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Summary. In the article addition, multiplication and power operation of cardinals
are introduced. Presented are some properties of equipotence of Cartesian products, basic
cardinal arithmetics laws (transformativity, associativity, distributivity), and some facts about
finite sets.
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The articles [13], [12], [9], [14], [7], [8], [3], [4], [5], [11], [2], [6], [1], and [10] provide the notation
and terminology for this paper.

For simplicity, we adopt the following convention:A, B are ordinal numbers,K, M, N are
cardinal numbers,x, x1, x2, y, y1, y2, X, Y, Z, X1, X2, Y1, Y2 are sets, andf is a function.

Next we state several propositions:

(2)1 X ≤ Y iff there existsf such thatX ⊆ f ◦Y.

(3) f ◦X ≤ X .

(4) If X < Y , thenY \X 6= /0.

(5) If x∈ X andX ≈Y, thenY 6= /0 and there existsx such thatx∈Y.

(6) 2X ≈ 2X and2X = 2X .

(7) If Z ∈YX, thenZ≈ X andZ = X .

Let us considerM, N. The functorM +N yielding a cardinal number is defined as follows:

(Def. 1) M +N = M +N .

Let us observe that the functorM +N is commutative. The functorM ·N yields a cardinal number
and is defined as follows:

(Def. 2) M ·N = [:M, N :] .

Let us observe that the functorM ·N is commutative. The functorMN yields a cardinal number and
is defined as follows:

(Def. 3) MN = MN .

The following propositions are true:

1 The proposition (1) has been removed.
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(11)2 [:X, Y :]≈ [:Y, X :] and [:X, Y :] = [:Y, X :] .

(12) [: [:X, Y :], Z :]≈ [:X, [:Y, Z :] :] and [: [:X, Y :], Z :] = [:X, [:Y, Z :] :] .

(13) X ≈ [:X, {x} :] andX = [:X, {x} :] .

(14) [:X, Y :] ≈ [: X , Y :] and[:X, Y :] ≈ [:X, Y :] and[:X, Y :] ≈ [: X , Y :] and [:X, Y :] = [: X , Y :]

and [:X, Y :] = [:X, Y :] and [:X, Y :] = [: X , Y :] .

(15) If X1 ≈Y1 andX2 ≈Y2, then[:X1, X2 :]≈ [:Y1, Y2 :] and [:X1, X2 :] = [:Y1, Y2 :] .

(16) If x1 6= x2, thenA+B≈ [:A, {x1} :]∪ [:B, {x2} :] andA+B = [:A, {x1} :]∪ [:B, {x2} :] .

(17) If x1 6= x2, thenK +M ≈ [:K, {x1} :]∪ [:M, {x2} :] andK +M = [:K, {x1} :]∪ [:M, {x2} :] .

(18) A·B≈ [:A, B:] andA·B = [:A, B:] .

(19) 0= /0 and 1= 1 and 2= succ1.

(20) 1= 1.

(22)3 2 = { /0,1} and 2= succ1.

(23) If X1 ≈ Y1 and X2 ≈ Y2 and x1 6= x2 and y1 6= y2, then [:X1, {x1} :]∪ [:X2, {x2} :] ≈ [:Y1,

{y1} :]∪ [:Y2, {y2} :] and [:X1, {x1} :]∪ [:X2, {x2} :] = [:Y1, {y1} :]∪ [:Y2, {y2} :] .

(24) A+B = A + B.

(25) A·B = A · B.

(26) [:X, {0} :]∪[:Y, {1} :]≈ [:Y, {0} :]∪[:X, {1} :] and[:X, {0} :]∪ [:Y, {1} :] = [:Y, {0} :]∪ [:X, {1} :] .

(27) [:X1, X2 :]∪[:Y1, Y2 :]≈ [:X2, X1 :]∪[:Y2, Y1 :] and[:X1, X2 :]∪ [:Y1, Y2 :] = [:X2, X1 :]∪ [:Y2, Y1 :] .

(28) If x 6= y, thenX + Y = [:X, {x} :]∪ [:Y, {y} :] .

(29) M +0 = M.

(31)4 (K +M)+N = K +(M +N).

(32) K ·0 = 0.

(33) K ·1 = K.

(35)5 (K ·M) ·N = K · (M ·N).

(36) 2·K = K +K.

(37) K · (M +N) = K ·M +K ·N.

(38) K0 = 1.

(39) If K 6= 0, then 0K = 0.

(40) K1 = K and 1K = 1.

(41) KM+N = KM ·KN.

2 The propositions (8)–(10) have been removed.
3 The proposition (21) has been removed.
4 The proposition (30) has been removed.
5 The proposition (34) has been removed.
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(42) (K ·M)N = KN ·MN.

(43) KM·N = (KM)N.

(44) 2X = 2X .

(45) K2 = K ·K.

(46) (K +M)2 = K ·K +2·K ·M +M ·M.

(47) X∪Y ≤ X + Y .

(48) If X missesY, thenX∪Y = X + Y .

In the sequelm, n are natural numbers.
The following propositions are true:

(49) n+m= n+m.

(50) n·m= n·m.

(51) n+m = n + m.

(52) n·m = n · m.

(53) For all finite setsX, Y such thatX missesY holds card(X∪Y) = cardX +cardY.

(54) For every finite setX such thatx /∈ X holds card(X∪{x}) = cardX +1.

(57)6 For all finite setsX, Y holdsX ≤ Y iff cardX ≤ cardY.

(58) For all finite setsX, Y holdsX < Y iff cardX < cardY.

(59) For every setX such thatX = 0 holdsX = /0.

(60) For every setX holdsX = 1 iff there existsx such thatX = {x}.

(61) For every finite setX holdsX ≈ cardX andX ≈ cardX andX ≈ SegcardX.

(62) For all finite setsX, Y holds card(X∪Y)≤ cardX +cardY.

(63) For all finite setsX, Y such thatY ⊆ X holds card(X \Y) = cardX−cardY.

(64) For all finite setsX, Y holds card(X∪Y) = (cardX +cardY)−card(X∩Y).

(65) For all finite setsX, Y holds card[:X, Y :] = cardX ·cardY.

(67)7 For all finite setsX, Y such thatX ⊂Y holds cardX < cardY andX < Y .

(68) If X ≤ Y or X < Y and ifY is finite, thenX is finite.

In the sequelx1, x2, x3, x4, x5, x6, x7, x8 denote sets.
Next we state a number of propositions:

(69) card{x1,x2} ≤ 2.

(70) card{x1,x2,x3} ≤ 3.

(71) card{x1,x2,x3,x4} ≤ 4.

(72) card{x1,x2,x3,x4,x5} ≤ 5.

6 The propositions (55) and (56) have been removed.
7 The proposition (66) has been removed.
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(73) card{x1,x2,x3,x4,x5,x6} ≤ 6.

(74) card{x1,x2,x3,x4,x5,x6,x7} ≤ 7.

(75) card{x1,x2,x3,x4,x5,x6,x7,x8} ≤ 8.

(76) If x1 6= x2, then card{x1,x2}= 2.

(77) If x1 6= x2 andx1 6= x3 andx2 6= x3, then card{x1,x2,x3}= 3.

(78) If x1 6= x2 and x1 6= x3 and x1 6= x4 and x2 6= x3 and x2 6= x4 and x3 6= x4, then
card{x1,x2,x3,x4}= 4.
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