc))).
The functora(a, (b, c)) yields a morphism frona x (b x ¢) to ax b x cand is defined by:
(Def. 19) a(a,(b,c)) = ((u(ax (bxc)),m(bxc) - m(ax(bxc))),mbxc) max (bxc))).
We now state three propositions:
(38) honfaxbxc,ax(bxc))#0and honfax (bxc),axbxc)#0.
(39) a((a,b),c)-a(a,(b,c)) = idax(bxc) anda(a, (b,c))-a((a,b),c) = idaxbxc-
(40) (axb)xcandax (bxc)areisomorphic.

Let us conside€, a, b, ¢, d, let f be a morphism frona to b, and letg be a morphism frone to
d. The functorf x g yielding a morphism frona x c to b x d is defined by:

(Def.20) fxg=(f-m(axc),g-m(axc)).
The following propositions are true:
(41) Ifhom(a,c) # 0 and hongb,d) # 0, then honfa x b,c x d) # 0.
(42) idy x idp = idaxp-

(43) Letf be a morphism fronato b, h be a morphism frone to d, g be a morphism frone to
a, andk be a morphism frone to c. If hom(a,b) # 0 and honfc,d) # 0 and honte,a) # 0
and honfe,c) # 0, then(f x h)-(g,k) = (f -g,h-k).

(44) Letf be a morphism front to a andg be a morphism frone to b. If hom(c,a) # 0 and
hom(c,b) # 0, then(f,g) = (f x g) - A(c).

(45) Letf be a morphism fronato b, h be a morphism frone to d, g be a morphism frone to
a, andk be a morphism frons to c. If hom(a,b) # 0 and hontc,d) # 0 and honte,a) # 0
and honfs,c) # 0, then(f x h)- (gx k) = (f-g) x (h-K).

3. Co-CARTESIAN CATEGORIES

Let C be a category. We say th@thas finite coproduct if and only if the condition (Def. 21) is
satisfied.

(Def. 21) Letl be a finite set ané be a function from into the objects o€. Then there exists an
objecta of C and there exists an injections fam#y into a on | such that domF’(k) = F
anda s a coproduct w.r.tF'.

The following proposition is true

(46) LetC be a category. The@ has finite coproduct if and only if the following conditions are
satisfied:
(i) there exists an object & which is initial, and
(i) for all objectsa, b of C there exists an objectof C and there exist morphisnisg, i, of C
such that doriy = a and domy = b and cod; = ¢ and cod, = c andc is a coproduct w.r.t.
i1 andis.
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We introduce cocartesian category structures which are extensions of category structure and are
systems

( objects, morphisms, a dom-map, a cod-map, a composition, an id-map, a initial, a coproduct,
a 1st-coprojection, a 2nd-coprojectipn
where the objects and the morphisms constitute non empty sets, the dom-map and the cod-map
are functions from the morphisms into the objects, the composition is a partial functior} frem
morphismsthe morphisms to the morphisms, the id-map is a function from the objects into the
morphisms, the initial is an element of the objects, the coproduct is a functionfrivenobjects
the objectg:into the objects, and the 1st-coprojection and the 2nd-coprojection are functions from
[ the objectsthe objectg:into the morphisms.

LetC be a cocartesian category structure. The fun@toyields an object o€ and is defined as
follows:

(Def. 22) Oc = the initial of C.
Leta, b be objects o€. The functora+ b yields an object o€ and is defined by:
(Def. 23) a+ b= (the coproduct o€)({(a, b)).
The functor in(a+ b) yields a morphism o€ and is defined as follows:
(Def. 24) im(a+ b) = (the 1st-coprojection of)({a, b}).
The functor in(a+ b) yields a morphism o€ and is defined by:
(Def. 25) inp(a+ b) = (the 2nd-coprojection o)((a, b}).

Let us consideo, m. The functor’>3P(o,m) yields a strict cocartesian category structure and is
defined as follows:

(Def. 26) OP(0,m) = ({0}, {m},{m} — 0, {m} —— 0, (m m) — m, {0} —— m, Extrac{0), [(0, 0)
0], [{0,0) — m],{0}0).

We now state the proposition
(47) The category structure 6f°P(0,m) = ¢>(0,m).

Let us note that there exists a cocartesian category structure which is strict and category-like.
Leto, mbe sets. One can check thiad®(o,m) is category-like.
The following propositions are true:

(48) For every objeca of H2P(0,m) holdsa = o.
(49) For all objects, b of H2P(0,m) holdsa = b.
(50) For every morphisnii of ©¢P(0,m) holdsf = m.
(51) For all morphismg, g of H2P(0,m) holdsf = g.

(52) For all objectsa, b of HP(o,m) and for every morphisnf of ©P(o,m) holds f €
hom(a,b).

(53) For all objects, b of H2P(0,m) holds every morphism abZP(0, m) is a morphism frona
to b.

(54) For all objects, b of ®Z(0,m) holds honta, b) # 0.
(55) Every object of )2P(0,m) is initial.

(56) For every object of HZP(0,m) and for all morphismsy, i, of HZP(o,m) holdsc is a
coproduct w.r.ti; andi.

Letl1 be a category-like cocartesian category structure. We sajtisatocartesian if and only
if the conditions (Def. 27) are satisfied.



CARTESIAN CATEGORIES 7

(Def. 27)(i)) The initial ofly is initial, and

(i) for all objectsa, b of I; holds dom (the 1st-coprojection &f)({a, b)) = a and dom (the
2nd-coprojection ofy)({a, b)) = band (the coproduct df ) ({a, b)) is a coproduct w.r.t. (the
1st-coprojection of1)((a, b)) and (the 2nd-coprojection &f)((a, b}).

We now state the proposition
(57) For all set®, mholdsH2P(o,m) is cocartesian.

Let us observe that there exists a category-like cocartesian category structure which is strict and
cocartesian.

A cocartesian category is a cocartesian category-like cocartesian category structure.

We adopt the following conventioi€ denotes a cocartesian category and, c, d, e, sdenote
objects ofC.

The following propositions are true:

(58) Oc isinitial.

(59) For all morphismg;, f2 from Oc to a holds f; = f5.
Let us conside€, a.

(Def. 28) initais a morphism fronfc to a.

The following propositions are true:

(60) hom(0c,a) # 0.

(61) inita=init(Oc,a).

(62) dominita= 0c and codinii=a.

(63) hon{Oc,a) = {inita}.

(64) domin(a+b)=aand codin(a+b)=a-+b.

(65) domin(a+b)=bandcodia(a+b)=a+h.

(66) hon{a,a+b) # 0 and honfb,a+ b) # 0.

(67) a+bisacoproductw.r.t. ifa+b) and in(a+b).

(68) C has finite coproduct.

(69) If hom(a,b) # 0 and hongb,a) # 0, then in (a+ b) is coretraction and if{a+ b) is core-
traction.

Let us consideC, a, b. Then in(a+b) is a morphism frona to a+b. Then in(a+b) is a
morphism fromb to a+ b.

Let us consideC, a, b, ¢, let f be a morphism fronma to ¢, and letg be a morphism fron to c.
Let us assume that hdim c) # 0 and hontb, c) # 0. The functor(f,g) yielding a morphism from
a+bto cis defined as follows:

(Def. 29) (f,g)-in1(a+b)= fand(f,g)-inz(a+b)=ag.
We now state several propositions:
(70) If hom(a,c) # 0 and hontb, c) = 0, then hona+ b, c) # 0.
(71) (ini(a+b),iny(a+b)) =ida p.

(72) Letf be a morphism frona to ¢, g be a morphism fronb to ¢, andh be a morphism from
ctod. If hom(a,c) # 0 and hontb,c) # 0 and hongc,d) # 0, then(h- f,h-g) =h-(f,g).
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(73) Letf, kbe morphisms fronato c andg, h be morphisms fronb to c. If hom(a, c) = 0 and
hom(b,c) # 0 and(f,g) = (k,h), thenf =kandg=h.

(74) Letf be a morphism frona to c andg be a morphism fronb to c. If hom(a,c) # 0 and if
hom(b,c) # 0 and if f is epi org is epi, then(f,g) is epi.

(75) aanda+ Oc are isomorphic and andO¢ + a are isomorphic.
(76) a+bandb+aare isomorphic.
(77) (a+b)+canda+ (b+c) are isomorphic.

Let us conside€, a. The functor, yielding a morphism frona+ a to a is defined by:

Let us conside€, a, b, ¢, d, let f be a morphism frona to ¢, and letg be a morphism fronb to
d. The functorf 4 g yields a morphism frona+ b to c+d and is defined as follows:

(Def.31) f+g=(ini(c+d)- f,inx(c+d)-g).

We now state several propositions:
(78) If hom(a,c) # 0 and hongb,d) # 0, then honfa+b,c+d) # 0.
(79) ich+idp = idays.

(80) Letf be a morphism fronato ¢, h be a morphism front to d, g be a morphism frone to
e, andk be a morphism frond to e. If hom(a,c) # 0 and hontb,d) # 0 and honfc,e) # 0
and honfd, e) # 0, then(g,k) - (f +h) = (g- f,k-h).

(81) Letf be a morphism frona to c andg be a morphism fronb to c. If hom(a,c) # 0 and
hom(b,c) # 0, thenU.- (f +g) = (f, Q).

(82) Letf be a morphism fronato c, h be a morphism froni to d, g be a morphism frone to
e, andk be a morphism frond to s. If hom(a,c) # 0 and hontb,d) # 0 and honfc,e) # 0
and hontd, s) # 0, then(g+k) - (f+h) =g- f +k-h.
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