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Summary. The concept of countable sets is introduced and there are shown some
facts which deal with finite and countable sets. Besides, the article includes theorems and
lemmas on the sum and product of infinite cardinals. The most important of them is Hes-
senberg’s theorem which says that for every infinite cardinalm the productm ·m is equal to
m.
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The articles [15], [10], [18], [17], [2], [19], [8], [7], [12], [3], [5], [4], [16], [1], [6], [11], [9], [13],
and [14] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules:X, Y, x denote sets,D denotes a non empty set,
m, n, n1, n2, n3, m2, m1 denote natural numbers,A, B denote ordinal numbers,L, K, M, N denote
cardinal numbers, andf denotes a function.

We now state a number of propositions:

(1) X is finite iff X is finite.

(2) X is finite iff X < ℵ0.

(3) If X is finite, thenX ∈ℵ0 andX ∈ ω.

(4) X is finite iff there existsn such thatX = n.

(5) succA\{A}= A.

(6) If A≈ n, thenA = n.

(7) A is finite iff A∈ ω.

(8) A is not finite iff ω⊆ A.

(9) M is finite iff M ∈ℵ0.

(11)1 M is not finite iff ℵ0 ⊆M.

(13)2 If N is finite andM is not finite, thenN < M andN≤M.

(14) X is not finite iff there existsY such thatY ⊆ X andY = ℵ0.

(15) ω is not finite andN is not finite.

1 The proposition (10) has been removed.
2 The proposition (12) has been removed.
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(16) ℵ0 is not finite.

(17) X = /0 iff X = 0.

(19)3 0≤M.

(20) X = Y iff X+ = Y+.

(21) M = N iff N+ = M+.

(22) N < M iff N+ ≤M.

(23) N < M+ iff N≤M.

(24) 0< M iff 1 ≤M.

(25) 1< M iff 2 ≤M.

(26) If M is finite and ifN≤M or N < M, thenN is finite.

We now state a number of propositions:

(27) A is a limit ordinal number iff for allB, n such thatB∈ A holdsB+n∈ A.

(28) A+succn = succA+n andA+(n+1) = succA+n.

(29) There existsn such thatA·succ1 = A+n.

(30) If A is a limit ordinal number, thenA·succ1 = A.

(31) If ω⊆ A, then1+A = A.

(32) If M is infinite, thenM is a limit ordinal number.

(33) If M is not finite, thenM +M = M.

(34) If M is not finite and ifN≤M or N < M, thenM +N = M andN+M = M.

(35) If X is not finite and ifX ≈Y or Y ≈ X, thenX∪Y ≈ X andX∪Y = X .

(36) If X is not finite andY is finite, thenX∪Y ≈ X andX∪Y = X .

(37) If X is not finite and ifY < X or Y ≤ X , thenX∪Y ≈ X andX∪Y = X .

(38) For all finite cardinal numbersM, N holdsM +N is finite.

(39) If M is not finite, thenM +N is not finite andN+M is not finite.

(40) For all finite cardinal numbersM, N holdsM ·N is finite.

(41) If K < L andM < N or K ≤ L andM < N or K < L andM ≤ N or K ≤ L andM ≤ N, then
K +M ≤ L+N andM +K ≤ L+N.

(42) If M < N or M ≤ N, thenK + M ≤ K + N andK + M ≤ N + K andM + K ≤ K + N and
M +K ≤ N+K.

Let us considerX. We say thatX is countable if and only if:

(Def. 1) X ≤ℵ0.

The following propositions are true:

(43) If X is finite, thenX is countable.

3 The proposition (18) has been removed.
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(44) ω is countable andN is countable.

(45) X is countable iff there existsf such that domf = N andX ⊆ rng f .

(46) If Y ⊆ X andX is countable, thenY is countable.

(47) If X is countable andY is countable, thenX∪Y is countable.

(48) If X is countable, thenX∩Y is countable andY∩X is countable.

(49) If X is countable, thenX \Y is countable.

(50) If X is countable andY is countable, thenX−. Y is countable.

In the sequelr is a real number.
One can prove the following proposition

(51) r 6= 0 orn = 0 iff rn 6= 0.

Let m, n be natural numbers. Thenmn is a natural number.
We now state a number of propositions:

(52) If 2n1 · (2·m1 +1) = 2n2 · (2·m2 +1), thenn1 = n2 andm1 = m2.

(53) [:N, N :]≈ N andN = [:N, N :] .

(54) ℵ0 ·ℵ0 = ℵ0.

(55) If X is countable andY is countable, then[:X, Y :] is countable.

(56) D1 ≈ D andD1 = D .

(57) [:Dn, Dm:]≈ Dn+m and [:Dn, Dm:] = Dn+m.

(58) If D is countable, thenDn is countable.

(59) If dom f ≤M and for everyx such thatx∈ dom f holds f (x) ≤ N, then
⋃

f ≤M ·N.

(60) If X ≤M and for everyY such thatY ∈ X holdsY ≤ N, then
⋃

X ≤M ·N.

(61) For everyf such that domf is countable and for everyx such thatx∈ dom f holds f (x) is
countable holds

⋃
f is countable.

(62) If X is countable and for everyY such thatY ∈ X holdsY is countable, then
⋃

X is count-
able.

(63) For everyf such that domf is finite and for everyx such thatx∈ dom f holds f (x) is finite
holds

⋃
f is finite.

(65)4 If D is countable, thenD∗ is countable.

(66) ℵ0 ≤ D∗ .

In this article we present several logical schemes. The schemeFraenCoun1deals with a unary
functorF yielding a set and a unary predicateP , and states that:

{F (n) : P [n]} is countable
for all values of the parameters.

The schemeFraenCoun2deals with a binary functorF yielding a set and a binary predicateP ,
and states that:

{F (n1,n2) : P [n1,n2]} is countable
for all values of the parameters.

4 The proposition (64) has been removed.
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The schemeFraenCoun3deals with a ternary functorF yielding a set and a ternary predicate
P , and states that:

{F (n1,n2,n3) : P [n1,n2,n3]} is countable
for all values of the parameters.

The following propositions are true:

(67) ℵ0 · n ≤ℵ0 andn ·ℵ0 ≤ℵ0.

(68) If K < L andM < N or K ≤ L andM < N or K < L andM ≤ N or K ≤ L andM ≤ N, then
K ·M ≤ L ·N andM ·K ≤ L ·N.

(69) If M < N or M≤N, thenK ·M≤K ·N andK ·M≤N ·K andM ·K≤K ·N andM ·K≤N ·K.

(70) If K < L andM < N or K ≤ L andM < N or K < L andM ≤ N or K ≤ L andM ≤ N, then
K = 0 orKM ≤ LN.

(71) If M < N or M ≤ N, thenK = 0 orKM ≤ KN andMK ≤ NK .

(72) M ≤M +N andN≤M +N.

(73) If N 6= 0, thenM ≤M ·N andM ≤ N ·M.

(74) If K < L andM < N, thenK +M < L+N andM +K < L+N.

(75) If K +M < K +N, thenM < N.

(76) If X + Y = X andY < X , thenX \Y = X .

(77) If M is not finite, thenM ·M = M.

(78) If M is not finite and if 0< N and ifN≤M or N < M, thenM ·N = M andN ·M = M.

(79) If M is not finite and ifN≤M or N < M, thenM ·N≤M andN ·M ≤M.

(80) If X is not finite, then[:X, X :]≈ X and [:X, X :] = X .

(81) If X is not finite andY is finite andY 6= /0, then[:X, Y :]≈ X and [:X, Y :] = X .

(82) If K < L andM < N, thenK ·M < L ·N andM ·K < L ·N.

(83) If K ·M < K ·N, thenM < N.

(84) If X is not finite, thenX = ℵ0 · X .

(85) If X 6= /0 andX is finite andY is not finite, thenY · X = Y .

(86) If D is not finite andn 6= 0, thenDn ≈ D andDn = D .

(87) If D is not finite, thenD = D∗ .
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