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Summary. A product and coproduct in categories are introduced. The concepts in-
cluded correspond to that presented_in [6].

MML Identifier: CAT_3.

WWW: http://mizar.org/JFM/Vol4d/cat_3.html

The articles([3],[10],[[11],T0], 171,141, 12], [[9], [[3], and[5] provide the notation and terminology
for this paper.

1. INDEXED FAMILIES

For simplicity, we adopt the following rules:is a setx, x1, X2, y are setsA is a non empty seg,
D are categories, b, ¢, d are objects o€, andf, g, h, k, p1, p2, 1, 2, i1, i2, j1, j2 are morphisms
of C.

Let us considet, A, let F be a function from into A, and letx be a set. Let us assume that
X € . Thenk, can be characterized by the condition:

(Def. 1) K =F(x).

The scheméambdaldxdeals with a sed, a non empty seB, and a unary functof yielding
an element ofB, and states that:
There exists a functioR from 4 into B such that for every such thatx € 4 holds
Fc= F(x)
for all values of the parameters.
We now state the proposition

(1) Forall functiond=, F, from| into A such that for every such thak € | holds(F;)x = (F2)x
holdsF; = F,.

The schemé&uncldx correctnesdeals with a sefl, a non empty seB, and a unary functofFr
yielding an element o8, and states that:
(i) There exists a functioR from 4 into B such that for every such thak € 4
holdsF = ¥ (x), and
(i)  for all functions F1, F» from 4 into B such that for everx such thaix € 4
holds(F;)x = F (x) and for every such thak € 4 holds(F,)x = F (x) holdsFL =R,
for all values of the parameters.
Let us consideA, | and leta be an element oA. Thenl — a s a function froml into A.
One can prove the following two propositions:

(2) For every elemerd of A such thak € | holds(l — a)x =a.
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(7ﬂ If X1 # X2, then for all elementgy, y» of A holds[x; — y1,Xo — Yolx, = y1 and[x; —
Y1, X2 = Y2lx, = Y2

2. INDEXED FAMILIES OF MORPHISMS

Let us conside€, | and letF be a function from into the morphisms of. The functor domF (k)
yields a function fron into the objects o€ and is defined by:

(Def. SE] For everyx such thai € | holds(domy F(K))x = dom(F).
The functor codF (k) yielding a function from into the objects o€ is defined by:
(Def. 4)  For every such thak € | holds(cod F (k))x = cod(F).
Next we state four propositions:
(8) donmx(l — f)(k) =1+ domf.
(9) cod(l — f)(K) =1+ codf.
(10)  domk[xq — p1,X2 — p2|(K) = [x1 — dompy, xp — dompy)].
(11) codfxy — p1,X2 — P2J(K) = [x1 — codpy, Xz — codpy].

Let us conside€, | and letF be a function fronl into the morphisms of. The functorF°P
yielding a function from into the morphisms oE°P is defined by:

(Def. 5) For every such thai € | holds(F°P)y = (Fx)°P.
One can prove the following three propositions:
(12) (1 f)°P=1+— fOP,
(13) 1fx1 # X, then[xq = p1, X = P2]%P = [x1 — P1°P, %2 — P2°P).
(14) For every functiodr from | into the morphisms of holds(F°P)°P = F.

Let us conside€, | and letF be a function from into the morphisms oE°P. The functor’PF
yields a function from into the morphisms of and is defined by:

(Def. 6) For every such tha € | holds(°PF )y = °P(F).

We now state three propositions:
(15) For every morphisnfii of C°P holds®P(l —— f) =1 — °Pf.

(16) If x3 # X2, then for all morphisme;, p2 of C°P holds®P[x; —— p1, X2 —— p2] = [Xg —
°Ppg, X2 — Ppy).

(17) For every functiofr from | into the morphisms of holds®P(F°P) = F.

Let us consideC, I, let F be a function from into the morphisms of, and let us considef.
The functorF - f yielding a function from into the morphisms ot is defined by:

(Def. 7) For every such thak € | holds(F - f)x = K- f.
The functorf - F yielding a function from into the morphisms ot is defined by:
(Def. 8) For every such thak € | holds(f -F)x= f - Fx.

We now state four propositions:

1 The propositions (3)—(6) have been removed.
2 The definition (Def. 2) has been removed.
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(18) |fX17éX2,then[X1>—> P1, X0 — pz]- f= [X1|—> p1-f,Xo— p2- f].
(19) Ifxq # X2, thenf - [xg — p1,X2— P2] = X1 — f-p1, X2 — f-py).

(20) For every functior from | into the morphisms of such that domF (k) = | — codf
holds dom(F - f)(k) = — domf and cod(F - f)(k) = codk F (k).

(21) For every functior from | into the morphisms o€ such that cogdF (k) = | — domf
holds dom(f - F)(k) = domc F(k) and cod(f - F)(k) = | — codf.

Let us conside€, | and letF, G be functions from into the morphisms of. The functor - G
yielding a function fronl into the morphisms of is defined as follows:

(Def. 9) For every such thak € | holds(F - G)yx = Fx - Gy.

We now state four propositions:

(22) For all functiong=, G from I into the morphisms o€ such that domF (k) = cod G(K)
holds dom(F - G)(k) = domk G(k) and cod (F - G)(k) = codk F (k).

(23) If X1 # Xg, then [xq —— p1, X2 —— P2] - [Xg —— O1, X2 —— Q2] = [X1 — P1- G, X2 —
P2 O]

(24) For every functiofr from | into the morphisms of holdsF - f =F - (I — f).
(25) For every functiofr from | into the morphisms of holdsf-F = (I — f)-F.

3. RETRACTIONS AND CORETRACTIONS

Let us conside€ and letl; be a morphism of. We say that; is retraction if and only if:
(Def. 10) There existg such that cod = doml; andly - g = idcodi, -
We say that; is coretraction if and only if:
(Def. 11) There existg such that dorg = codl; andg- I1 = idgomi, -
We now state a number of propositions:
(26) If f is retraction, therf is epi.
(27) If f is coretraction, theri is monic.
(28) If f is retraction andy is retraction and dom= codf, theng- f is retraction.
(29) If f is coretraction and is coretraction and dom= codf, theng- f is coretraction.
(30) Ifdomg = codf andg- f is retraction, them is retraction.
(31) Ifdomg = codf andg- f is coretraction, theffi is coretraction.
(32) If f is retraction and monic, thehis invertible.
(33) If f is coretraction and epi, thehis invertible.
(34) fisinvertible iff f is retraction and coretraction.
(35) For every functoll from C to D such thatf is retraction holdd () is retraction.
(36) For every functoll from C to D such thatf is coretraction hold3 (f) is coretraction.
(37) f isretraction iff f°P is coretraction.

(38) f is coretraction ifff °P is retraction.
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4. MORPHISMS DETERMINED BY A TERMINAL OBJECT

Let us consideC, a, b. Let us assume théatis terminal.
(Def. 12) |?bis a morphism fronato b.
We now state three propositions:
(39) Ifbis terminal, then dorfib = a and cod®b = b.
(40) If bis terminal and donf = a and codf = b, then|?b = f.

(41) For every morphisnf from a to b such thab is terminal holdg®b = f.

5. MORPHISMS DETERMINED BY AN INITIAL OBJECT

Let us consideC, a, b. Let us assume thatis initial.
(Def. 13) init(a,b) is a morphism froma to b.
One can prove the following three propositions:
(42) If ais initial, then dominita, b) = a and codinita,b) = b.
(43) Ifaisinitial and domf = a and codf = b, then ini{a,b) = f.

(44) For every morphisnfi from ato b such thag is initial holds inita,b) = f.

6. PRODUCTS

Let us conside€, a, |. A function froml into the morphisms of is said to be a projections family
from aontol if:

(Def. 14) domit(k) =1+—a.
One can prove the following propositions:
(45) For every projections familly from a ontol such thai € | holds donfFy) = a.
(46) Every function fron® into the morphisms of is a projections family frona onto0.
(47) Ifdomf =a, then{y} — f is a projections family frona onto {y}.

(48) If domp; = a and donp, = a, then[x; — p1,X2 — P2] is a projections family frona
onto{x1,%2}.

(50 LetF be a projections family froma ontol. If cod f = a, thenF - f is a projections family
from domf ontol.

(51) LetF be a function froml into the morphisms of andG be a projections family frora
ontol. If domg F (k) = cod G(k), thenF - G is a projections family frona ontol.

(52) For every projections familly from codf ontol holds f°P-F°P = (F - f)°P.

Let us conside€, a, | and letF be a function from into the morphisms of. We say thatis
a product w.r.tF if and only if the conditions (Def. 15) are satisfied.

(Def. 15)(i) F is a projections family frona ontol, and

(i) for every b and for every projections famil{¥’ from b onto | such that cogF (k) =
codk F'(k) there existsh such thath € hom(b,a) and for everyk such thatk € hom(b,a)
holds for every such thai € | holdsF -k =F iff h=k.

3 The proposition (49) has been removed.
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One can prove the following propositions:

(53) LetF be a projections family frone ontol andF’ be a projections family frond ontol.
Suppose is a product w.r.tF andd is a product w.r.tF’ and cod F (k) = cod F’(k). Then
¢ andd are isomorphic.

(54) LetF be a projections family fronac ontol. Suppose is a product w.r.tF and for allxs,
X2 such thatx; € | andx, € | holds honfcod(F, ),cod(Fy,)) # 0. Let givenx. If x € I, then
F is retraction.

(55) For every functior from 0 into the morphisms of holdsa is a product w.r.tF iff ais
terminal.

(56) LetF be a projections family froma ontol. Suppose is a product w.r.tF and domf =b
and codf = aandf is invertible. Therbis a product w.r.tF - f.

(57) aisaproductw.r.t{y} — id,.

(58) LetF be a projections family frora ontol. Suppose is a product w.r.tF and for every
x such thai € | holds codFy) is terminal. Thera is terminal.

Let us consideL, ¢, p1, p2. We say that is a product w.r.t. p; and py if and only if the
conditions (Def. 16) are satisfied.
(Def. 16)()) domp; =c,
(i) domp, =c, and
(i) forall d, f, gsuch thatf € hom(d,codp;) andg € hom(d, codpy) there exist$ such that
h € hom(d, c) and for everyk such thak € hom(d, c) holdsp; - k= f andp,-k=giff h=k.

Next we state several propositions:

(59) If x4 # X2, thencis a product w.r.tps andp, iff cis a product w.r.t[x; — p1,X2 — p2).

(60) Suppose hofg,a) # 0 and hongc,b) # 0. Let p; be a morphism frone to a and p, be a
morphism fromc to b. Thenc is a product w.r.tp; andp; if and only if for everyd such that
hom(d,a) # 0 and hontd, b) # 0 holds hontd, c) # 0 and for every morphisni from d to
a and for every morphisrg from d to b there exists a morphisimfrom d to ¢ such that for
every morphisnk fromdtocholdsp;-k= f andpy-k=giff h=k.

(61) Suppose is a product w.r.t.p; and p, andd is a product w.r.t.q; andgy and codo; =
codq; and codp, = codgp. Thenc andd are isomorphic.

(62) If cis aproduct w.r.tp; andp; and honfcodps, codpy) # 0 and honfcodp,, codps) # O,
thenps is retraction andg; is retraction.

(63) If cis a product w.r.t.p; and p, andh € hom(c,c) and p1-h = p; andp2-h = py, then
h=idc.

(64) If cisaproduct w.rtp; andp, and domf = d and codf = c andf is invertible, therd is
a product w.r.tp;- f andpy- f.

(65) If cis a product w.r.tp; andpz and codp; is terminal, therc and codp; are isomorphic.

(66) If cis a product w.r.tp; andpz and codp; is terminal, therc and codp, are isomorphic.
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7. COPRODUCTS

Let us conside€, c, I. A function froml into the morphisms of is said to be an injections family
intoconl if:

(Def. 17) cogit(k) =1+—rc.
One can prove the following propositions:
(67) For every injections familf into c on| such thak € | holds codFy) = c.
(68) Every function fron® into the morphisms of is an injections family int@ on 0.
(69) If codf = a, then{y} — f is an injections family int@ on {y}.

(70) If codp; = c and codpy = c, then[xy — p1,X2 — p2] is an injections family inta on
{Xl,Xg}.

(72@ For every injections family= into b on| such that donfi = b holds f - F is an injections
family into codf onl.

(73) LetF be an injections family intd on| andG be a function from into the morphisms of
C. If domk F (k) = codc G(K), thenF - G is an injections family intd onl.

(74) LetF be a function from into the morphisms of. ThenF is a projections family fronc
ontol if and only if F°P is an injections family int@®? on|.

(75) LetF be a function from into the morphisms oE°P andc be an object o€°P. ThenF is
an injections family inta on| if and only if °PF is a projections family fron?°c ontol.

(76) For every injections familf into domf on| holdsF°P- foP = (f . F)°P.

Let us conside€, ¢, | and letF be a function fronl into the morphisms of. We say that is
a coproduct w.r.tF if and only if the conditions (Def. 18) are satisfied.
(Def. 18)(i) F is an injections family int@ on |, and

(i) foreveryd and for every injections familf’ intod onl such that domaF (k) = domy F’ (k)
there existd such that € hom(c,d) and for everyk such thak € hom(c,d) holds for every
x such thai € I holdsk- K = F/ iff h=k.

Next we state several propositions:

(77) LetF be afunction from into the morphisms of. Thencis a product w.r.tF if and only
if c°Pis a coproduct w.r.tF°P.

(78) LetF be aninjections family inta onl andF’ be an injections family intd onl. Suppose
cis a coproduct w.r.tF andd is a coproduct w.r.tF’ and dom F (k) = domy F'(k). Thenc
andd are isomorphic.

(79) LetF be an injections family int@ on|. Suppose is a coproduct w.r.tF and for allx,
X2 such thak; € | andx, € | holds honfdom(F, ), dom(F,)) # 0. Let givenx. If x € I, then
F is coretraction.

(80) LetF be an injections family inta onl. Suppose is a coproduct w.r.tF and domf = a
and codf = bandf is invertible. Therbis a coproduct w.r.tf - F.

(81) For every injections familf into a on @ holdsa is a coproduct w.r.tF iff ais initial.
(82) ais acoproduct w.rt{y} — ida.

(83) LetF be an injections family inta onl. Suppose is a coproduct w.r.tF and for every
such thak € | holds dontF) is initial. Thenais initial.

4 The proposition (71) has been removed.
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Let us considet, c, i1, io. We say that is a coproduct w.r.t.iy andiz if and only if the
conditions (Def. 19) are satisfied.
(Def. 19)()) cody=c,
(i) codiz =c,and
(i) forall d, f, gsuch thatf € hom(domiy,d) andg € hom(domiz,d) there existd such that
h € hom(c,d) and for everyk such thak € hom(c,d) holdsk-i; = f andk-i; = giff h=k.
We now state several propositions:

(84) cis aproduct w.r.tp; andp; iff c® is a coproduct w.r.tp;°P and p2°F.
(85) Ifxq # X2, thencis a coproduct w.r.ti; andi, iff cis a coproduct w.r.t{x; — i1, Xo — i2].

(86) Suppose is a coproduct w.r.ti; andi, andd is a coproduct w.r.tj; and j, and dom; =
domj; and dom, = domj,. Thenc andd are isomorphic.

(87) Suppose hofa,c) # 0 and honfb,c) # 0. Let i, be a morphism frona to ¢ andi, be a
morphism fromb to c. Thenc is a coproduct w.r.ti; andi» if and only if for everyd such
that honta,d) # 0 and hongb, d) # 0 holds honfc,d) ## 0 and for every morphisnfi from a
tod and for every morphisrg from b to d there exists a morphisimfrom c to d such that for
every morphisnk from ctod holdsk-i; = f andk-i, = giff h=k.

(88) Ifcisacoproductw.r.ti; andi; and honjdomis,domiy) # 0 and honfdomi,, domiq) #£ 0,
theniq is coretraction and is coretraction.

(89) If cis a coproduct w.r.t.i; andip andh € hom(c,c) andh-i; =i; andh-i, =i, then
h=idc.

(90) Suppose is a coproduct w.r.ti; andi, and domf = ¢ and codf = d and f is invertible.
Thend is a coproduct w.r.tf -i; andf -i».

(91) If cis a coproduct w.r.tiy andi, and doni; is initial, then doni; andc are isomorphic.

(92) If cis a coproduct w.r.tiy andi, and doni; is initial, then doni, andc are isomorphic.
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