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Summary. Inaccessible, strongly inaccessible and measurable cardinals are defined,
and it is proved that a measurable cardinal is strongly inaccessible. Filters on sets are defined,
some facts related to the section about cardinals are proved. Existence of the Ulam matrix on
non-limit cardinals is proved.

MML Identifier: CARD_FIL.

WWW: http://mizar.org/JFM/Vol12/card_fil.html

The articles [13], [10], [14], [15], [8], [7], [12], [11], [2], [9], [3], [1], [4], [5], and [6] provide the
notation and terminology for this paper.

1. SOME FACTS ABOUT FILTERS AND IDEALS ON SETS

Let us note that there exists an ordinal number which is limit.
Let X, Y be sets. ThenX \Y is a subset ofX.
We now state the proposition

(1) For every setx and for every infinite setX holds{x} < X .

Let X be an infinite set. One can check thatX is infinite.
The schemeElemPropdeals with a non empty setA , a setB, and a unary predicateP , and

states that:
P [B]

provided the parameters meet the following requirement:
• B ∈ {y;y ranges over elements ofA : P [y]}.

For simplicity, we use the following convention:N is a cardinal number,M is an aleph,X is a
non empty set,Y, Z, Z1, Z2, Y1, Y2 are subsets ofX, andS is a family of subsets ofX.

Next we state the proposition

(2)(i) {X} is a non empty family of subsets ofX,

(ii) /0 /∈ {X}, and

(iii) for all Y1, Y2 holds if Y1 ∈ {X} andY2 ∈ {X}, thenY1∩Y2 ∈ {X} and if Y1 ∈ {X} and
Y1 ⊆Y2, thenY2 ∈ {X}.

Let us considerX. A non empty family of subsets ofX is said to be a filter ofX if:

(Def. 1) /0 /∈ it and for allY1, Y2 holds ifY1 ∈ it andY2 ∈ it, thenY1∩Y2 ∈ it and ifY1 ∈ it andY1⊆Y2,
thenY2 ∈ it.
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Next we state two propositions:

(3) LetF be a set. ThenF is a filter ofX if and only if the following conditions are satisfied:

(i) F is a non empty family of subsets ofX,

(ii) /0 /∈ F, and

(iii) for all Y1, Y2 holds ifY1 ∈ F andY2 ∈ F, thenY1∩Y2 ∈ F and ifY1 ∈ F andY1 ⊆Y2, then
Y2 ∈ F.

(4) {X} is a filter ofX.

In the sequelF , U1 denote filters ofX.
One can prove the following propositions:

(5) X ∈ F.

(6) If Y ∈ F, thenX \Y /∈ F.

(7) Let I be a non empty subset of 2X. Suppose that for everyY holdsY ∈ I iff Yc ∈ F. Then
X /∈ I and for allY1, Y2 holds ifY1 ∈ I andY2 ∈ I , thenY1∪Y2 ∈ I and ifY1 ∈ I andY2 ⊆Y1,
thenY2 ∈ I .

Let us considerX, S. We introduce dualSas a synonym ofSc.
In the sequelS is a non empty family of subsets ofX.
Let us considerX, S. One can verify thatSc is non empty.
The following two propositions are true:

(8) dualS= {Y : Yc ∈ S}.

(9) dualS= {Yc : Y ∈ S}.

Let us considerX. A non empty family of subsets ofX is said to be an ideal ofX if:

(Def. 2) X /∈ it and for allY1, Y2 holds ifY1∈ it andY2∈ it, thenY1∪Y2∈ it and ifY1∈ it andY2⊆Y1,
thenY2 ∈ it.

Let us considerX, F . Then dualF is an ideal ofX.
In the sequelI denotes an ideal ofX.
We now state two propositions:

(10) For everyY holdsY /∈ F or Y /∈ dualF and for everyY holdsY /∈ I or Y /∈ dualI .

(11) /0 ∈ I .

Let us considerX, N, S. We say thatS is multiplicative withN if and only if:

(Def. 3) For every non empty setS1 such thatS1 ⊆ SandS1 < N holds
⋂

S1 ∈ S.

Let us considerX, N, S. We say thatS is additive withN if and only if:

(Def. 4) For every non empty setS1 such thatS1 ⊆ SandS1 < N holds
⋃

S1 ∈ S.

Let us considerX, N, F . We introduceF is complete withN as a synonym ofF is multiplicative
with N.

Let us considerX, N, I . We introduceI is complete withN as a synonym ofI is additive with
N.

One can prove the following proposition

(12) If S is multiplicative withN, then dualS is additive withN.

Let us considerX, F . We say thatF is uniform if and only if:
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(Def. 5) For everyY such thatY ∈ F holdsY = X .

We say thatF is principal if and only if:

(Def. 6) There existsY such thatY ∈ F and for everyZ such thatZ ∈ F holdsY ⊆ Z.

We say thatF is an ultrafilter if and only if:

(Def. 7) For everyY holdsY ∈ F or X \Y ∈ F.

Let us considerX, F , Z. The functor ExtendFilter(F,Z) yielding a non empty family of subsets
of X is defined as follows:

(Def. 8) ExtendFilter(F,Z) = {Y :
∨

Y2
(Y2 ∈ {Y1∩Z : Y1 ∈ F} ∧ Y2 ⊆Y)}.

The following propositions are true:

(13) For everyZ1 holdsZ1∈ExtendFilter(F,Z) iff there existsZ2 such thatZ2∈F andZ2∩Z⊆
Z1.

(14) If for every Y1 such thatY1 ∈ F holds Y1 meetsZ, then Z ∈ ExtendFilter(F,Z) and
ExtendFilter(F,Z) is a filter ofX andF ⊆ ExtendFilter(F,Z).

Let us considerX. The functor FiltersX yields a non empty family of subsets of 2X and is
defined as follows:

(Def. 9) FiltersX = {S;Sranges over subsets of 2X: S is a filter ofX}.

One can prove the following proposition

(15) For every setSholdsS∈ FiltersX iff S is a filter ofX.

In the sequelF1 denotes a non empty subset of FiltersX.
The following two propositions are true:

(16) If F1 is⊆-linear, then
⋃

F1 is a filter ofX.

(17) For everyF there existsU1 such thatF ⊆U1 andU1 is an ultrafilter.

In the sequelX is an infinite set,Y is a subset ofX, andF , U1 are filters ofX.
Let us considerX. The functor FrechetFilterX yielding a filter ofX is defined by:

(Def. 10) FrechetFilterX = {Y : X \Y < X}.

Let us considerX. The functor FrechetIdealX yielding an ideal ofX is defined by:

(Def. 11) FrechetIdealX = dualFrechetFilterX.

One can prove the following four propositions:

(18) Y ∈ FrechetFilterX iff X \Y < X .

(19) Y ∈ FrechetIdealX iff Y < X .

(20) If FrechetFilterX ⊆ F, thenF is uniform.

(21) If U1 is uniform and an ultrafilter, then FrechetFilterX ⊆U1.

Let us considerX. Observe that there exists a filter ofX which is non principal and an ultrafilter.
Let us considerX. Observe that every filter ofX which is uniform and an ultrafilter is also non

principal.
We now state two propositions:

(22) For every an ultrafilter filterF of X and for everyY holdsY ∈ F iff Y /∈ dualF.

(23) If F is non principal and an ultrafilter andF is complete withX , thenF is uniform.
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2. INACCESSIBLE ANDMEASURABLE CARDINALS , ULAM MATRIX

Next we state the proposition

(24) N+ ≤ 2N.

We say that Generalized Continuum Hypothesis holds if and only if:

(Def. 12) For every alephN holdsN+ = 2N.

Let I1 be an aleph. We say thatI1 is inaccessible if and only if:

(Def. 13) I1 is regular and limit.

We introduceI1 is inaccessible cardinal as a synonym ofI1 is inaccessible.
Let us observe that every aleph which is inaccessible is also regular and limit.
One can prove the following proposition

(25) ℵ0 is inaccessible.

Let I1 be an aleph. We say thatI1 is strong limit if and only if:

(Def. 14) For everyN such thatN < I1 holds 2N < I1.

We introduceI1 is strong limit cardinal as a synonym ofI1 is strong limit.
Next we state two propositions:

(26) ℵ0 is strong limit.

(27) If M is strong limit, thenM is limit.

Let us note that every aleph which is strong limit is also limit.
We now state the proposition

(28) If Generalized Continuum Hypothesis holds, then ifM is limit, thenM is strong limit.

Let I1 be an aleph. We say thatI1 is strongly inaccessible if and only if:

(Def. 15) I1 is regular and strong limit.

We introduceI1 is strongly inaccessible cardinal as a synonym ofI1 is strongly inaccessible.
One can check that every aleph which is strongly inaccessible is also regular and strong limit.
Next we state two propositions:

(29) ℵ0 is strongly inaccessible.

(30) If M is strongly inaccessible, thenM is inaccessible.

Let us observe that every aleph which is strongly inaccessible is also inaccessible.
Next we state the proposition

(31) If Generalized Continuum Hypothesis holds, then ifM is inaccessible, thenM is strongly
inaccessible.

Let us considerM. We say thatM is measurable if and only if:

(Def. 16) There exists a filterU1 of M such thatU1 is complete withM andU1 is non principal and
an ultrafilter.

We introduceM is measurable cardinal as a synonym ofM is measurable.
We now state two propositions:
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(32) For every limit ordinal numberA and for every setX such thatX ⊆ A holds if supX = A,
then

⋃
X = A.

(33) If M is measurable, thenM is regular.

Let us considerM. One can check thatM+ is non limit.
Let us note that there exists a cardinal number which is non limit and infinite.
Let us note that every aleph which is non limit is also regular.
Let M be a non limit cardinal number. The functor predecessorM yielding a cardinal number is

defined as follows:

(Def. 17) M = (predecessorM)+.

Let M be a non limit aleph. Note that predecessorM is infinite.
Let X be a set and letN, N1 be cardinal numbers. An Inf Matrix ofN, N1, X is a function from

[:N, N1 :] into X.
For simplicity, we follow the rules:X is a set,M is a non limit aleph,F is a filter ofM, N1, N2

are elements of predecessorM, K1, K2 are elements ofM, andT is an Inf Matrix of predecessorM,
M, 2M.

Let us considerM, T. We say thatT is Ulam Matrix ofM if and only if the conditions (Def. 18)
are satisfied.

(Def. 18)(i) For allN1, K1, K2 such thatK1 6= K2 holdsT(N1, K1)∩T(N1, K2) is empty,

(ii) for all K1, N1, N2 such thatN1 6= N2 holdsT(N1, K1)∩T(N2, K1) is empty,

(iii) for every N1 holdsM \
⋃
{T(N1, K1) : K1 ∈M} ≤ predecessorM, and

(iv) for everyK1 holdsM \
⋃
{T(N1, K1) : N1 ∈ predecessorM} ≤ predecessorM.

Next we state four propositions:

(34) There existsT such thatT is Ulam Matrix ofM.

(35) Let givenM andI be an ideal ofM. SupposeI is complete withM and FrechetIdealM⊆ I .
Then there exists a familySof subsets ofM such that

(i) S = M,

(ii) for every setX1 such thatX1 ∈ SholdsX1 /∈ I , and

(iii) for all setsX1, X2 such thatX1 ∈ SandX2 ∈ SandX1 6= X2 holdsX1 missesX2.

(36) For everyX and for every cardinal numberN such thatN≤ X there exists a setY such that
Y ⊆ X andY = N.

(37) For everyM it is not true that there existsF such thatF is uniform and an ultrafilter andF
is complete withM.

In the sequelM is an aleph.
One can prove the following four propositions:

(38) If M is measurable, thenM is limit.

(39) If M is measurable, thenM is inaccessible.

(40) If M is measurable, thenM is strong limit.

(41) If M is measurable, thenM is strongly inaccessible.
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