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Summary. In this paper, we define Boolean valued functions. Some of their algebraic
properties are proved. We also introduce and examine the infimum and supremum of Boolean
valued functions and their properties. In the last section, relations between Boolean valued
functions and partitions are discussed.

MML Identifier: BVFUNC_1.

WWW: http://mizar.org/JFM/Voll0/bvfunc_1.html

The articles([11],[[4],[18],[[1],[[16],[16],.[14],12],.[8],[[O],[[1R],[1B],[[10],[17],[[5], and.[6] provide
the notation and terminology for this paper.

1. BOOLEAN OPERATIONS

In this papelY denotes a set.
Letk, | be boolean sets. The functoes | is defined as follows:

(Def. 1) k=1=-kVlI.
The functork < | is defined as follows:
(Def.2) kel ==(kal).

Let us note that the functér< | is commutative.
Letk, | be boolean sets. Note thats- | is boolean an#t < | is boolean.
Let us note that every set which is boolean is also natural.
Letk, | be boolean sets. Let us observe that | if and only if:

(Def. 3) k=1=true.

We introducek € | as a synonym ok <.

2. BOOLEAN VALUED FUNCTIONS

Let us consideY. The functor BVRY) is defined as follows:
(Def. 4) BVFY) = Boolear .

LetY be a set. Note that BV[¥) is functional and non empty.

LetY be a set. Note that every element of BYF is boolean-valued.

In the sequeY is a non empty set.

Let a be a boolean-valued function and ebe a set. We introduce @ x) as a synonym of

ax).
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Let us consideY and leta be an element of BVFY). Then—ais an element of BVEY). Letb
be an element of BVFY). ThenaAbis an element of BVEY).
Let p, g be boolean-valued functions. The funcr qyielding a function is defined as follows:

(Def. 5) dompVvq)=dompndomgand for every setsuch thak € dom(pV q) holds(pV qg)(x) =
P(X) v a(x).

Let us note that the functgrv g is commutative. The functqe® q yields a function and is defined
by:

(Def. 6) don{p®q) =dompndomgand for every set such thak € dom(p& q) holds(padq)(x) =
P(X) ®q(X).

Let us note that the functqr g is commutative.

Let p, q be boolean-valued functions. One can check fhag is boolean-valued and® q is
boolean-valued.

Let A be a non empty set and Ipt q be elements oBoolea. ThenpV g is an element of
Boolear and it can be characterized by the condition:

(Def. 7) For every elementof A holds(pV g)(x) = p(X) V q(x).
Thenp@ qis an element oBooleart and it can be characterized by the condition:
(Def. 8) For every elementof A holds(p& q)(x) = p(x) & q(X).

Let us considel and leta, b be elements of BVFY). ThenaV b is an element of BVEY).
Thena®bis an element of BVFY).

Let p, q be boolean-valued functions. The functe q yields a function and is defined as
follows:

(Def.9) don{p=-q) = dompndomg and for every sex such thatx € dom(p = q) holds(p =
)(X) = p(x) = q(x).
The functorp < qyielding a function is defined as follows:

(Def. 10) donip < q) = dompndomg and for every sex such thatx € dom(p < q) holds(p
9) () = p(x) < q(x).

Let us note that the functqr < g is commutative.

Let p, g be boolean-valued functions. One can check that q is boolean-valued anpg < qis
boolean-valued.

Let A be a non empty set and It q be elements oBoolearf. Thenp = qis an element of
Boolear and it can be characterized by the condition:

(Def. 11) For every elementof A holds(p = q)(x) = = Pj(p,X) V Pj(q,x).
Thenp < qis an element oBoolearf and it can be characterized by the condition:
(Def. 12) For every elementof A holds(p < q)(x) = —~(Pj(p,x) © Pj(9,X)).

Let us considel and leta, b be elements of BVEY). Thena = b is an element of BVFY).
Thena < bis an element of BVFY).
Let us conside¥. The functorfalsgY) yields an element dBoolearf and is defined by:

(Def. 13) For every elementof Y holds PjfalsgY),x) = false
Let us consideY. The functortrue(Y) yielding an element oBoolear is defined as follows:
(Def. 14) For every elementof Y holds Pjtrue(Y),x) = true.

One can prove the following propositions:

(4E] For every boolean-valued functi@rholds——a = a.

1 The propositions (1)—(3) have been removed.
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For every elemerd of Boolearl holds—true(Y) = falsgY) and—falsgY) = true(Y).
For all elements, b of Boolearl holdsara=a.

For all elements, b, ¢ of Boolearf holds(aAb) Ac=aA (bAc).
For every elemerd of Booleal holdsa falsgY) = falsgY).

For every elemerd of Boolearf holdsa A true(Y) = a.

For every elemers of Boolearf holdsaVva=a.

For all elements, b, ¢ of Boolearf holds(aVvb)vc=aV (bVvc).
For every elemen of Boolearf holdsaV falsgY) = a.

For every elemera of Boolear! holdsaV true(Y) = true(Y).

For all elements, b, c of Booleard holdsaAbVvc= (avc)A(bvc).
For all elements, b, ¢ of Boolear holds(avb)Ac=aAcVbAc.
For all elements, b of Boolear{ holds—(aV b) = —aA —b.

For all elements, b of Boolear{ holds—(aAb) = —aV —b.

Let us considel and leta, b be elements oBoolearf. The predicate € b is defined as

follows:

(Def. 15) For every elementof Y such that Rja,x) = true holds Pjb,x) = true.

Let us note that the predicates b is reflexive.
The following propositions are true:

(18)

For all elements, b, ¢ of Boolear{ holds ifa € b andb € a, thena=band ifac band

b ec,thenaec.

(19)
(20)
(21)

For all elements, b of Boolear{ holdsa = b = true(Y) iff a€ b.
For all elements, b of Boolear{ holdsa < b = true(Y) iff a=b.

For every elemera of Boolear! holdsfalsgY) € aanda € true(Y).

3. INFIMUM AND SUPREMUM

Let us considel and leta be an element oBoolearf. The functor INFa yields an element of
Boolear and is defined as follows:

(Def. 16)

true(Y), if foreveryelemenk of Y holds Pja, x) = true,
INFa= .
falsgY), otherwise.

The functor SUR yields an element dBoolearf and is defined by:

(Def. 17)

falsg(Y), if foreveryelemenk of Y holds Pja, x) = false

SUR= { true(Y), otherwise.

We now state two propositions:

(22)
(23)

For every elemera of Boolear! holds—INFa = SUP-a and—SUPa = INF-a.
INFfalsgY) = falsgY) and INRrue(Y) = true(Y) and SURalsgY) = falsgY) and

SUPtrue(Y) = true(Y).
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Let us consideY. Observe thatals€Y) is constant.

Let us consideY. One can check thatue(Y) is constant.

LetY be a non empty set. Note that there exists an elemeBoofeart which is constant.
We now state several propositions:

(24) For every constant elemembf Boolear holdsa = falsgY) or a = true(Y).
(25) For every constant elemaihbf Boolean holds INFd = d and SURI = d.

(26) For all elements, b of Boolearf holds INHaAb) = INFaA INFb and SURaV b) =
SUPaV SUPb.

(27) For every elemera of Boolearf and for every constant elemedtof Boolear holds
INF(d =-a) =d = INFaand INfa=-d) = SUPa=-d.

(28) For every elemera of Boolearf and for every constant elemedtof Boolear holds
INF(dva) =dVINFaand SURdAa) =d A SUPaand SURaAd) = SUPaAd.

(29) For every elemertof Boolear! and for every elementof Y holds P{INFa,x) € Pj(a,x).

(30) For every elemertof Boolear and for every elementof Y holds Pja,x) € Pj(SUPa, x).

4. BOOLEAN VALUED FUNCTIONS AND PARTITIONS

Let us consideY, leta be an element dBoolear(, and letP; be a partition ofY. We say that is
dependent oP; if and only if:

(Def. 18) For every sdt such that= € P; and for all setxi, X» such thatx; € F andx, € F holds
a(x1) = a(xz).

Next we state two propositions:

(31) For every elemerat of Boolear! holdsa is dependent of (Y).

(32) For every constant elemembf Boolear! holdsa is dependent oD(Y).

Let us consideY and letP; be a partition olY. We see that the elementBf is a subset of .

Let us consideY, letx be an element of, and letP; be a partition ofy. Then EqClasx, P1)
is an element oP;. We introduce Liffx, P1) as a synonym of EqClagsPy).

Let us consideY, leta be an element dBoolearf, and letP; be a partition ofy. The functor
INF(a, Py) yields an element dBoolearf and is defined by the condition (Def. 19).

(Def. 19) Lety be an element of. Then

(i) if for every elementx of Y such thatx € EqClassy,P;) holds Pja,x) = true, then
Pj(INF(a,Py1),y) =true, and

(i) ifitis not true that for every elementof Y such thak € EqClassy, P1) holds P{a,x) =
true, then P{INF(a,P;),y) = false

Let us consideY, leta be an element dBoolear(, and letP; be a partition ofy. The functor
SURa, Py) yields an element dBooleari and is defined by the condition (Def. 20).
(Def. 20) Lety be an element of. Then

(i) if there exists an element of Y such thatx € EqClas$y,P;) and Pja,x) = true, then
Pj(SUR@&,P1),y) = true, and

(i) ifitis nottrue that there exists an elemefY such thak € EqClass$y, P;) and Pja,x) =
true, then P{SURa, P,),y) = false

Next we state a number of propositions:
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(33) For every elemenit of Boolearl and for every partitios®; of Y holds INFa,P;) is depen-
dent ofP;.

(34) For every elemertof Boolear! and for every partitiof; of Y holds SURa, Py) is depen-
dent ofPy.

(35) For every element of Boolear! and for every partitiof; of Y holds INFa,P;) € a.
(36) For every elemerit of Boolear! and for every partitiof; of Y holdsa € SUR(a, Py).

(37) For every elemera of Booleal and for every partitiorP; of Y holds —INF(a,P;) =
SUP(ﬁa, Pl).

(38) For every elemera of Boolearl holds INFa, O(Y)) = INFa.
(39) For every elemerit of Boolear! holds SURa, O(Y)) = SUPa.
(40) For every elemerat of Boolear! holds INFa, I(Y)) = a.

(41) For every elemerat of Boolear! holds SURa, I(Y)) = a.

(42) For all elements, b of Boolea and for every partitior®, of Y holds INFaAb,P;) =
INF(a,P1) AINF(b,Py).

(43) For all elements, b of Boolearf and for every partitior; of Y holds SURaV b,P;) =
SURa,P1) vV SURDb,Py).

Let us conside¥ and letf be an element dBoolearf. The functor GPart yielding a partition
of Y is defined by:

(Def. 21) GPart = {{x;xranges over elements¥f f(x) = true}, {X; X ranges over elements %f

f(xX) = false}} \ {0}.

The following two propositions are true:

(44) For every element of Boolean holdsa is dependent of GPaat

(45) For every elemeratof Boolear! and for every partitioff; of Y such thas is dependent of
P; holdsP; is finer than GPas.
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