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Summary. In the first section the results of [18, axiom (30)]1, i.e. the correspondence
between natural and ordinal (cardinal) numbers are shown. The next section is concerned
with the concepts of infinity and cofinality (see [8]), and introduces alephs as infinite cardinal
numbers. The arithmetics of alephs, i.e. some facts about addition and multiplication, is
present in the third section. The concepts of regular and irregular alephs are introduced in the
fourth section, and the fact thatℵ0 and every non-limit cardinal number are regular is proved
there. Finally, for every alephsα andβ

αβ =


2β, if α≤ β,

∑γ<α γβ, if β < cfα andα is limit cardinal,(
∑γ<α γβ

)cfα
, if cfα≤ β≤ α.

Some proofs are based on [16].

MML Identifier: CARD_5.
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The articles [19], [14], [20], [2], [21], [12], [11], [15], [3], [13], [5], [6], [4], [1], [7], [17], [10], [9],
and [8] provide the notation and terminology for this paper.

1. RESULTS OF[18, AXIOM (30)]

For simplicity, we adopt the following convention:n is a natural number,A, B are ordinal numbers,
X is a set, andx, y are sets.

One can prove the following propositions:

(1) 1= {0} and 2= {0,1}.

(8)2 Segn = (n+1)\{0}.

2. INFINITY, ALEPHS AND COFINALITY

We adopt the following convention:f is a function,K, M, N are cardinal numbers, andp1, p2 are
sequences of ordinal numbers.

Next we state several propositions:

(9) X
+

= X+.

1Axiom (30) — n = {k∈ N : k < n} for every natural numbern.
2 The propositions (2)–(7) have been removed.

1 c© Association of Mizar Users
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(10) y∈
⋃

f iff there existsx such thatx∈ dom f andy∈ f (x).

(11) ℵA is infinite.

(12) If M is infinite, then there existsA such thatM = ℵA.

(13) There existsn such thatM = n or there existsA such thatM = ℵA.

Let us considerp1. Observe that
⋃

p1 is ordinal.
We now state a number of propositions:

(14) SupposeX ⊆ A. Then there existsp1 such thatp1 = the canonical isomorphism between
⊆
⊆

X
and⊆X andp1 is increasing and domp1 = ⊆

X and rngp1 = X.

(15) If X ⊆ A, then supX is cofinal with⊆X.

(16) If X ⊆ A, thenX = ⊆
X .

(17) There existsB such thatB⊆ A andA is cofinal withB.

(18) There existsM such thatM ≤ A andA is cofinal withM and for everyB such thatA is
cofinal withB holdsM ⊆ B.

(19) If rngp1 = rngp2 andp1 is increasing andp2 is increasing, thenp1 = p2.

(20) If p1 is increasing, thenp1 is one-to-one.

(21) (p1
a p2)�domp1 = p1.

(22) If X 6= /0, then{Y;Y ranges over elements of 2X: Y < M} ≤M · X
M

.

(23) M < 2M.

Let us observe that there exists a set which is infinite and there exists a cardinal number which
is infinite.

One can verify that every set which is infinite is also non empty.
An aleph is an infinite cardinal number. Let us considerM. The functor cfM yielding a cardinal

number is defined by:

(Def. 2)3 M is cofinal with cfM and for everyN such thatM is cofinal withN holds cfM ≤ N.

Let us considerN. The functor(α 7→ αN)α∈M yielding a function yielding cardinal numbers is
defined by the conditions (Def. 3).

(Def. 3)(i) For everyx holdsx∈ dom((α 7→ αN)α∈M) iff x∈M andx is a cardinal number, and

(ii) for everyK such thatK ∈M holds(α 7→ αN)α∈M(K) = KN.

Let us considerA. One can check thatℵA is infinite.

3. ARITHMETICS OF ALEPHS

In the sequela, b are alephs.
The following propositions are true:

(24) There existsA such thata = ℵA.

(25) a 6= 0 anda 6= 1 anda 6= 2 anda 6= n andn < a andℵ0 ≤ a.

(26) If a≤M or a < M, thenM is an aleph.

3 The definition (Def. 1) has been removed.
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(27) If a≤M or a < M, thena+M = M andM +a = M anda·M = M andM ·a = M.

(28) a+a = a anda·a = a.

(31)4 M ≤Ma.

(32)
⋃

a = a.

Let us considera, M. Observe thata+M is infinite.
Let us considerM, a. One can check thatM +a is infinite.
Let us considera, b. Observe thata·b is infinite andab is infinite.

4. REGULAR ALEPHS

Let I1 be an aleph. We say thatI1 is regular if and only if:

(Def. 4) cfI1 = I1.

We introduceI1 is irregular as an antonym ofI1 is regular.
Let us considera. Observe thata+ is infinite and every element ofa is ordinal.
The following propositions are true:

(34)5 cf(ℵ0) = ℵ0.

(35) cf(a+) = a+.

(36) ℵ0 ≤ cfa.

(37) cf0= 0 and cfn+1 = 1.

(38) If X ⊆M andX < cfM, then supX ∈M and
⋃

X ∈M.

(39) If domp1 = M and rngp1 ⊆ N andM < cfN, then supp1 ∈ N and
⋃

p1 ∈ N.

Let us considera. Observe that cfa is infinite.
The following three propositions are true:

(40) If cfa < a, thena is a limit cardinal number.

(41) Suppose cfa < a. Then there exists a sequencex1 of ordinal numbers such that domx1 =
cfa and rngx1 ⊆ a andx1 is increasing anda = supx1 andx1 is a function yielding cardinal
numbers and 0/∈ rngx1.

(42) ℵ0 is regular anda+ is regular.

5. INFINITE POWERS

In the sequela, b are alephs.
One can prove the following propositions:

(43) If a≤ b, thenab = 2b.

(44) (a+)b = ab ·a+.

(45) ∑((α 7→ αb)α∈a)≤ ab.

(46) If a is a limit cardinal number andb < cfa, thenab = ∑((α 7→ αb)α∈a).

(47) If cfa≤ b andb < a, thenab = (∑((α 7→ αb)α∈a))cfa.

4 The propositions (29) and (30) have been removed.
5 The proposition (33) has been removed.
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