Products and Coproducts in Categories

Czesław Byliński Warsaw University Białystok

Summary. A product and coproduct in categories are introduced. The concepts included correspond to that presented in [6].

MML Identifier: CAT_3.

WWW: http://mizar.org/JFM/Vol4/cat_3.html

The articles [8], [10], [11], [1], [7], [4], [2], [9], [3], and [5] provide the notation and terminology for this paper.

1. INDEXED FAMILIES

For simplicity, we adopt the following rules: I is a set, x, x_1 , x_2 , y are sets, A is a non empty set, C, D are categories, a, b, c, d are objects of C, and f, g, h, k, p_1 , p_2 , q_1 , q_2 , i_1 , i_2 , j_1 , j_2 are morphisms of C.

Let us consider I, A, let F be a function from I into A, and let x be a set. Let us assume that $x \in I$. Then F_x can be characterized by the condition:

(Def. 1)
$$F_x = F(x)$$
.

The scheme LambdaIdx deals with a set \mathcal{A} , a non empty set \mathcal{B} , and a unary functor \mathcal{F} yielding an element of \mathcal{B} , and states that:

There exists a function F from \mathcal{A} into \mathcal{B} such that for every x such that $x \in \mathcal{A}$ holds $F_x = \mathcal{F}(x)$

for all values of the parameters.

We now state the proposition

(1) For all functions F_1 , F_2 from I into A such that for every x such that $x \in I$ holds $(F_1)_x = (F_2)_x$ holds $F_1 = F_2$.

The scheme *FuncIdx correctness* deals with a set \mathcal{A} , a non empty set \mathcal{B} , and a unary functor \mathcal{F} yielding an element of \mathcal{B} , and states that:

- (i) There exists a function F from \mathcal{A} into \mathcal{B} such that for every x such that $x \in \mathcal{A}$ holds $F_x = \mathcal{F}(x)$, and
- (ii) for all functions F_1 , F_2 from $\mathcal A$ into $\mathcal B$ such that for every x such that $x \in \mathcal A$ holds $(F_1)_x = \mathcal F(x)$ and for every x such that $x \in \mathcal A$ holds $(F_2)_x = \mathcal F(x)$ holds $F_1 = F_2$ for all values of the parameters.

Let us consider A, I and let a be an element of A. Then $I \mapsto a$ is a function from I into A. One can prove the following two propositions:

(2) For every element a of A such that $x \in I$ holds $(I \longmapsto a)_x = a$.

(7)^l If $x_1 \neq x_2$, then for all elements y_1 , y_2 of A holds $[x_1 \longmapsto y_1, x_2 \longmapsto y_2]_{x_1} = y_1$ and $[x_1 \longmapsto y_1, x_2 \longmapsto y_2]_{x_2} = y_2$.

2. Indexed families of morphisms

Let us consider C, I and let F be a function from I into the morphisms of C. The functor $dom_{\kappa}F(\kappa)$ yields a function from I into the objects of C and is defined by:

(Def. 3)² For every x such that $x \in I$ holds $(dom_{\kappa} F(\kappa))_x = dom(F_x)$.

The functor $\operatorname{cod}_{\kappa} F(\kappa)$ yielding a function from *I* into the objects of *C* is defined by:

(Def. 4) For every x such that $x \in I$ holds $(\operatorname{cod}_{\kappa} F(\kappa))_x = \operatorname{cod}(F_x)$.

Next we state four propositions:

- (8) $\operatorname{dom}_{\kappa}(I \longmapsto f)(\kappa) = I \longmapsto \operatorname{dom} f$.
- (9) $\operatorname{cod}_{\kappa}(I \longmapsto f)(\kappa) = I \longmapsto \operatorname{cod} f$.
- (10) $\operatorname{dom}_{\kappa}[x_1 \longmapsto p_1, x_2 \longmapsto p_2](\kappa) = [x_1 \longmapsto \operatorname{dom} p_1, x_2 \longmapsto \operatorname{dom} p_2].$
- (11) $\operatorname{cod}_{\kappa}[x_1 \longmapsto p_1, x_2 \longmapsto p_2](\kappa) = [x_1 \longmapsto \operatorname{cod} p_1, x_2 \longmapsto \operatorname{cod} p_2].$

Let us consider C, I and let F be a function from I into the morphisms of C. The functor F^{op} yielding a function from I into the morphisms of C^{op} is defined by:

(Def. 5) For every x such that $x \in I$ holds $(F^{op})_x = (F_x)^{op}$.

One can prove the following three propositions:

- $(12) \quad (I \longmapsto f)^{op} = I \longmapsto f^{op}.$
- (13) If $x_1 \neq x_2$, then $[x_1 \longmapsto p_1, x_2 \longmapsto p_2]^{op} = [x_1 \longmapsto p_1^{op}, x_2 \longmapsto p_2^{op}].$
- (14) For every function F from I into the morphisms of C holds $(F^{op})^{op} = F$.

Let us consider C, I and let F be a function from I into the morphisms of C^{op} . The functor ^{op}F yields a function from I into the morphisms of C and is defined by:

(Def. 6) For every x such that $x \in I$ holds $({}^{op}F)_x = {}^{op}(F_x)$.

We now state three propositions:

- (15) For every morphism f of C^{op} holds ${}^{op}(I \longmapsto f) = I \longmapsto {}^{op}f$.
- (16) If $x_1 \neq x_2$, then for all morphisms p_1 , p_2 of C^{op} holds ${}^{op}[x_1 \longmapsto p_1, x_2 \longmapsto p_2] = [x_1 \longmapsto {}^{op}p_1, x_2 \longmapsto {}^{op}p_2]$.
- (17) For every function *F* from *I* into the morphisms of *C* holds $^{op}(F^{op}) = F$.

Let us consider C, I, let F be a function from I into the morphisms of C, and let us consider f. The functor $F \cdot f$ yielding a function from I into the morphisms of C is defined by:

(Def. 7) For every x such that $x \in I$ holds $(F \cdot f)_x = F_x \cdot f$.

The functor $f \cdot F$ yielding a function from I into the morphisms of C is defined by:

(Def. 8) For every x such that $x \in I$ holds $(f \cdot F)_x = f \cdot F_x$.

We now state four propositions:

¹ The propositions (3)–(6) have been removed.

² The definition (Def. 2) has been removed.

- (18) If $x_1 \neq x_2$, then $[x_1 \longmapsto p_1, x_2 \longmapsto p_2] \cdot f = [x_1 \longmapsto p_1 \cdot f, x_2 \longmapsto p_2 \cdot f]$.
- (19) If $x_1 \neq x_2$, then $f \cdot [x_1 \longmapsto p_1, x_2 \longmapsto p_2] = [x_1 \longmapsto f \cdot p_1, x_2 \longmapsto f \cdot p_2]$.
- (20) For every function F from I into the morphisms of C such that $\operatorname{dom}_{\kappa} F(\kappa) = I \longmapsto \operatorname{cod} f$ holds $\operatorname{dom}_{\kappa} (F \cdot f)(\kappa) = I \longmapsto \operatorname{dom} f$ and $\operatorname{cod}_{\kappa} (F \cdot f)(\kappa) = \operatorname{cod}_{\kappa} F(\kappa)$.
- (21) For every function F from I into the morphisms of C such that $\operatorname{cod}_{\kappa} F(\kappa) = I \longmapsto \operatorname{dom} f$ holds $\operatorname{dom}_{\kappa}(f \cdot F)(\kappa) = \operatorname{dom}_{\kappa} F(\kappa)$ and $\operatorname{cod}_{\kappa}(f \cdot F)(\kappa) = I \longmapsto \operatorname{cod} f$.

Let us consider C, I and let F, G be functions from I into the morphisms of C. The functor $F \cdot G$ yielding a function from I into the morphisms of C is defined as follows:

(Def. 9) For every x such that $x \in I$ holds $(F \cdot G)_x = F_x \cdot G_x$.

We now state four propositions:

- (22) For all functions F, G from I into the morphisms of C such that $\operatorname{dom}_{\kappa} F(\kappa) = \operatorname{cod}_{\kappa} G(\kappa)$ holds $\operatorname{dom}_{\kappa} (F \cdot G)(\kappa) = \operatorname{dom}_{\kappa} G(\kappa)$ and $\operatorname{cod}_{\kappa} (F \cdot G)(\kappa) = \operatorname{cod}_{\kappa} F(\kappa)$.
- (23) If $x_1 \neq x_2$, then $[x_1 \longmapsto p_1, x_2 \longmapsto p_2] \cdot [x_1 \longmapsto q_1, x_2 \longmapsto q_2] = [x_1 \longmapsto p_1 \cdot q_1, x_2 \longmapsto p_2 \cdot q_2]$.
- (24) For every function *F* from *I* into the morphisms of *C* holds $F \cdot f = F \cdot (I \longmapsto f)$.
- (25) For every function *F* from *I* into the morphisms of *C* holds $f \cdot F = (I \longmapsto f) \cdot F$.

3. RETRACTIONS AND CORETRACTIONS

Let us consider C and let I_1 be a morphism of C. We say that I_1 is retraction if and only if:

(Def. 10) There exists g such that $\operatorname{cod} g = \operatorname{dom} I_1$ and $I_1 \cdot g = \operatorname{id}_{\operatorname{cod} I_1}$.

We say that I_1 is coretraction if and only if:

(Def. 11) There exists g such that dom $g = \operatorname{cod} I_1$ and $g \cdot I_1 = \operatorname{id}_{\operatorname{dom} I_1}$.

We now state a number of propositions:

- (26) If f is retraction, then f is epi.
- (27) If f is coretraction, then f is monic.
- (28) If f is retraction and g is retraction and dom $g = \operatorname{cod} f$, then $g \cdot f$ is retraction.
- (29) If f is coretraction and g is coretraction and dom $g = \operatorname{cod} f$, then $g \cdot f$ is coretraction.
- (30) If dom g = cod f and $g \cdot f$ is retraction, then g is retraction.
- (31) If dom g = cod f and $g \cdot f$ is coretraction, then f is coretraction.
- (32) If f is retraction and monic, then f is invertible.
- (33) If f is coretraction and epi, then f is invertible.
- (34) f is invertible iff f is retraction and coretraction.
- (35) For every functor T from C to D such that f is retraction holds T(f) is retraction.
- (36) For every functor T from C to D such that f is coretraction holds T(f) is coretraction.
- (37) f is retraction iff f^{op} is coretraction.
- (38) f is coretraction iff f^{op} is retraction.

4. MORPHISMS DETERMINED BY A TERMINAL OBJECT

Let us consider C, a, b. Let us assume that b is terminal.

(Def. 12) |ab| is a morphism from a to b.

We now state three propositions:

- (39) If b is terminal, then dom $|^ab = a$ and cod $|^ab = b$.
- (40) If b is terminal and dom f = a and cod f = b, then |ab| = f.
- (41) For every morphism f from a to b such that b is terminal holds $|^ab = f$.

5. MORPHISMS DETERMINED BY AN INITIAL OBJECT

Let us consider C, a, b. Let us assume that a is initial.

(Def. 13) init(a,b) is a morphism from a to b.

One can prove the following three propositions:

- (42) If a is initial, then dominit(a,b) = a and codinit(a,b) = b.
- (43) If a is initial and dom f = a and cod f = b, then init(a,b) = f.
- (44) For every morphism f from a to b such that a is initial holds init(a,b) = f.

6. PRODUCTS

Let us consider *C*, *a*, *I*. A function from *I* into the morphisms of *C* is said to be a projections family from *a* onto *I* if:

(Def. 14) $\operatorname{dom}_{\kappa}\operatorname{it}(\kappa) = I \longmapsto a$.

One can prove the following propositions:

- (45) For every projections family F from a onto I such that $x \in I$ holds $dom(F_x) = a$.
- (46) Every function from \emptyset into the morphisms of C is a projections family from a onto \emptyset .
- (47) If dom f = a, then $\{y\} \longmapsto f$ is a projections family from a onto $\{y\}$.
- (48) If dom $p_1 = a$ and dom $p_2 = a$, then $[x_1 \longmapsto p_1, x_2 \longmapsto p_2]$ is a projections family from a onto $\{x_1, x_2\}$.
- (50)³ Let F be a projections family from a onto I. If $\operatorname{cod} f = a$, then $F \cdot f$ is a projections family from $\operatorname{dom} f$ onto I.
- (51) Let F be a function from I into the morphisms of C and G be a projections family from a onto I. If $\operatorname{dom}_{\kappa} F(\kappa) = \operatorname{cod}_{\kappa} G(\kappa)$, then $F \cdot G$ is a projections family from a onto I.
- (52) For every projections family *F* from cod *f* onto *I* holds $f^{op} \cdot F^{op} = (F \cdot f)^{op}$.

Let us consider C, a, I and let F be a function from I into the morphisms of C. We say that a is a product w.r.t. F if and only if the conditions (Def. 15) are satisfied.

(Def. 15)(i) F is a projections family from a onto I, and

(ii) for every b and for every projections family F' from b onto I such that $\operatorname{cod}_{\kappa} F(\kappa) = \operatorname{cod}_{\kappa} F'(\kappa)$ there exists h such that $h \in \operatorname{hom}(b,a)$ and for every k such that $k \in \operatorname{hom}(b,a)$ holds for every k such that $k \in \operatorname{hom}(b,a)$

³ The proposition (49) has been removed.

One can prove the following propositions:

- (53) Let F be a projections family from c onto I and F' be a projections family from d onto I. Suppose c is a product w.r.t. F and d is a product w.r.t. F' and $\operatorname{cod}_{\kappa} F(\kappa) = \operatorname{cod}_{\kappa} F'(\kappa)$. Then c and d are isomorphic.
- (54) Let F be a projections family from c onto I. Suppose c is a product w.r.t. F and for all x_1 , x_2 such that $x_1 \in I$ and $x_2 \in I$ holds $hom(cod(F_{x_1}), cod(F_{x_2})) \neq \emptyset$. Let given x. If $x \in I$, then F_x is retraction.
- (55) For every function F from \emptyset into the morphisms of C holds a is a product w.r.t. F iff a is terminal.
- (56) Let F be a projections family from a onto I. Suppose a is a product w.r.t. F and dom f = b and cod f = a and f is invertible. Then b is a product w.r.t. $F \cdot f$.
- (57) a is a product w.r.t. $\{y\} \longmapsto id_a$.
- (58) Let F be a projections family from a onto I. Suppose a is a product w.r.t. F and for every x such that $x \in I$ holds $cod(F_x)$ is terminal. Then a is terminal.

Let us consider C, c, p_1 , p_2 . We say that c is a product w.r.t. p_1 and p_2 if and only if the conditions (Def. 16) are satisfied.

(Def. 16)(i) $dom p_1 = c$,

- (ii) $\operatorname{dom} p_2 = c$, and
- (iii) for all d, f, g such that $f \in \text{hom}(d, \text{cod } p_1)$ and $g \in \text{hom}(d, \text{cod } p_2)$ there exists h such that $h \in \text{hom}(d, c)$ and for every k such that $k \in \text{hom}(d, c)$ holds $p_1 \cdot k = f$ and $p_2 \cdot k = g$ iff h = k.

Next we state several propositions:

- (59) If $x_1 \neq x_2$, then c is a product w.r.t. p_1 and p_2 iff c is a product w.r.t. $[x_1 \longmapsto p_1, x_2 \longmapsto p_2]$.
- (60) Suppose $hom(c,a) \neq \emptyset$ and $hom(c,b) \neq \emptyset$. Let p_1 be a morphism from c to a and p_2 be a morphism from c to b. Then c is a product w.r.t. p_1 and p_2 if and only if for every d such that $hom(d,a) \neq \emptyset$ and $hom(d,b) \neq \emptyset$ holds $hom(d,c) \neq \emptyset$ and for every morphism f from f to f and for every morphism f from f to f to
- (61) Suppose c is a product w.r.t. p_1 and p_2 and d is a product w.r.t. q_1 and q_2 and $cod p_1 = cod q_1$ and $cod p_2 = cod q_2$. Then c and d are isomorphic.
- (62) If c is a product w.r.t. p_1 and p_2 and hom $(\operatorname{cod} p_1, \operatorname{cod} p_2) \neq \emptyset$ and hom $(\operatorname{cod} p_2, \operatorname{cod} p_1) \neq \emptyset$, then p_1 is retraction and p_2 is retraction.
- (63) If c is a product w.r.t. p_1 and p_2 and $h \in \text{hom}(c,c)$ and $p_1 \cdot h = p_1$ and $p_2 \cdot h = p_2$, then $h = \text{id}_c$.
- (64) If c is a product w.r.t. p_1 and p_2 and dom f = d and cod f = c and f is invertible, then d is a product w.r.t. $p_1 \cdot f$ and $p_2 \cdot f$.
- (65) If c is a product w.r.t. p_1 and p_2 and $cod p_2$ is terminal, then c and $cod p_1$ are isomorphic.
- (66) If c is a product w.r.t. p_1 and p_2 and $cod p_1$ is terminal, then c and $cod p_2$ are isomorphic.

7. COPRODUCTS

Let us consider C, c, I. A function from I into the morphisms of C is said to be an injections family into c on I if:

(Def. 17) $\operatorname{cod}_{\kappa} \operatorname{it}(\kappa) = I \longmapsto c$.

One can prove the following propositions:

- (67) For every injections family *F* into *c* on *I* such that $x \in I$ holds $cod(F_x) = c$.
- (68) Every function from \emptyset into the morphisms of C is an injections family into a on \emptyset .
- (69) If $\operatorname{cod} f = a$, then $\{y\} \longmapsto f$ is an injections family into a on $\{y\}$.
- (70) If $\operatorname{cod} p_1 = c$ and $\operatorname{cod} p_2 = c$, then $[x_1 \longmapsto p_1, x_2 \longmapsto p_2]$ is an injections family into c on $\{x_1, x_2\}$.
- (72)⁴ For every injections family F into b on I such that dom f = b holds $f \cdot F$ is an injections family into cod f on I.
- (73) Let F be an injections family into b on I and G be a function from I into the morphisms of C. If $\operatorname{dom}_{\kappa} F(\kappa) = \operatorname{cod}_{\kappa} G(\kappa)$, then $F \cdot G$ is an injections family into b on I.
- (74) Let F be a function from I into the morphisms of C. Then F is a projections family from c onto I if and only if F^{op} is an injections family into c^{op} on I.
- (75) Let F be a function from I into the morphisms of C^{op} and c be an object of C^{op} . Then F is an injections family into c on I if and only if ${}^{op}F$ is a projections family from ${}^{op}c$ onto I.
- (76) For every injections family F into dom f on I holds $F^{\text{op}} \cdot f^{\text{op}} = (f \cdot F)^{\text{op}}$.

Let us consider C, c, I and let F be a function from I into the morphisms of C. We say that c is a coproduct w.r.t. F if and only if the conditions (Def. 18) are satisfied.

(Def. 18)(i) F is an injections family into c on I, and

(ii) for every d and for every injections family F' into d on I such that $dom_{\kappa}F(\kappa) = dom_{\kappa}F'(\kappa)$ there exists h such that $h \in hom(c,d)$ and for every k such that $k \in hom(c,d)$ holds $k \in hom(c,d)$ hold

Next we state several propositions:

- (77) Let F be a function from I into the morphisms of C. Then c is a product w.r.t. F if and only if c^{op} is a coproduct w.r.t. F^{op} .
- (78) Let F be an injections family into c on I and F' be an injections family into d on I. Suppose c is a coproduct w.r.t. F and d is a coproduct w.r.t. F' and $dom_{\kappa}F(\kappa) = dom_{\kappa}F'(\kappa)$. Then c and d are isomorphic.
- (79) Let F be an injections family into c on I. Suppose c is a coproduct w.r.t. F and for all x_1 , x_2 such that $x_1 \in I$ and $x_2 \in I$ holds $hom(dom(F_{x_1}), dom(F_{x_2})) \neq \emptyset$. Let given x. If $x \in I$, then F_x is coretraction.
- (80) Let F be an injections family into a on I. Suppose a is a coproduct w.r.t. F and dom f = a and cod f = b and f is invertible. Then b is a coproduct w.r.t. $f \cdot F$.
- (81) For every injections family F into a on \emptyset holds a is a coproduct w.r.t. F iff a is initial.
- (82) a is a coproduct w.r.t. $\{y\} \longmapsto id_a$.
- (83) Let F be an injections family into a on I. Suppose a is a coproduct w.r.t. F and for every x such that $x \in I$ holds $dom(F_x)$ is initial. Then a is initial.

⁴ The proposition (71) has been removed.

Let us consider C, c, i_1 , i_2 . We say that c is a coproduct w.r.t. i_1 and i_2 if and only if the conditions (Def. 19) are satisfied.

- (Def. 19)(i) $cod i_1 = c$,
 - (ii) $cod i_2 = c$, and
 - (iii) for all d, f, g such that $f \in \text{hom}(\text{dom } i_1, d)$ and $g \in \text{hom}(\text{dom } i_2, d)$ there exists h such that $h \in \text{hom}(c, d)$ and for every k such that $k \in \text{hom}(c, d)$ holds $k \cdot i_1 = f$ and $k \cdot i_2 = g$ iff h = k.

We now state several propositions:

- (84) c is a product w.r.t. p_1 and p_2 iff c^{op} is a coproduct w.r.t. p_1^{op} and p_2^{op} .
- (85) If $x_1 \neq x_2$, then c is a coproduct w.r.t. i_1 and i_2 iff c is a coproduct w.r.t. $[x_1 \longmapsto i_1, x_2 \longmapsto i_2]$.
- (86) Suppose c is a coproduct w.r.t. i_1 and i_2 and d is a coproduct w.r.t. j_1 and j_2 and dom $i_1 = \text{dom } j_1$ and dom $i_2 = \text{dom } j_2$. Then c and d are isomorphic.
- (87) Suppose $\hom(a,c) \neq \emptyset$ and $\hom(b,c) \neq \emptyset$. Let i_1 be a morphism from a to c and i_2 be a morphism from b to c. Then c is a coproduct w.r.t. i_1 and i_2 if and only if for every d such that $\hom(a,d) \neq \emptyset$ and $\hom(b,d) \neq \emptyset$ holds $\hom(c,d) \neq \emptyset$ and for every morphism f from f to f and for every morphism f from f to f such that for every morphism f from f to f holds f and f if f and f if f if f if f and f if f
- (88) If c is a coproduct w.r.t. i_1 and i_2 and hom $(\text{dom } i_1, \text{dom } i_2) \neq \emptyset$ and hom $(\text{dom } i_2, \text{dom } i_1) \neq \emptyset$, then i_1 is coretraction and i_2 is coretraction.
- (89) If c is a coproduct w.r.t. i_1 and i_2 and $h \in \text{hom}(c,c)$ and $h \cdot i_1 = i_1$ and $h \cdot i_2 = i_2$, then $h = \text{id}_c$.
- (90) Suppose c is a coproduct w.r.t. i_1 and i_2 and dom f = c and cod f = d and f is invertible. Then d is a coproduct w.r.t. $f \cdot i_1$ and $f \cdot i_2$.
- (91) If c is a coproduct w.r.t. i_1 and i_2 and dom i_2 is initial, then dom i_1 and c are isomorphic.
- (92) If c is a coproduct w.r.t. i_1 and i_2 and dom i_1 is initial, then dom i_2 and c are isomorphic.

REFERENCES

- Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [3] Czesław Byliński. Introduction to categories and functors. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/cat 1.html.
- [4] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [5] Czesław Byliński. Opposite categories and contravariant functors. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/oppoat_1.html.
- [6] Zbigniew Semadeni and Antoni Wiweger. Wstęp do teorii kategorii i funktorów, volume 45 of Biblioteka Matematyczna. PWN, Warszawa, 1978.
- [7] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funcop_1.html.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [9] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [10] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

[11] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received May 11, 1992

Published January 2, 2004