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Summary. In the article addition, multiplication and power operation of cardinals
are introduced. Presented are some properties of equipotence of Cartesian products, basic
cardinal arithmetics laws (transformativity, associativity, distributivity), and some facts about
finite sets.
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The articles|[1B],[[12],19],114],171,18],3],14],[5],[11],[12],[[6], 1], and [10] provide the notation
and terminology for this paper.

For simplicity, we adopt the following conventiorA, B are ordinal numbersk, M, N are
cardinal numbersg, X1, X2, ¥, V1, Y2, X, Y, Z, X1, X2, Y1, Y» are sets, and is a function.

Next we state several propositions:

(2E| X <Y iff there existsf such thaiX C °Y.
3)
(4) 1fX <Y, thenY\X #0.

X < X.

—

(5) IfxeXandX ~Y, thenY # 0 and there existg such thak € V.

(6) 2X~2Xand2X = 2X.
(7) 1fZeYX thenZ~XandZ = X.

Let us consideM, N. The functoM + N yielding a cardinal number is defined as follows:

(Def.1) M+N=M+N.

Let us observe that the functbt + N is commutative. The functdvl - N yields a cardinal number
and is defined as follows:

(Def.2) M-N=[M,NJ.

Let us observe that the functbt- N is commutative. The functavN yields a cardinal number and
is defined as follows:

(Def.3) MN =MN.

The following propositions are true:

1 The proposition (1) has been removed.
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(11E| [X,Y]=[Y,X]and[X,Y] =LY, X].

12) [[X, Y], Z2]=[X Z)Jand[[[X,Y],Z] = [X,[Y,Z]].

Y,
(13) X~ [X, {x}]andX = (X, {x}].

14) [X,)Y]= [:? Y]and[X,Y]~[X,Y]and[X,Y]~[X,Y]and[X,Y] = [X,Y]
Yi

and [.

(15) If X1~ Y1 andXz = Yo, then[: Xy, Xo] =~ [ Y1, Y2 ] and [ Xq, X2 = [Y1, 2.

(16) 1fxq # %2, thenA+B = [A {1} JU[B, {x2} ] andA+B = [ A, {x1} JU[B, {x2}].

(A7) 1fxg #xo, thenK+M =~ [K, {x1} JU[M, {x2} ] andK +M = [K, {x1} JU[M, {x}].

(18) A-B~[A BjandA-B=[A BJ.

(19) o= 0 and 1= 1 and 2= sucdl.
(20) 1=1.
(22F] 2={0,1} and 2= succl.

(23) If Xg~ Yy and Xy = Y, andxg # X2 andyy # Yo, then [ X, {x¢} JU[Xo, {x2}] = [ Y1,
i TUEY2, {y2} Jand [ Xq, {xa} JU[Xo, {x2}] = [Y2, {ya} JU[ Y2, {y2} 1.

(24) A+B=A+B.

(25) A B=A-B.

(26) [X, {O}JULY, {1}]~[Y, {0} ]JULX, {1} ]and[X, {0} JULY, {1}] =LY, {0} JU[X, {1}].

27) [ X1, X2 JULY, Yo = [ Xo, X1 JU[ Yo, Yol and [ X, Xo JU Y1, Yo = [ Xo, X1 JU[ Y2, Y1 1.

(28) Ifx£y,thenX +Y = [X, {x} JULY, {y}].
(29) M+0=M.

@] (K+M)+N=K+(M+N).
(32) K-0=0.

(33) K-1=K.

(35F (K-M)-N=K-(M-N).
(36) 2-K=K+K.

(37) K-(M+N)=K-M+K-N.
(38) KO=1.

(39) IfK 0, then (¢ =0.

(40) K'=Kand X =1.

(41) KM+N —gM.KN,

2 The propositions (8)—(10) have been removed.
3 The proposition (21) has been removed.
4 The proposition (30) has been removed.
5 The proposition (34) has been removed.
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(42) (K-M)N=KN.MmN.
(43) KMN = (KM)N,

(49) 2%

2.
(45) K?2=K-K.
(46) (K+M)2=K-K+2-K-M+M-M.
(47) XUY <X+VY.

(48) If X missesy, thenXUY = X +Y.

In the sequein, n are natural numbers.
The following propositions are true:

(49) n+m=n+m.

(50) n-m=n-m.

(51) n+fm=n+Mm.

(52) Tm=n-m.

(53) For all finite set, Y such thatX missesy holds cardX UY) = cardX + cardy.
(54) For every finite seX such thai ¢ X holds cardX U {x}) = cardX + 1.
(57@ For all finite setsX, Y holds X < Y iff cardX < cardyY.

(58) For all finite setX, Y holdsX < Y iff cardX < cardy.

(59) For every seX such thatX = 0 holdsX = 0.

(60) For every seX holds X = 1 iff there existsc such thatX = {x}.

(61) For every finite seX holdsX ~ cardX andX = ‘cardX andX ~ SegcarK.
(62) For all finite set, Y holds cardX UY) < cardX + cardY.

(63) For all finite set, Y such thaly C X holds cardX \ Y) = cardX — cardY.
(64) For all finite set, Y holds cardX UY) = (cardX 4 cardY) — card X NY).
(65) For all finite set, Y holds card X, Y] = cardX - cardy.

(67@ For all finite setsX, Y such thaX C Y holds car < cardY andX < Y.
(68) 1fX <Y or X <Y andifY is finite, thenX is finite.

In the sequeky, Xz, X3, X4, X5, Xg, X7, Xg denote sets.
Next we state a number of propositions:

(69) cardxy,x} <2
(70) cardxg,xp,x3} < 3.
(71) cardxy,xp,X3,Xa} < 4.

(72) cardxy,X2,X3,X4,Xs5} < 5.

6 The propositions (55) and (56) have been removed.
7 The proposition (66) has been removed.
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(73) cardxy,%2,%3,%4,%s5,%6} < 6.

(74) cardxy, X2, X3,X4,Xs5,Xe, X7} < 7.

(75) cardxy, X2, X3, X4, X5, X6, X7,Xg} < 8.
(76)  If x1 # X, then cardxy, %} = 2.

(77) If xq # X2 andxq # X3 andxz # X3, then cardxy, X2, X3} = 3.

(78) If x1 # X2 and X3 # x3 and x; # X4 and X2 # X3 and X2 # X4 and X3 # X4, then

(1]
(2]

[l

4

(3]

6]

[7]

8l

[20]

[11]

[12]

[13]

[14]

Card{xl7 X21 X3; X4} = 4
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