Properties of the Product of Compact Topological Spaces

Adam Grabowski University of Białystok

MML Identifier: BORSUK_3.

WWW: http://mizar.org/JFM/Vol11/borsuk_3.html

The articles [13], [5], [16], [17], [10], [2], [12], [7], [6], [14], [18], [15], [3], [8], [1], [4], [11], and [9] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following proposition

(1) For all topological spaces S, T holds $\Omega_{[:S,T:]} = [:\Omega_S, \Omega_T:]$.

Let X be a set and let Y be an empty set. Observe that [:X,Y:] is empty. Let X be an empty set and let Y be a set. One can check that [:X,Y:] is empty. We now state the proposition

(2) Let X, Y be non empty topological spaces and x be a point of X. Then $Y \longmapsto x$ is a continuous map from Y into $X \upharpoonright \{x\}$.

Let T be a non empty topological structure. One can verify that id_T is homeomorphism.

Let S, T be non empty topological structures. Let us notice that the predicate S and T are homeomorphic is reflexive and symmetric.

One can prove the following proposition

- (3) Let *S*, *T*, *V* be non empty topological spaces. Suppose *S* and *T* are homeomorphic and *T* and *V* are homeomorphic. Then *S* and *V* are homeomorphic.
 - 2. ON THE PROJECTIONS AND EMPTY TOPOLOGICAL SPACES

Let T be a topological structure and let P be an empty subset of T. Note that $T \upharpoonright P$ is empty. Let us note that there exists a topological space which is strict and empty. We now state two propositions:

- (4) For every topological space T_1 and for every empty topological space T_2 holds $[:T_1, T_2:]$ is empty and $[:T_2, T_1:]$ is empty.
- (5) Every empty topological space is compact.

Let us note that every topological space which is empty is also compact.

Let T_1 be a topological space and let T_2 be an empty topological space. One can verify that $[:T_1, T_2:]$ is empty.

The following propositions are true:

- (6) Let X, Y be non empty topological spaces, x be a point of X, and f be a map from $[:Y, X \upharpoonright \{x\}:]$ into Y. If $f = \pi_1($ (the carrier of $Y) \times \{x\})$, then f is one-to-one.
- (7) Let X, Y be non empty topological spaces, x be a point of X, and f be a map from $[:X \upharpoonright \{x\}, Y:]$ into Y. If $f = \pi_2(\{x\} \times \text{the carrier of } Y)$, then f is one-to-one.
- (8) Let X, Y be non empty topological spaces, x be a point of X, and f be a map from $[:Y, X \upharpoonright \{x\}:]$ into Y. If $f = \pi_1((\text{the carrier of } Y) \times \{x\})$, then $f^{-1} = \langle \operatorname{id}_Y, Y \longmapsto x \rangle$.
- (9) Let X, Y be non empty topological spaces, x be a point of X, and f be a map from $[:X \upharpoonright \{x\}, Y:]$ into Y. If $f = \pi_2(\{x\} \times \text{the carrier of } Y)$, then $f^{-1} = \langle Y \longmapsto x, \text{id}_Y \rangle$.
- (10) Let X, Y be non empty topological spaces, x be a point of X, and f be a map from $[:Y, X \upharpoonright \{x\}:]$ into Y. If $f = \pi_1(\text{(the carrier of }Y) \times \{x\})$, then f is a homeomorphism.
- (11) Let X, Y be non empty topological spaces, x be a point of X, and f be a map from $[:X \upharpoonright \{x\}, Y:]$ into Y. If $f = \pi_2(\{x\} \times \text{the carrier of } Y)$, then f is a homeomorphism.

3. On the Product of Compact Spaces

We now state a number of propositions:

- (12) Let X be a non empty topological space, Y be a compact non empty topological space, G be an open subset of [:X,Y:], and x be a set. Suppose $x \in \{x';x' \text{ ranges over points of } X: [: \{x'\}, \text{ the carrier of } Y:] \subseteq G\}$. Then there exists a many sorted set f indexed by the carrier of Y such that for every set i if $i \in \text{the carrier of } Y$, then there exists a subset G_1 of X and there exists a subset H_1 of Y such that $f(i) = \langle G_1, H_1 \rangle$ and $\langle x, i \rangle \in [:G_1, H_1:]$ and G_1 is open and H_1 is open and $[:G_1, H_1:] \subseteq G$.
- (13) Let X be a non empty topological space, Y be a compact non empty topological space, G be an open subset of [:Y, X:], and X be a set. Suppose $X \in \{y; y \text{ ranges over points of } X: [:\Omega_Y, \{y\}:] \subseteq G\}$. Then there exists an open subset R of X such that $X \in R$ and $X \subseteq \{y; y \text{ ranges over points of } X: [:\Omega_Y, \{y\}:] \subseteq G\}$.
- (14) Let X be a non empty topological space, Y be a compact non empty topological space, and G be an open subset of [:Y,X:]. Then $\{x;x \text{ ranges over points of } X\colon [:\Omega_Y,\{x\}:]\subseteq G\}\in \text{the topology of } X$.
- (15) For all non empty topological spaces X, Y and for every point x of X holds $[:X \upharpoonright \{x\}, Y:]$ and Y are homeomorphic.
- (16) For all non empty topological spaces S, T such that S and T are homeomorphic and S is compact holds T is compact.
- (17) For all topological spaces X, Y and for every subspace X_1 of X holds $[:Y, X_1:]$ is a subspace of [:Y, X:].
- (18) Let X be a non empty topological space, Y be a compact non empty topological space, x be a point of X, and Z be a subset of [:Y,X:]. If $Z = [:\Omega_Y, \{x\}:]$, then Z is compact.
- (19) Let X be a non empty topological space, Y be a compact non empty topological space, and x be a point of X. Then $[:Y,X \upharpoonright \{x\}:]$ is compact.
- (20) Let X, Y be compact non empty topological spaces and R be a family of subsets of X. Suppose $R = \{Q; Q \text{ ranges over open subsets of } X \colon [:\Omega_Y, Q:] \subseteq \bigcup \operatorname{BaseAppr}(\Omega_{[:Y,X:]})\}$. Then R is open and a cover of Ω_X .

- (21) Let X, Y be compact non empty topological spaces, R be a family of subsets of X, and Y be a family of subsets of [:Y,X:]. Suppose that
 - (i) F is a cover of [:Y,X:] and open, and
- (ii) $R = \{Q; Q \text{ ranges over open subsets of } X: \bigvee_{F_1: \text{family of subsets of } [Y,X:]} (F_1 \subseteq F \land F_1 \text{ is finite } \land [:\Omega_Y,Q:] \subseteq \bigcup F_1)\}.$

Then R is open and a cover of X.

- (22) Let X, Y be compact non empty topological spaces, R be a family of subsets of X, and Y be a family of subsets of X. Suppose that
 - (i) F is a cover of [:Y,X:] and open, and
- (ii) $R = \{Q; Q \text{ ranges over open subsets of } X: \bigvee_{F_1: \text{family of subsets of } [Y,X]} (F_1 \subseteq F \land F_1 \text{ is finite } \land [:\Omega_Y,Q:] \subseteq \bigcup F_1)\}.$

Then there exists a family C of subsets of X such that $C \subseteq R$ and C is finite and a cover of X.

- (23) Let X, Y be compact non empty topological spaces and F be a family of subsets of [:Y, X:]. Suppose F is a cover of [:Y, X:] and open. Then there exists a family G of subsets of [:Y, X:] such that $G \subseteq F$ and G is a cover of [:Y, X:] and finite.
- (24) For all topological spaces T_1 , T_2 such that T_1 is compact and T_2 is compact holds $[:T_1, T_2:]$ is compact.

Let T_1 , T_2 be compact topological spaces. Note that $[:T_1, T_2:]$ is compact. We now state two propositions:

- (25) Let X, Y be non empty topological spaces, X_1 be a non empty subspace of X, and Y_1 be a non empty subspace of Y. Then $[:X_1, Y_1:]$ is a subspace of [:X, Y:].
- (26) Let X, Y be non empty topological spaces, Z be a non empty subset of [:Y,X:], V be a non empty subset of X, and W be a non empty subset of Y. Suppose Z = [:W,V:]. Then the topological structure of [:Y|W,X|V:] = the topological structure of $[:Y,X:] \upharpoonright Z$.

Let T be a topological space. Note that there exists a subset of T which is compact.

Let T be a topological space and let P be a compact subset of T. One can verify that $T \upharpoonright P$ is compact.

One can prove the following proposition

(27) Let T_1 , T_2 be topological spaces, S_1 be a subset of T_1 , and S_2 be a subset of T_2 . If S_1 is compact and S_2 is compact, then $[:S_1, S_2:]$ is a compact subset of $[:T_1, T_2:]$.

REFERENCES

- Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/funct_3.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_2.html.
- [4] Czesław Byliński. Introduction to categories and functors. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/cat_1.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [6] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [7] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [8] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.

- [9] Michał Muzalewski. Categories of groups. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/grcat_1. html.
- [10] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [11] Beata Padlewska. Locally connected spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/connsp_2.html.
- [12] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [14] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/borsuk_1.html.
- [15] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [16] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [17] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [18] Mariusz Żynel and Adam Guzowski. To topological spaces. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/t_Otopsp.html.

Received February 13, 1999

Published January 2, 2004