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Summary. Thesubcategoryof a category and product of categories is defined. The
inclusion functoris the injection (inclusion) mapE↪→ which sends each object and each arrow
of a SubcategoryE of a categoryC to itself (in C). The inclusion functor is faithful.Full
subcategoriesof C, that is, those subcategoriesE of C such that HomE(a,b) = HomC(b,b)
for any objectsa,b of E, are defined. A subcategoryE of C is full when the inclusion functor
E
↪→ is full. The proposition that a full subcategory is determined by giving the set of objects of
a category is proved. The product of two categoriesB andC is constructed in the usual way.
Moreover, some simple facts onbi f unctors(functors from a product category) are proved.
The final notions in this article are that of projection functors and product of two functors
(complexfunctors andproductfunctors).

MML Identifier: CAT_2.

WWW: http://mizar.org/JFM/Vol2/cat_2.html

The articles [10], [7], [12], [9], [13], [3], [4], [6], [2], [8], [1], [11], and [5] provide the notation and
terminology for this paper.

For simplicity, we use the following convention:X is a set,C, D, E are non empty sets,c is an
element ofC, andd is an element ofD.

Let us considerD, X, E, let F be a non empty set of functions fromX to E, let f be a function
from D into F , and letd be an element ofD. Then f (d) is an element ofF .

In the sequelf is a function from[:C, D :] into E.
One can prove the following two propositions:

(1) curry f is a function fromC into ED.

(2) curry′ f is a function fromD into EC.

Let us considerC, D, E, f . Then curryf is a function fromC into ED. Then curry′ f is a function
from D into EC.

One can prove the following two propositions:

(3) f (〈〈c, d〉〉) = (curry f )(c)(d).

(4) f (〈〈c, d〉〉) = (curry′ f )(d)(c).

In the sequelB, C, D, C′, D′ are categories.
Let us considerB, C and letc be an object ofC. The functorB 7−→ c yielding a functor fromB

to C is defined by:

(Def. 1) B 7−→ c = (the morphisms ofB) 7−→ idc.

Next we state two propositions:

(6)1 For every objectc of C and for every morphismf of B holds(B 7−→ c)( f ) = idc.

1 The proposition (5) has been removed.
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(7) For every objectc of C and for every objectb of B holds(Obj(B 7−→ c))(b) = c.

Let us considerC, D. The functor Funct(C,D) yields a set and is defined as follows:

(Def. 2) For every setx holdsx∈ Funct(C,D) iff x is a functor fromC to D.

Let us considerC, D. One can check that Funct(C,D) is non empty.
Let us considerC, D. A non empty set is called a non empty set of functors fromC into D if:

(Def. 3) Every element of it is a functor fromC to D.

Let us considerC, D and letF be a non empty set of functors fromC into D. We see that the
element ofF is a functor fromC to D.

Let A be a non empty set, let us considerC, D, let F be a non empty set of functors fromC into
D, let T be a function fromA into F , and letx be an element ofA. ThenT(x) is an element ofF .

Let us considerC, D. Then Funct(C,D) is a non empty set of functors fromC into D.
Let us considerC. A category is called a subcategory ofC if it satisfies the conditions (Def. 4).

(Def. 4)(i) The objects of it⊆ the objects ofC,

(ii) for all objectsa, b of it and for all objectsa′, b′ of C such thata = a′ andb = b′ holds
hom(a,b)⊆ hom(a′,b′),

(iii) the composition of it≤ the composition ofC, and

(iv) for every objecta of it and for every objecta′ of C such thata = a′ holds ida = ida′ .

Let us considerC. One can verify that there exists a subcategory ofC which is strict.
In the sequelE denotes a subcategory ofC.
Next we state several propositions:

(12)2 Every object ofE is an object ofC.

(13) The morphisms ofE ⊆ the morphisms ofC.

(14) Every morphism ofE is a morphism ofC.

(15) For every morphismf of E and for every morphismf ′ of C such thatf = f ′ holds domf =
dom f ′ and codf = cod f ′.

(16) Leta, b be objects ofE, a′, b′ be objects ofC, and f be a morphism froma to b. If a = a′

andb = b′ and hom(a,b) 6= /0, then f is a morphism froma′ to b′.

(17) For all morphismsf , g of E and for all morphismsf ′, g′ of C such thatf = f ′ andg = g′

and domg = cod f holdsg· f = g′ · f ′.

(18) C is a subcategory ofC.

(19) idE is a functor fromE to C.

Let us considerC, E. The functor E
↪→ yielding a functor fromE to C is defined as follows:

(Def. 5) E
↪→ = idE.

We now state several propositions:

(21)3 For every morphismf of E holds( E
↪→ )( f ) = f .

(22) For every objecta of E holds(Obj( E
↪→ ))(a) = a.

(23) For every objecta of E holds( E
↪→ )(a) = a.

2 The propositions (8)–(11) have been removed.
3 The proposition (20) has been removed.



SUBCATEGORIES AND PRODUCTS OF CATEGORIES 3

(24) E
↪→ is faithful.

(25) E
↪→ is full if and only if for all objectsa, b of E and for all objectsa′, b′ of C such thata= a′

andb = b′ holds hom(a,b) = hom(a′,b′).

LetC be a category structure and let us considerD. We say thatC is full subcategory ofD if and
only if the conditions (Def. 6) are satisfied.

(Def. 6)(i) C is a subcategory ofD, and

(ii) for all objectsa, b of C and for all objectsa′, b′ of D such thata = a′ andb = b′ holds
hom(a,b) = hom(a′,b′).

The following propositions are true:

(27)4 E is full subcategory ofC iff E
↪→ is full.

(28) LetO be a non empty subset of the objects ofC. Then
⋃
{hom(a,b);a ranges over objects

of C, b ranges over objects ofC: a∈ O ∧ b∈ O} is a non empty subset of the morphisms of
C.

(29) Let O be a non empty subset of the objects ofC and M be a non empty set. Suppose
M =

⋃
{hom(a,b);a ranges over objects ofC, b ranges over objects ofC: a∈ O ∧ b∈ O}.

Then

(i) (the dom-map ofC)�M is a function fromM into O,

(ii) (the cod-map ofC)�M is a function fromM into O,

(iii) (the composition ofC)�[:M, M :] is a partial function from[:M, M :] to M, and

(iv) (the id-map ofC)�O is a function fromO into M.

(30) LetO be a non empty subset of the objects ofC, M be a non empty set,d, c be functions
from M into O, p be a partial function from[:M, M :] to M, andi be a function fromO into M.
Suppose that

(i) M =
⋃
{hom(a,b);a ranges over objects ofC, b ranges over objects ofC: a∈O ∧ b∈O},

(ii) d = (the dom-map ofC)�M,

(iii) c = (the cod-map ofC)�M,

(iv) p = (the composition ofC)�[:M, M :], and

(v) i = (the id-map ofC)�O.

Then〈O,M,d,c, p, i〉 is full subcategory ofC.

(31) LetO be a non empty subset of the objects ofC, M be a non empty set,d, c be functions
from M into O, p be a partial function from[:M, M :] to M, andi be a function fromO into M.
Suppose〈O,M,d,c, p, i〉 is full subcategory ofC. Then

(i) M =
⋃
{hom(a,b);a ranges over objects ofC, b ranges over objects ofC: a∈O ∧ b∈O},

(ii) d = (the dom-map ofC)�M,

(iii) c = (the cod-map ofC)�M,

(iv) p = (the composition ofC)�[:M, M :], and

(v) i = (the id-map ofC)�O.

Let X1, X2, Y1, Y2 be non empty sets, letf1 be a function fromX1 intoY1, and letf2 be a function
from X2 into Y2. Then[: f1, f2 :] is a function from[:X1, X2 :] into [:Y1, Y2 :].

Let A, B be non empty sets, letf be a partial function from[:A, A:] to A, and letg be a partial
function from[:B, B:] to B. Then|: f , g:| is a partial function from[: [:A, B:], [:A, B:] :] to [:A, B:].

Let us considerC, D. The functor[:C, D :] yields a category and is defined by the condition
(Def. 7).

4 The proposition (26) has been removed.
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(Def. 7) [:C, D :] = 〈[: the objects ofC, the objects ofD :], [: the morphisms ofC, the morphisms of
D :], [: the dom-map ofC, the dom-map ofD :], [: the cod-map ofC, the cod-map ofD :], |:the
composition ofC, the composition ofD:|, [: the id-map ofC, the id-map ofD :]〉.

Let us considerC, D. Note that[:C, D :] is strict.
Next we state two propositions:

(33)5(i) The objects of[:C, D :] = [: the objects ofC, the objects ofD :],

(ii) the morphisms of[:C, D :] = [: the morphisms ofC, the morphisms ofD :],

(iii) the dom-map of[:C, D :] = [: the dom-map ofC, the dom-map ofD :],

(iv) the cod-map of[:C, D :] = [: the cod-map ofC, the cod-map ofD :],

(v) the composition of[:C, D :] = |:the composition ofC, the composition ofD:|, and

(vi) the id-map of[:C, D :] = [: the id-map ofC, the id-map ofD :].

(34) For every objectc of C and for every objectd of D holds〈〈c, d〉〉 is an object of[:C, D :].

Let us considerC, D, let c be an object ofC, and letd be an object ofD. Then〈〈c, d〉〉 is an object
of [:C, D :].

We now state two propositions:

(35) For every objectc1 of [:C, D :] there exists an objectc of C and there exists an objectd of
D such thatc1 = 〈〈c, d〉〉.

(36) For every morphismf of C and for every morphismg of D holds〈〈 f , g〉〉 is a morphism of
[:C, D :].

Let us considerC, D, let f be a morphism ofC, and letg be a morphism ofD. Then〈〈 f , g〉〉 is a
morphism of[:C, D :].

The following propositions are true:

(37) For every morphismf3 of [:C, D :] there exists a morphismf of C and there exists a mor-
phismg of D such thatf3 = 〈〈 f , g〉〉.

(38) For every morphismf of C and for every morphismg of D holds dom〈〈 f , g〉〉 = 〈〈dom f ,
domg〉〉 and cod〈〈 f , g〉〉= 〈〈cod f , codg〉〉.

(39) For all morphismsf , f ′ of C and for all morphismsg, g′ of D such that domf ′ = cod f and
domg′ = codg holds〈〈 f ′, g′〉〉 · 〈〈 f , g〉〉= 〈〈 f ′ · f , g′ ·g〉〉.

(40) For all morphismsf , f ′ of C and for all morphismsg, g′ of D such that dom〈〈 f ′, g′〉〉 =
cod〈〈 f , g〉〉 holds〈〈 f ′, g′〉〉 · 〈〈 f , g〉〉= 〈〈 f ′ · f , g′ ·g〉〉.

(41) For every objectc of C and for every objectd of D holds id〈〈c,d〉〉 = 〈〈idc, idd〉〉.

(42) For all objectsc, c′ of C and for all objectsd, d′ of D holds hom(〈〈c, d〉〉,〈〈c′, d′〉〉) =
[:hom(c,c′), hom(d,d′) :].

(43) Letc, c′ be objects ofC, f be a morphism fromc to c′, d, d′ be objects ofD, andg be a
morphism fromd to d′. If hom(c,c′) 6= /0 and hom(d,d′) 6= /0, then〈〈 f , g〉〉 is a morphism from
〈〈c, d〉〉 to 〈〈c′, d′〉〉.

(44) For every functorS from [:C, C′ :] to D and for every objectc of C holds(curryS)(idc) is a
functor fromC′ to D.

(45) For every functorS from [:C, C′ :] to D and for every objectc′ of C′ holds(curry′S)(idc′) is
a functor fromC to D.

5 The proposition (32) has been removed.
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Let us considerC, C′, D, let Sbe a functor from[:C, C′ :] to D, and letc be an object ofC. The
functorS(c,−) yields a functor fromC′ to D and is defined as follows:

(Def. 8) S(c,−) = (curryS)(idc).

Next we state two propositions:

(47)6 For every functorSfrom [:C, C′ :] to D and for every objectc of C and for every morphism
f of C′ holdsS(c,−)( f ) = S(〈〈idc, f 〉〉).

(48) For every functorS from [:C, C′ :] to D and for every objectc of C and for every objectc′

of C′ holds(Obj(S(c,−)))(c′) = (ObjS)(〈〈c, c′〉〉).

Let us considerC, C′, D, let Sbe a functor from[:C, C′ :] to D, and letc′ be an object ofC′. The
functorS(−,c′) yielding a functor fromC to D is defined as follows:

(Def. 9) S(−,c′) = (curry′S)(idc′).

One can prove the following propositions:

(50)7 For every functorSfrom [:C, C′ :] to D and for every objectc′ of C′ and for every morphism
f of C holdsS(−,c′)( f ) = S(〈〈 f , idc′〉〉).

(51) For every functorS from [:C, C′ :] to D and for every objectc of C and for every objectc′

of C′ holds(Obj(S(−,c′)))(c) = (ObjS)(〈〈c, c′〉〉).

(52) LetL be a function from the objects ofC into Funct(B,D) andM be a function from the
objects ofB into Funct(C,D). Suppose that

(i) for every objectc of C and for every objectb of B holdsM(b)(idc) = L(c)(idb), and

(ii) for every morphism f of B and for every morphismg of C holds M(cod f )(g) ·
L(domg)( f ) = L(codg)( f ) ·M(dom f )(g).

Then there exists a functorS from [:B, C:] to D such that for every morphismf of B and for
every morphismg of C holdsS(〈〈 f , g〉〉) = L(codg)( f ) ·M(dom f )(g).

(53) LetL be a function from the objects ofC into Funct(B,D) andM be a function from the
objects ofB into Funct(C,D). Given a functorSfrom [:B, C:] to D such that letc be an object
of C andb be an object ofB. ThenS(−,c) = L(c) andS(b,−) = M(b). Let f be a morphism of
B andg be a morphism ofC. ThenM(cod f )(g) ·L(domg)( f ) = L(codg)( f ) ·M(dom f )(g).

(54) π1((the morphisms ofC)× the morphisms ofD ) is a functor from[:C, D :] to C.

(55) π2((the morphisms ofC)× the morphisms ofD ) is a functor from[:C, D :] to D.

Let us considerC, D. The functorπ1(C×D) yielding a functor from[:C, D :] to C is defined as
follows:

(Def. 10) π1(C×D) = π1((the morphisms ofC)× the morphisms ofD).

The functorπ2(C×D) yields a functor from[:C, D :] to D and is defined as follows:

(Def. 11) π2(C×D) = π2((the morphisms ofC)× the morphisms ofD).

The following propositions are true:

(58)8 For every morphismf of C and for every morphismg of D holdsπ1(C×D)(〈〈 f , g〉〉) = f .

(59) For every objectc of C and for every objectd of D holds(Objπ1(C×D))(〈〈c, d〉〉) = c.

(60) For every morphismf of C and for every morphismg of D holdsπ2(C×D)(〈〈 f , g〉〉) = g.

6 The proposition (46) has been removed.
7 The proposition (49) has been removed.
8 The propositions (56) and (57) have been removed.
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(61) For every objectc of C and for every objectd of D holds(Objπ2(C×D))(〈〈c, d〉〉) = d.

(62) For every functorT from C to D and for every functorT ′ from C to D′ holds〈T,T ′〉 is a
functor fromC to [:D, D′ :].

Let us considerC, D, D′, let T be a functor fromC to D, and letT ′ be a functor fromC to D′.
Then〈T,T ′〉 is a functor fromC to [:D, D′ :].

One can prove the following three propositions:

(63) LetT be a functor fromC to D, T ′ be a functor fromC to D′, andc be an object ofC. Then
(Obj〈T,T ′〉)(c) = 〈〈(ObjT)(c), (ObjT ′)(c)〉〉.

(64) For every functorT from C to D and for every functorT ′ from C′ to D′ holds[:T, T ′ :] =
〈T ·π1(C×C′),T ′ ·π2(C×C′)〉.

(65) For every functorT from C to D and for every functorT ′ from C′ to D′ holds[:T, T ′ :] is a
functor from[:C, C′ :] to [:D, D′ :].

Let us considerC, C′, D, D′, let T be a functor fromC to D, and letT ′ be a functor fromC′ to
D′. Then[:T, T ′ :] is a functor from[:C, C′ :] to [:D, D′ :].

Next we state the proposition

(66) LetT be a functor fromC to D, T ′ be a functor fromC′ to D′, c be an object ofC, andc′

be an object ofC′. Then(Obj[:T, T ′ :])(〈〈c, c′〉〉) = 〈〈(ObjT)(c), (ObjT ′)(c′)〉〉.
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