Cartesian Categories

Czesław Byliński Warsaw University Białystok

Summary. We define and prove some simple facts on Cartesian categories and its duals co-Cartesian categories. The Cartesian category is defined as a category with the fixed terminal object, the fixed projections, and the binary products. Category C has finite products if and only if C has a terminal object and for every pair a,b of objects of C the product $a \times b$ exists. We say that a category C has a finite product if every finite family of objects of C has a product. Our work is based on ideas of [10], where the algebraic properties of the proof theory are investigated. The terminal object of a Cartesian category C is denoted by $\mathbf{1}_C$. The binary product of a and b is written as $a \times b$. The projections of the product are written as $pr_1(a,b)$ and as $pr_2(a,b)$. We define the products $f \times g$ of arrows $f: a \to a'$ and $g: b \to b'$ as $f \cdot pr_1, g \cdot pr_2 >: a \times b \to a' \times b'$.

Co-Cartesian category is defined dually to the Cartesian category. Dual to a terminal object is an initial object, and to products are coproducts. The initial object of a Cartesian category C is written as $\mathbf{0}_C$. Binary coproduct of a and b is written as a+b. Injections of the coproduct are written as $in_1(a,b)$ and as $in_2(a,b)$.

MML Identifier: CAT 4.

WWW: http://mizar.org/JFM/Vol4/cat_4.html

The articles [12], [5], [13], [8], [11], [14], [2], [3], [9], [1], [6], [4], and [7] provide the notation and terminology for this paper.

1. Preliminaries

In this paper o, m, r denote sets.

Let us consider o, m, r.

(Def. 1) $[\langle o, m \rangle \mapsto r]$ is a function from $[:\{o\}, \{m\}:]$ into $\{r\}$.

Let C be a category and let a, b be objects of C. Let us observe that a and b are isomorphic if and only if the conditions (Def. 2) are satisfied.

- (Def. 2)(i) $hom(a,b) \neq \emptyset$,
 - (ii) $hom(b,a) \neq \emptyset$, and
 - (iii) there exists a morphism f from a to b and there exists a morphism f' from b to a such that $f \cdot f' = \mathrm{id}_b$ and $f' \cdot f = \mathrm{id}_a$.

2. CARTESIAN CATEGORIES

Let C be a category. We say that C has finite product if and only if the condition (Def. 3) is satisfied.

(Def. 3) Let I be a finite set and F be a function from I into the objects of C. Then there exists an object a of C and there exists a projections family F' from a onto I such that $\operatorname{cod}_{\kappa} F'(\kappa) = F$ and a is a product w.r.t. F'.

The following proposition is true

- (1) Let *C* be a category. Then *C* has finite product if and only if the following conditions are satisfied:
- (i) there exists an object of C which is terminal, and
- (ii) for all objects a, b of C there exists an object c of C and there exist morphisms p_1 , p_2 of C such that dom $p_1 = c$ and dom $p_2 = c$ and cod $p_1 = a$ and cod $p_2 = b$ and c is a product w.r.t. p_1 and p_2 .

We consider Cartesian category structures as extensions of category structure as systems \langle objects, morphisms, a dom-map, a cod-map, a composition, an id-map, a terminal, a product, a 1st-projection, a 2nd-projection \rangle ,

where the objects and the morphisms constitute non empty sets, the dom-map and the cod-map are functions from the morphisms into the objects, the composition is a partial function from [: the morphisms, the morphisms:] to the morphisms, the id-map is a function from the objects into the morphisms, the terminal is an element of the objects, the product is a function from [: the objects, the objects:] into the objects, and the 1st-projection and the 2nd-projection are functions from [: the objects, the objects:] into the morphisms.

Let C be a Cartesian category structure. The functor $\mathbf{1}_C$ yields an object of C and is defined by:

(Def. 4) $\mathbf{1}_C$ = the terminal of C.

Let a, b be objects of C. The functor $a \times b$ yields an object of C and is defined by:

(Def. 5) $a \times b = (\text{the product of } C)(\langle a, b \rangle).$

The functor $\pi_1(a \times b)$ yields a morphism of C and is defined by:

(Def. 6) $\pi_1(a \times b) = \text{(the 1st-projection of } C)(\langle a, b \rangle).$

The functor $\pi_2(a \times b)$ yielding a morphism of *C* is defined as follows:

(Def. 7) $\pi_2(a \times b) = \text{(the 2nd-projection of } C)(\langle a, b \rangle).$

Let us consider o, m. The functor $\dot{\bigcirc}_{c}(o,m)$ yielding a strict Cartesian category structure is defined as follows:

(Def. 8)
$$\dot{\bigcirc}_{c}(o,m) = \langle \{o\}, \{m\}, \{m\} \longmapsto o, \{m\} \longmapsto o, \langle m, m \rangle \longmapsto m, \{o\} \longmapsto m, \text{Extract}(o), [\langle o, o \rangle \mapsto o], [\langle o, o \rangle \mapsto m], \{o\}0\rangle.$$

Next we state the proposition

(2) The category structure of $\circlearrowright_{\mathbf{c}}(o,m) = \circlearrowright(o,m)$.

Let us observe that there exists a Cartesian category structure which is strict and category-like. Let o, m be sets. Observe that $\dot{\bigcirc}_{c}(o,m)$ is category-like. One can prove the following propositions:

- (3) For every object a of $\bigcirc_{c}(o, m)$ holds a = o.
- (4) For all objects a, b of $\circlearrowright_{c}(o,m)$ holds a = b.
- (5) For every morphism f of $\circlearrowright_{c}(o,m)$ holds f=m.
- (6) For all morphisms f, g of $\dot{\bigcirc}_{c}(o, m)$ holds f = g.
- (7) For all objects a, b of $\circlearrowright_{c}(o, m)$ and for every morphism f of $\circlearrowright_{c}(o, m)$ holds $f \in \text{hom}(a, b)$.

- (8) For all objects a, b of $\dot{\bigcirc}_{c}(o,m)$ holds every morphism of $\dot{\bigcirc}_{c}(o,m)$ is a morphism from a to b.
- (9) For all objects a, b of $\dot{\bigcirc}_{c}(o, m)$ holds $hom(a, b) \neq \emptyset$.
- (10) Every object of $\circlearrowright_{c}(o,m)$ is terminal.
- (11) For every object c of $\circlearrowright_{\mathbf{c}}(o,m)$ and for all morphisms p_1, p_2 of $\circlearrowright_{\mathbf{c}}(o,m)$ holds c is a product w.r.t. p_1 and p_2 .

Let I_1 be a category-like Cartesian category structure. We say that I_1 is Cartesian if and only if the conditions (Def. 9) are satisfied.

(Def. 9)(i) The terminal of I_1 is terminal, and

(ii) for all objects a, b of I_1 holds $\operatorname{cod}(\operatorname{the 1st-projection of } I_1)(\langle a, b \rangle) = a$ and $\operatorname{cod}(\operatorname{the 2nd-projection of } I_1)(\langle a, b \rangle) = b$ and (the product of $I_1)(\langle a, b \rangle)$ is a product w.r.t. (the 1st-projection of $I_1)(\langle a, b \rangle)$ and (the 2nd-projection of $I_1)(\langle a, b \rangle)$.

One can prove the following proposition

(12) For all sets o, m holds $\dot{\bigcirc}_{c}(o, m)$ is Cartesian.

One can check that there exists a category-like Cartesian category structure which is strict and Cartesian.

A Cartesian category is a Cartesian category-like Cartesian category structure.

We follow the rules: C denotes a Cartesian category and a, b, c, d, e, s denote objects of C.

Next we state three propositions:

- (13) $\mathbf{1}_C$ is terminal.
- (14) For all morphisms f_1 , f_2 from a to $\mathbf{1}_C$ holds $f_1 = f_2$.
- (15) $hom(a, \mathbf{1}_C) \neq \emptyset$.

Let us consider C, a.

(Def. 10) term a is a morphism from a to $\mathbf{1}_C$.

We now state several propositions:

- (16) $term a = |^a(\mathbf{1}_C).$
- (17) dom term a = a and cod term $a = \mathbf{1}_C$.
- (18) $hom(a, \mathbf{1}_C) = \{term a\}.$
- (19) $\operatorname{dom} \pi_1(a \times b) = a \times b \text{ and } \operatorname{cod} \pi_1(a \times b) = a.$
- (20) $\operatorname{dom} \pi_2(a \times b) = a \times b \text{ and } \operatorname{cod} \pi_2(a \times b) = b.$

Let us consider C, a, b. Then $\pi_1(a \times b)$ is a morphism from $a \times b$ to a. Then $\pi_2(a \times b)$ is a morphism from $a \times b$ to b.

The following four propositions are true:

- (21) $hom(a \times b, a) \neq \emptyset$ and $hom(a \times b, b) \neq \emptyset$.
- (22) $a \times b$ is a product w.r.t. $\pi_1(a \times b)$ and $\pi_2(a \times b)$.
- (23) C has finite product.
- (24) If $hom(a,b) \neq \emptyset$ and $hom(b,a) \neq \emptyset$, then $\pi_1(a \times b)$ is retraction and $\pi_2(a \times b)$ is retraction.

Let us consider C, a, b, c, let f be a morphism from c to a, and let g be a morphism from c to b. Let us assume that $hom(c,a) \neq \emptyset$ and $hom(c,b) \neq \emptyset$. The functor $\langle f,g \rangle$ yielding a morphism from c to $a \times b$ is defined as follows:

(Def. 11)
$$\pi_1(a \times b) \cdot \langle f, g \rangle = f$$
 and $\pi_2(a \times b) \cdot \langle f, g \rangle = g$.

We now state several propositions:

- (25) If $hom(c, a) \neq \emptyset$ and $hom(c, b) \neq \emptyset$, then $hom(c, a \times b) \neq \emptyset$.
- (26) $\langle \pi_1(a \times b), \pi_2(a \times b) \rangle = \mathrm{id}_{a \times b}.$
- (27) Let f be a morphism from c to a, g be a morphism from c to b, and h be a morphism from d to c. If $hom(c, a) \neq \emptyset$ and $hom(c, b) \neq \emptyset$ and $hom(d, c) \neq \emptyset$, then $\langle f \cdot h, g \cdot h \rangle = \langle f, g \rangle \cdot h$.
- (28) Let f, k be morphisms from c to a and g, h be morphisms from c to b. If $hom(c,a) \neq \emptyset$ and $hom(c,b) \neq \emptyset$ and $\langle f,g \rangle = \langle k,h \rangle$, then f = k and g = h.
- (29) Let f be a morphism from c to a and g be a morphism from c to b. If $hom(c,a) \neq \emptyset$ and if $hom(c,b) \neq \emptyset$ and if f is monic or g is monic, then $\langle f,g \rangle$ is monic.
- (30) $hom(a, a \times \mathbf{1}_C) \neq \emptyset$ and $hom(a, \mathbf{1}_C \times a) \neq \emptyset$.

Let us consider C, a. The functor $\lambda(a)$ yielding a morphism from $\mathbf{1}_C \times a$ to a is defined as follows:

(Def. 12)
$$\lambda(a) = \pi_2(\mathbf{1}_C \times a)$$
.

The functor $\lambda^{-1}(a)$ yields a morphism from a to $\mathbf{1}_C \times a$ and is defined by:

(Def. 13)
$$\lambda^{-1}(a) = \langle \text{term } a, \text{id}_a \rangle$$
.

The functor $\rho(a)$ yielding a morphism from $a \times \mathbf{1}_C$ to a is defined as follows:

(Def. 14)
$$\rho(a) = \pi_1(a \times \mathbf{1}_C)$$
.

The functor $\rho^{-1}(a)$ yields a morphism from a to $a \times \mathbf{1}_C$ and is defined by:

(Def. 15)
$$\rho^{-1}(a) = \langle id_a, term a \rangle$$
.

Next we state two propositions:

- (31) $\lambda(a) \cdot \lambda^{-1}(a) = \mathrm{id}_a$ and $\lambda^{-1}(a) \cdot \lambda(a) = \mathrm{id}_{1_C \times a}$ and $\rho(a) \cdot \rho^{-1}(a) = \mathrm{id}_a$ and $\rho^{-1}(a) \cdot \rho(a) = \mathrm{id}_{a \times 1_C}$.
- (32) a and $a \times \mathbf{1}_C$ are isomorphic and a and $\mathbf{1}_C \times a$ are isomorphic.

Let us consider C, a, b. The functor Switch(a) yields a morphism from $a \times b$ to $b \times a$ and is defined by:

(Def. 16) Switch(
$$a$$
) = $\langle \pi_2(a \times b), \pi_1(a \times b) \rangle$.

We now state three propositions:

- (33) $hom(a \times b, b \times a) \neq \emptyset$.
- (34) Switch(a) · Switch(b) = $id_{b \times a}$.
- (35) $a \times b$ and $b \times a$ are isomorphic.

Let us consider C, a. The functor $\Delta(a)$ yields a morphism from a to $a \times a$ and is defined as follows:

(Def. 17)
$$\Delta(a) = \langle id_a, id_a \rangle$$
.

We now state two propositions:

- (36) $hom(a, a \times a) \neq \emptyset$.
- (37) For every morphism f from a to b such that $hom(a,b) \neq \emptyset$ holds $\langle f, f \rangle = \Delta(b) \cdot f$.

Let us consider C, a, b, c. The functor $\alpha((a,b),c)$ yielding a morphism from $a \times b \times c$ to $a \times (b \times c)$ is defined as follows:

(Def. 18)
$$\alpha((a,b),c) = \langle \pi_1(a \times b) \cdot \pi_1((a \times b) \times c), \langle \pi_2(a \times b) \cdot \pi_1((a \times b) \times c), \pi_2((a \times b) \times c) \rangle \rangle$$
.

The functor $\alpha(a,(b,c))$ yields a morphism from $a \times (b \times c)$ to $a \times b \times c$ and is defined by:

(Def. 19)
$$\alpha(a,(b,c)) = \langle \langle \pi_1(a \times (b \times c)), \pi_1(b \times c) \cdot \pi_2(a \times (b \times c)) \rangle, \pi_2(b \times c) \cdot \pi_2(a \times (b \times c)) \rangle$$
.

We now state three propositions:

- (38) $hom(a \times b \times c, a \times (b \times c)) \neq \emptyset$ and $hom(a \times (b \times c), a \times b \times c) \neq \emptyset$.
- (39) $\alpha((a,b),c) \cdot \alpha(a,(b,c)) = \mathrm{id}_{a \times (b \times c)} \text{ and } \alpha(a,(b,c)) \cdot \alpha((a,b),c) = \mathrm{id}_{a \times b \times c}.$
- (40) $(a \times b) \times c$ and $a \times (b \times c)$ are isomorphic.

Let us consider C, a, b, c, d, let f be a morphism from a to b, and let g be a morphism from c to d. The functor $f \times g$ yielding a morphism from $a \times c$ to $b \times d$ is defined by:

(Def. 20)
$$f \times g = \langle f \cdot \pi_1(a \times c), g \cdot \pi_2(a \times c) \rangle$$
.

The following propositions are true:

- (41) If $hom(a,c) \neq \emptyset$ and $hom(b,d) \neq \emptyset$, then $hom(a \times b, c \times d) \neq \emptyset$.
- (42) $id_a \times id_b = id_{a \times b}$.
- (43) Let f be a morphism from a to b, h be a morphism from c to d, g be a morphism from e to a, and k be a morphism from e to c. If $hom(a,b) \neq \emptyset$ and $hom(c,d) \neq \emptyset$ and $hom(e,c) \neq \emptyset$, then $(f \times h) \cdot \langle g, k \rangle = \langle f \cdot g, h \cdot k \rangle$.
- (44) Let f be a morphism from c to a and g be a morphism from c to b. If $hom(c,a) \neq \emptyset$ and $hom(c,b) \neq \emptyset$, then $\langle f,g \rangle = (f \times g) \cdot \Delta(c)$.
- (45) Let f be a morphism from a to b, h be a morphism from c to d, g be a morphism from e to a, and e be a morphism from e to e. If $hom(a,b) \neq \emptyset$ and $hom(c,d) \neq \emptyset$ and $hom(e,a) \neq \emptyset$ and $hom(s,c) \neq \emptyset$, then $(f \times h) \cdot (g \times k) = (f \cdot g) \times (h \cdot k)$.

3. CO-CARTESIAN CATEGORIES

Let C be a category. We say that C has finite coproduct if and only if the condition (Def. 21) is satisfied.

(Def. 21) Let I be a finite set and F be a function from I into the objects of C. Then there exists an object a of C and there exists an injections family F' into a on I such that $\operatorname{dom}_{\kappa} F'(\kappa) = F$ and a is a coproduct w.r.t. F'.

The following proposition is true

- (46) Let *C* be a category. Then *C* has finite coproduct if and only if the following conditions are satisfied:
 - (i) there exists an object of C which is initial, and
- (ii) for all objects a, b of C there exists an object c of C and there exist morphisms i_1 , i_2 of C such that dom $i_1 = a$ and dom $i_2 = b$ and cod $i_1 = c$ and cod $i_2 = c$ and c is a coproduct w.r.t. i_1 and i_2 .

We introduce cocartesian category structures which are extensions of category structure and are systems

⟨ objects, morphisms, a dom-map, a cod-map, a composition, an id-map, a initial, a coproduct, a 1st-coprojection, a 2nd-coprojection ⟩,

where the objects and the morphisms constitute non empty sets, the dom-map and the cod-map are functions from the morphisms into the objects, the composition is a partial function from [: the morphisms, the morphisms:] to the morphisms, the id-map is a function from the objects into the morphisms, the initial is an element of the objects, the coproduct is a function from [: the objects, the objects:] into the objects, and the 1st-coprojection and the 2nd-coprojection are functions from [: the objects, the objects:] into the morphisms.

Let C be a cocartesian category structure. The functor $\mathbf{0}_C$ yields an object of C and is defined as follows:

(Def. 22) $\mathbf{0}_C$ = the initial of C.

Let a, b be objects of C. The functor a + b yields an object of C and is defined by:

(Def. 23) $a+b = (\text{the coproduct of } C)(\langle a, b \rangle).$

The functor $in_1(a+b)$ yields a morphism of C and is defined as follows:

(Def. 24) $\operatorname{in}_1(a+b) = (\text{the 1st-coprojection of } C)(\langle a, b \rangle).$

The functor $in_2(a+b)$ yields a morphism of C and is defined by:

(Def. 25) $\operatorname{in}_2(a+b) = (\text{the 2nd-coprojection of } C)(\langle a, b \rangle).$

Let us consider o, m. The functor $\circlearrowright_{\mathbf{c}}^{\mathrm{op}}(o,m)$ yields a strict cocartesian category structure and is defined as follows:

$$(\text{Def. 26}) \quad \circlearrowright_{c}^{\text{op}}(o,m) = \langle \{o\}, \{m\}, \{m\} \longmapsto o, \{m\} \longmapsto o, \langle m, m \rangle \longmapsto m, \{o\} \longmapsto m, \text{Extract}(o), [\langle o, o \rangle \mapsto o], [\langle o, o \rangle \mapsto m], \{o\}0 \rangle.$$

We now state the proposition

(47) The category structure of $\dot{\bigcirc}_{\rm c}^{\rm op}(o,m) = \dot{\bigcirc}(o,m)$.

Let us note that there exists a cocartesian category structure which is strict and category-like. Let o, m be sets. One can check that $\dot{\bigcirc}_{\rm c}^{\rm op}(o,m)$ is category-like.

The following propositions are true:

- (48) For every object a of $\bigcirc_{c}^{op}(o, m)$ holds a = o.
- (49) For all objects a, b of $\dot{\bigcirc}_{c}^{op}(o,m)$ holds a=b.
- (50) For every morphism f of $\dot{\bigcirc}_{c}^{op}(o,m)$ holds f=m.
- (51) For all morphisms f, g of $\dot{\bigcirc}_{c}^{op}(o,m)$ holds f=g.
- (52) For all objects a, b of $\dot{\bigcirc}_{c}^{op}(o,m)$ and for every morphism f of $\dot{\bigcirc}_{c}^{op}(o,m)$ holds $f \in \text{hom}(a,b)$.
- (53) For all objects a, b of $\dot{\bigcirc}_{\rm c}^{\rm op}(o,m)$ holds every morphism of $\dot{\bigcirc}_{\rm c}^{\rm op}(o,m)$ is a morphism from a to b
- (54) For all objects a, b of $\dot{\bigcirc}_{c}^{op}(o, m)$ holds $hom(a, b) \neq \emptyset$.
- (55) Every object of $\dot{\bigcirc}_{c}^{op}(o,m)$ is initial.
- (56) For every object c of $\circlearrowright_{c}^{op}(o,m)$ and for all morphisms i_1 , i_2 of $\circlearrowleft_{c}^{op}(o,m)$ holds c is a coproduct w.r.t. i_1 and i_2 .

Let I_1 be a category-like cocartesian category structure. We say that I_1 is cocartesian if and only if the conditions (Def. 27) are satisfied.

- (Def. 27)(i) The initial of I_1 is initial, and
 - (ii) for all objects a, b of I_1 holds dom(the 1st-coprojection of I_1)($\langle a, b \rangle$) = a and dom(the 2nd-coprojection of I_1)($\langle a, b \rangle$) = b and (the coproduct of I_1)($\langle a, b \rangle$) is a coproduct w.r.t. (the 1st-coprojection of I_1)($\langle a, b \rangle$) and (the 2nd-coprojection of I_1)($\langle a, b \rangle$).

We now state the proposition

(57) For all sets o, m holds $\dot{\bigcirc}_{c}^{op}(o,m)$ is cocartesian.

Let us observe that there exists a category-like cocartesian category structure which is strict and cocartesian.

A cocartesian category is a cocartesian category-like cocartesian category structure.

We adopt the following convention: C denotes a cocartesian category and a, b, c, d, e, s denote objects of C.

The following propositions are true:

- (58) $\mathbf{0}_C$ is initial.
- (59) For all morphisms f_1 , f_2 from $\mathbf{0}_C$ to a holds $f_1 = f_2$.

Let us consider C, a.

(Def. 28) init a is a morphism from $\mathbf{0}_C$ to a.

The following propositions are true:

- (60) $hom(\mathbf{0}_C, a) \neq \emptyset$.
- (61) $\operatorname{init} a = \operatorname{init}(\mathbf{0}_C, a).$
- (62) dominit $a = \mathbf{0}_C$ and cod init a = a.
- (63) $hom(\mathbf{0}_C, a) = \{init a\}.$
- (64) $dom in_1(a+b) = a \text{ and } cod in_1(a+b) = a+b.$
- (65) $domin_2(a+b) = b \text{ and } codin_2(a+b) = a+b.$
- (66) $hom(a, a+b) \neq \emptyset$ and $hom(b, a+b) \neq \emptyset$.
- (67) a+b is a coproduct w.r.t. $in_1(a+b)$ and $in_2(a+b)$.
- (68) C has finite coproduct.
- (69) If $hom(a,b) \neq \emptyset$ and $hom(b,a) \neq \emptyset$, then $in_1(a+b)$ is coretraction and $in_2(a+b)$ is coretraction

Let us consider C, a, b. Then $in_1(a+b)$ is a morphism from a to a+b. Then $in_2(a+b)$ is a morphism from b to a+b.

Let us consider C, a, b, c, let f be a morphism from a to c, and let g be a morphism from b to c. Let us assume that $hom(a,c) \neq \emptyset$ and $hom(b,c) \neq \emptyset$. The functor $\langle f,g \rangle$ yielding a morphism from a+b to c is defined as follows:

(Def. 29)
$$\langle f, g \rangle \cdot \operatorname{in}_1(a+b) = f$$
 and $\langle f, g \rangle \cdot \operatorname{in}_2(a+b) = g$.

We now state several propositions:

- (70) If $hom(a,c) \neq \emptyset$ and $hom(b,c) \neq \emptyset$, then $hom(a+b,c) \neq \emptyset$.
- (71) $\langle \operatorname{in}_1(a+b), \operatorname{in}_2(a+b) \rangle = \operatorname{id}_{a+b}$.
- (72) Let f be a morphism from a to c, g be a morphism from b to c, and h be a morphism from c to d. If $hom(a,c) \neq \emptyset$ and $hom(b,c) \neq \emptyset$ and $hom(c,d) \neq \emptyset$, then $\langle h \cdot f, h \cdot g \rangle = h \cdot \langle f, g \rangle$.

- (73) Let f, k be morphisms from a to c and g, h be morphisms from b to c. If $hom(a,c) \neq \emptyset$ and $hom(b,c) \neq \emptyset$ and $\langle f,g \rangle = \langle k,h \rangle$, then f=k and g=h.
- (74) Let f be a morphism from a to c and g be a morphism from b to c. If $hom(a,c) \neq \emptyset$ and if $hom(b,c) \neq \emptyset$ and if f is epi or g is epi, then $\langle f,g \rangle$ is epi.
- (75) a and $a + \mathbf{0}_C$ are isomorphic and a and $\mathbf{0}_C + a$ are isomorphic.
- (76) a+b and b+a are isomorphic.
- (77) (a+b)+c and a+(b+c) are isomorphic.

Let us consider C, a. The functor ∇_a yielding a morphism from a + a to a is defined by:

(Def. 30)
$$\nabla_a = \langle id_a, id_a \rangle$$
.

Let us consider C, a, b, c, d, let f be a morphism from a to c, and let g be a morphism from b to d. The functor f + g yields a morphism from a + b to c + d and is defined as follows:

(Def. 31)
$$f+g = \langle \operatorname{in}_1(c+d) \cdot f, \operatorname{in}_2(c+d) \cdot g \rangle$$
.

We now state several propositions:

- (78) If $hom(a,c) \neq \emptyset$ and $hom(b,d) \neq \emptyset$, then $hom(a+b,c+d) \neq \emptyset$.
- $(79) \quad id_a + id_b = id_{a+b}.$
- (80) Let f be a morphism from a to c, h be a morphism from b to d, g be a morphism from c to e, and k be a morphism from d to e. If $hom(a,c) \neq \emptyset$ and $hom(b,d) \neq \emptyset$ and $hom(c,e) \neq \emptyset$ and $hom(d,e) \neq \emptyset$, then $\langle g,k \rangle \cdot (f+h) = \langle g \cdot f,k \cdot h \rangle$.
- (81) Let f be a morphism from a to c and g be a morphism from b to c. If $hom(a,c) \neq \emptyset$ and $hom(b,c) \neq \emptyset$, then $\nabla_c \cdot (f+g) = \langle f,g \rangle$.
- (82) Let f be a morphism from a to c, h be a morphism from b to d, g be a morphism from c to e, and k be a morphism from d to s. If $hom(a,c) \neq \emptyset$ and $hom(b,d) \neq \emptyset$ and $hom(c,e) \neq \emptyset$ and $hom(d,s) \neq \emptyset$, then $(g+k) \cdot (f+h) = g \cdot f + k \cdot h$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card_1.html.
- [2] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Czesław Byliński. Introduction to categories and functors. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/cat_1.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc 1.html.
- [6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [7] Czesław Byliński. Products and coproducts in categories. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/ Vol4/cat_3.html.
- [8] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [9] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/algstr_1.html.
- [10] M. E. Szabo. Algebra of Proofs. North Holland, 1978.
- [11] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/domain_1.html.

- [12] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- $[13] \ \ \textbf{Zinaida Trybulec. Properties of subsets. } \textbf{\textit{Journal of Formalized Mathematics}}, 1, 1989. \ \texttt{http://mizar.org/JFM/Vol1/subset_1.html}.$
- [14] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received October 27, 1992

Published January 2, 2004
