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The articles [13], [5], [16], [17], [10], [2], [12], [7], [6], [14], [18], [15], [3], [8], [1], [4], [11], and
[9] provide the notation and terminology for this paper.

1. PRELIMINARIES

One can prove the following proposition

(1) For all topological spacesS, T holdsΩ[:S,T :] = [:ΩS, ΩT :].

Let X be a set and letY be an empty set. Observe that[:X, Y :] is empty.
Let X be an empty set and letY be a set. One can check that[:X, Y :] is empty.
We now state the proposition

(2) Let X, Y be non empty topological spaces andx be a point ofX. ThenY 7−→ x is a
continuous map fromY into X�{x}.

Let T be a non empty topological structure. One can verify that idT is homeomorphism.
Let S, T be non empty topological structures. Let us notice that the predicateS and T are

homeomorphic is reflexive and symmetric.
One can prove the following proposition

(3) Let S, T, V be non empty topological spaces. SupposeSandT are homeomorphic andT
andV are homeomorphic. ThenSandV are homeomorphic.

2. ON THE PROJECTIONS ANDEMPTY TOPOLOGICAL SPACES

Let T be a topological structure and letP be an empty subset ofT. Note thatT�P is empty.
Let us note that there exists a topological space which is strict and empty.
We now state two propositions:

(4) For every topological spaceT1 and for every empty topological spaceT2 holds[:T1, T2 :] is
empty and[:T2, T1 :] is empty.

(5) Every empty topological space is compact.
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Let us note that every topological space which is empty is also compact.
Let T1 be a topological space and letT2 be an empty topological space. One can verify that[:T1,

T2 :] is empty.
The following propositions are true:

(6) Let X, Y be non empty topological spaces,x be a point ofX, and f be a map from[:Y,
X�{x} :] into Y. If f = π1((the carrier ofY)×{x}), then f is one-to-one.

(7) LetX, Y be non empty topological spaces,x be a point ofX, and f be a map from[:X�{x},
Y :] into Y. If f = π2({x}× the carrier ofY), then f is one-to-one.

(8) Let X, Y be non empty topological spaces,x be a point ofX, and f be a map from[:Y,
X�{x} :] into Y. If f = π1((the carrier ofY)×{x}), then f−1 = 〈idY,Y 7−→ x〉.

(9) LetX, Y be non empty topological spaces,x be a point ofX, and f be a map from[:X�{x},
Y :] into Y. If f = π2({x}× the carrier ofY), then f−1 = 〈Y 7−→ x, idY〉.

(10) Let X, Y be non empty topological spaces,x be a point ofX, and f be a map from[:Y,
X�{x} :] into Y. If f = π1((the carrier ofY)×{x}), then f is a homeomorphism.

(11) LetX, Y be non empty topological spaces,x be a point ofX, and f be a map from[:X�{x},
Y :] into Y. If f = π2({x}× the carrier ofY), then f is a homeomorphism.

3. ON THE PRODUCT OFCOMPACT SPACES

We now state a number of propositions:

(12) LetX be a non empty topological space,Y be a compact non empty topological space,G be
an open subset of[:X, Y :], andx be a set. Supposex∈ {x′;x′ ranges over points ofX: [:{x′},
the carrier ofY :]⊆G}. Then there exists a many sorted setf indexed by the carrier ofY such
that for every seti if i ∈ the carrier ofY, then there exists a subsetG1 of X and there exists
a subsetH1 of Y such thatf (i) = 〈〈G1, H1〉〉 and〈〈x, i〉〉 ∈ [:G1, H1 :] andG1 is open andH1 is
open and[:G1, H1 :]⊆G.

(13) LetX be a non empty topological space,Y be a compact non empty topological space,G
be an open subset of[:Y, X :], andx be a set. Supposex∈ {y;y ranges over points ofX: [:ΩY,
{y} :]⊆G}. Then there exists an open subsetRof X such thatx∈RandR⊆ {y;y ranges over
points ofX: [:ΩY, {y} :]⊆G}.

(14) LetX be a non empty topological space,Y be a compact non empty topological space, and
G be an open subset of[:Y, X :]. Then{x;x ranges over points ofX: [:ΩY, {x} :] ⊆ G} ∈ the
topology ofX.

(15) For all non empty topological spacesX, Y and for every pointx of X holds[:X�{x}, Y :] and
Y are homeomorphic.

(16) For all non empty topological spacesS, T such thatS andT are homeomorphic andS is
compact holdsT is compact.

(17) For all topological spacesX, Y and for every subspaceX1 of X holds[:Y, X1 :] is a subspace
of [:Y, X :].

(18) LetX be a non empty topological space,Y be a compact non empty topological space,x be
a point ofX, andZ be a subset of[:Y, X :]. If Z = [:ΩY, {x} :], thenZ is compact.

(19) LetX be a non empty topological space,Y be a compact non empty topological space, and
x be a point ofX. Then[:Y, X�{x} :] is compact.

(20) Let X, Y be compact non empty topological spaces andR be a family of subsets ofX.
SupposeR= {Q;Q ranges over open subsets ofX: [:ΩY, Q:]⊆

⋃
BaseAppr(Ω[:Y,X :])}. Then

R is open and a cover ofΩX.
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(21) LetX, Y be compact non empty topological spaces,R be a family of subsets ofX, andF
be a family of subsets of[:Y, X :]. Suppose that

(i) F is a cover of[:Y, X :] and open, and

(ii) R = {Q;Q ranges over open subsets ofX:
∨

F1 : family of subsets of[:Y,X :] (F1 ⊆ F ∧ F1is
finite∧ [:ΩY, Q:]⊆

⋃
F1)}.

ThenR is open and a cover ofX.

(22) LetX, Y be compact non empty topological spaces,R be a family of subsets ofX, andF
be a family of subsets of[:Y, X :]. Suppose that

(i) F is a cover of[:Y, X :] and open, and

(ii) R = {Q;Q ranges over open subsets ofX:
∨

F1 : family of subsets of[:Y,X :] (F1 ⊆ F ∧ F1is
finite∧ [:ΩY, Q:]⊆

⋃
F1)}.

Then there exists a familyC of subsets ofX such thatC⊆ RandC is finite and a cover ofX.

(23) LetX, Y be compact non empty topological spaces andF be a family of subsets of[:Y, X :].
SupposeF is a cover of[:Y, X :] and open. Then there exists a familyG of subsets of[:Y, X :]
such thatG⊆ F andG is a cover of[:Y, X :] and finite.

(24) For all topological spacesT1, T2 such thatT1 is compact andT2 is compact holds[:T1, T2 :]
is compact.

Let T1, T2 be compact topological spaces. Note that[:T1, T2 :] is compact.
We now state two propositions:

(25) LetX, Y be non empty topological spaces,X1 be a non empty subspace ofX, andY1 be a
non empty subspace ofY. Then[:X1, Y1 :] is a subspace of[:X, Y :].

(26) Let X, Y be non empty topological spaces,Z be a non empty subset of[:Y, X :], V be a
non empty subset ofX, andW be a non empty subset ofY. SupposeZ = [:W, V :]. Then the
topological structure of[:Y�W, X�V :] = the topological structure of[:Y, X :]�Z.

Let T be a topological space. Note that there exists a subset ofT which is compact.
Let T be a topological space and letP be a compact subset ofT. One can verify thatT�P is

compact.
One can prove the following proposition

(27) Let T1, T2 be topological spaces,S1 be a subset ofT1, andS2 be a subset ofT2. If S1 is
compact andS2 is compact, then[:S1, S2 :] is a compact subset of[:T1, T2 :].
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