JOURNAL OF FORMALIZED MATHEMATICS
Volume12, Released 2000, ~Published 2003
Inst. of Computer Science, Univ. of Bialystok

Basic Facts about Inaccessible and Measurable
Cardinals

Josef Urban
Charles University
Praha

Summary. Inaccessible, strongly inaccessible and measurable cardinals are defined,
and it is proved that a measurable cardinal is strongly inaccessible. Filters on sets are defined,
some facts related to the section about cardinals are proved. Existence of the Ulam matrix on
non-limit cardinals is proved.
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The articles[[1B],[[10],[[14],[15],[18].[17],[112], [21] [ 12],L[9],[1B],T1],[T4],[[5], and 6] provide the
notation and terminology for this paper.

1. SOME FACTS ABOUT FILTERS AND IDEALS ON SETS

Let us note that there exists an ordinal number which is limit.
LetX,Y be sets. TheXX\Y is a subset oK.
We now state the proposition

(1) For every sex and for every infinite sexX holdsﬁ <X.

Let X be an infinite set. One can check thats infinite.

The scheméElemPropdeals with a non empty sel, a setB, and a unary predicat®, and
states that:

P[B]

provided the parameters meet the following requirement:

e B c {y,yranges over elements gf: P[y]}.

For simplicity, we use the following conventiol is a cardinal numbei is an alephX is a
non empty sety, Z, Z1, Z», Y1, Y» are subsets of, andSis a family of subsets oX.

Next we state the proposition

(2)(i) {X}is anonempty family of subsets ¥f
(i) 0¢{X}, and

(i)  for all Y1, Y2 holds ifY; € {X} andY;z € {X}, thenY1NY; € {X} and ifY; € {X} and
Y1 C Yy, thenY; € {X}.

Let us consideK. A non empty family of subsets of is said to be a filter oX if:

(Def. 1) 0¢itandforallYs, Y, holds ifY; €itandY; € it, thenYiNY, € itand ifY; € itandY; C Yo,
thenY; € it.
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Next we state two propositions:

(3) LetF be aset. Thek is a filter of X if and only if the following conditions are satisfied:
(i) Fisanonempty family of subsets Xf

(i) 0¢F and
(i) forall Y1, Y2 holds ifY; € F andY, € F, thenY1NY, € F and ifY; € F andY; C Ys, then
Y> e F

(4) {X}is afilter ofX.

In the sequeF, U1 denote filters oK.
One can prove the following propositions:

(5) XeF.
(6) IfY €F, thenX\Y ¢F.

(7) Letl be a non empty subset of 2Suppose that for evety holdsY < | iff Y¢ € F. Then
X ¢ 1 and for allY, Y2 holds ifY; € | andY; € I, thenY;UY2 €1 and ifY; € | andY, C Vs,
thenYs 1.

Let us consideK, S. We introduce dugas a synonym of’.
In the sequeBis a non empty family of subsets Xf

Let us consideK, S. One can verify tha$" is non empty.
The following two propositions are true:

(8) duals={Y:YCeS}
(9) duals={Y®:Y €S}
Let us consideX. A non empty family of subsets &f is said to be an ideal of if:

(Def. 2) X ¢itand forallYs, Y> holds ifY; € itandY; € it, thenY; UY; €itand if Y; € itandY, C Yy,
thenY; € it.

Let us consideK, F. Then duaF is an ideal ofX.
In the sequel denotes an ideal of.
We now state two propositions:

(10) For everyY holdsY ¢ F orY ¢ dualF and for everyY holdsY ¢ 1 orY ¢ duall.
(11) oel.
Let us consideK, N, S We say thaBis multiplicative withN if and only if:
(Def. 3) For every non empty s&t such thas, C SandS; <N holdsN$ € S
Let us consideK, N, S We say thaBis additive withN if and only if:
(Def. 4) For every non empty s&t such thats; C Sand§ <Nholds S € S

Let us consideK, N, F. We introducd- is complete withN as a synonym df is multiplicative
with N.

Let us consideK, N, I. We introducd is complete withN as a synonym of is additive with
N

One can prove the following proposition
(12) If Sis multiplicative withN, then duaSis additive withN.

Let us consideK, F. We say thaF is uniform if and only if:
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(Def. 5) For every such thal € F holdsY = X.
We say thaf is principal if and only if:

(Def. 6) There exist¥ such thalY € F and for everyZ such thaZ € F holdsY C Z.
We say thaf is an ultrafilter if and only if:

(Def. 7) For every holdsY € F or X\Y € F.

Let us considekK, F, Z. The functor Extendrilter(F, Z) yielding a non empty family of subsets
of X is defined as follows:

(Def. 8) ExtendFilter(F,Z) ={Y : Vy, (Y2e {1NZ:Y1€F} A Y2CY)}.
The following propositions are true:

(13) Forevery; holdsz; € ExtendFilter(F, Z) iff there existsZ, such tha¥Z, € F andZ,NZ C
Z;.

(14) If for everyY; such thatY; € F holdsY; meetsZ, thenZ € ExtendFilter(F,Z) and
ExtendFilter(F,Z) is a filter of X andF C ExtendFilter(F,Z).

Let us consideX. The functor FilterX yields a non empty family of subsets of &nd is
defined as follows:

(Def. 9) FiltersX = {S Sranges over subsets of 2Sis a filter ofX}.
One can prove the following proposition
(15) For every seSholdsSe FiltersX iff Sis a filter of X.

In the sequeF; denotes a non empty subset of Filtérs
The following two propositions are true:

(16) If Fyis C-linear, then J F; is a filter of X.
(17) For eveny there existd); such thaF C U; andU; is an ultrafilter.

In the sequeK is an infinite setY is a subset oK, andF, U; are filters ofX.
Let us consideKX. The functor FrecheFilterX yielding a filter ofX is defined by:

(Def. 10) FrecheFilterX = {Y : X\ Y < X}.
Let us consideK. The functor FrecheldealX yielding an ideal oiX is defined by:
(Def. 11) FrechetdealX = dual FrechefilterX.

One can prove the following four propositions:
(18) Y € FrechetFilterX iff X\Y < X.
(19) Y € FrechetldealX iff Y < X.
(20) If FrechetFilterX C F, thenF is uniform.
(21) IfUq is uniform and an ultrafilter, then FrechieiiterX C U;.

Let us consideK. Observe that there exists a filterXfwvhich is non principal and an ultrafilter.

Let us consideK. Observe that every filter of which is uniform and an ultrafilter is also non
principal.

We now state two propositions:

(22) For every an ultrafilter filtefF of X and for everyy holdsY € F iff Y ¢ dualF.

(23) If F is non principal and an ultrafilter arkelis complete withX, thenF is uniform.
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2. INACCESSIBLE ANDMEASURABLE CARDINALS, ULAM MATRIX
Next we state the proposition
(24) Nt < 2N,
We say that Generalized Continuum Hypothesis holds if and only if:
(Def. 12) For every alepN holdsN* = 2N,
Letl; be an aleph. We say thhtis inaccessible if and only if:
(Def. 13) Iy is regular and limit.

We introducd is inaccessible cardinal as a synonymniof inaccessible.
Let us observe that every aleph which is inaccessible is also regular and limit.
One can prove the following proposition

(25) Ogisinaccessible.

Letl; be an aleph. We say thitis strong limit if and only if:
(Def. 14) For ever\N such thaN < Iy holds 2" < 1;.

We introducd is strong limit cardinal as a synonym hfis strong limit.
Next we state two propositions:

(26) Op is strong limit.
(27) If M is strong limit, therM is limit.

Let us note that every aleph which is strong limit is also limit.
We now state the proposition

(28) If Generalized Continuum Hypothesis holds, theM ifs limit, thenM is strong limit.

Letl; be an aleph. We say thhtis strongly inaccessible if and only if:
(Def. 15) |4 is regular and strong limit.

We introducd is strongly inaccessible cardinal as a synonyriy é$ strongly inaccessible.
One can check that every aleph which is strongly inaccessible is also regular and strong limit.
Next we state two propositions:

(29) 0Op is strongly inaccessible.

(30) If M is strongly inaccessible, thévi is inaccessible.

Let us observe that every aleph which is strongly inaccessible is also inaccessible.
Next we state the proposition

(31) If Generalized Continuum Hypothesis holds, thehlifs inaccessible, thell is strongly
inaccessible.

Let us consideM. We say thaM is measurable if and only if:

(Def. 16) There exists a filtdy; of M such thatJ; is complete withM andU; is non principal and
an ultrafilter.

We introduceM is measurable cardinal as a synonynivbfs measurable.
We now state two propositions:
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(32) For every limit ordinal numbek and for every seX such thatX C A holds if supX = A,
thenUX = A

(33) If M is measurable, theM is regular.

Let us consideM. One can check thad™ is non limit.

Let us note that there exists a cardinal number which is non limit and infinite.

Let us note that every aleph which is non limit is also regular.

Let M be a non limit cardinal number. The functor predecelbyielding a cardinal number is

defined as follows:

(Def. 17) M = (predecessovl) ™.

Let M be a non limit aleph. Note that predecedgds infinite.

Let X be a set and le¥l, N; be cardinal numbers. An Inf Matrix &, Ny, X is a function from
[N, Ny ] into X.

For simplicity, we follow the rulesX is a setM is a non limit alephF is a filter of M, N1, N»
are elements of predecesbbrKj, K, are elements dfl, andT is an Inf Matrix of predecessM,
M, 2M.

Let us consideM, T. We say thal is Ulam Matrix ofM if and only if the conditions (Def. 18)

are satisfied.

(Def. 18)(i)) For allNy, K1, K2 such thaK; # Kz holdsT (N1, K1) N T(Ny, K2) is empty,

(i) for all K, N1, N such thatN; # Nz holdsT (Ng, K1) N T(Ng, K1) is empty,

(i)  for every Ny holdsM\ U{T(Ny, K1) : K1 € M} < predecessdv, and

(iv) foreveryKj holdsM\ U{T (N1, K1) : N € predecessdf} < predecessim.

Next we state four propositions:

(84) There exist3 such thafl is Ulam Matrix of M.

(85) LetgivenM andl be an ideal oM. Supposé is complete wititM and FrechetdealM C 1.
Then there exists a familg of subsets oM such that

() S=M,
(i) for every setX; such thafX; € SholdsX; ¢ 1, and
(iii)  for all setsXy, X such thaiX; € SandX; € SandX; # X holdsX; missesXs.

(36) For everyX and for every cardinal numbét such thatN < X there exists a s&t such that
Y C XandY =N.

(37) For even it is not true that there exists such thafF is uniform and an ultrafilter and
is complete withM.

In the sequeM is an aleph.
One can prove the following four propositions:

(38) If M is measurable, theM is limit.
(39) If M is measurable, theM is inaccessible.
(40) If M is measurable, thel is strong limit.

(41) If M is measurable, theM is strongly inaccessible.
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