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The articles[[1B],[[5],[[16],[17],.[10],[12],[112],[17],.16],.[14],[118],[[15] [ 13],.18],L[1],[14],[T11], and
[9] provide the notation and terminology for this paper.

1. PRELIMINARIES
One can prove the following proposition
(1) For all topological spaces T holdsQ s 1) = [Qs, Q7 ].

Let X be a set and let be an empty set. Observe tHa, Y ] is empty.
Let X be an empty set and [¥tbe a set. One can check tfiat, Y ] is empty.
We now state the proposition

(2) LetX,Y be non empty topological spaces axde a point ofX. ThenY — x is a
continuous map fronY into X[{x}.

Let T be a non empty topological structure. One can verify thaischomeomorphism.

Let S T be non empty topological structures. Let us notice that the pred®ated T are
homeomorphic is reflexive and symmetric.

One can prove the following proposition

(3) LetS T,V be non empty topological spaces. Supp8sadT are homeomorphic and
andV are homeomorphic. The®andV are homeomorphic.

2. ON THE PROJECTIONS ANDEMPTY TOPOLOGICAL SPACES

Let T be a topological structure and Btbe an empty subset af. Note thafT [P is empty.
Let us note that there exists a topological space which is strict and empty.
We now state two propositions:

(4) For every topological space and for every empty topological spatgholds[: Ty, T» ] is
empty and: T, T1 ] is empty.

(5) Every empty topological space is compact.
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Let us note that every topological space which is empty is also compact.

Let T; be a topological space and [Btbe an empty topological space. One can verify fiat
T, is empty.

The following propositions are true:

(6) LetX,Y be non empty topological spaceshe a point ofX, and f be a map from:Y,
X[{x}]intoY. If f =m((the carrier ofY) x {x}), thenf is one-to-one.

(7) LetX,Y be non empty topological spaced)e a point ofX, andf be a map front X[{x},
Y]intoY. If f =m({x} x the carrier ofY), thenf is one-to-one.

(8) LetX,Y be non empty topological spaceshe a point ofX, and f be a map from:Y,
XH{x}]intoY. If f=rm((the carrier oY) x {x}), thenf~1 = (idy,Y — X).

(9) LetX,Y be non empty topological spaced)e a point ofX, andf be a map front X[{x},
Y]intoY. If f =m({x} x the carrier ofY), thenf 1 = (Y — x,idy).

(10) LetX, Y be non empty topological spaceshe a point ofX, and f be a map fron:Y,
XH{x}JintoY. If f =m((the carrier ofY) x {x}), thenf is a homeomorphism.

(11) LetX,Y be non empty topological spaced)e a point ofX, andf be a map front X[{x},
Y]intoY. If f =m({x} x the carrier ofY), thenf is a homeomorphism.

3. ON THE PRODUCT OFCOMPACT SPACES
We now state a number of propositions:

(12) LetX be a non empty topological spadebe a compact non empty topological spaéde
an open subset dfX, Y], andx be a set. Supposec {X;X ranges over points of: [ {X'},
the carrier ofY ] C G}. Then there exists a many sorted §éndexed by the carrier of such
that for every set if i € the carrier ofY, then there exists a subget of X and there exists
a subsetd; of Y such thatf (i) = (G1, H1) and(x, i) € [ G1, H1] andG; is open andH; is
open and: G, H1] C G.

(13) LetX be a non empty topological spadepe a compact non empty topological spaGe,
be an open subset p¥/, X ], andx be a set. Supposec {y;y ranges over points of: [ Qy,
{y} ] € G}. Then there exists an open subRetf X such thak € RandR C {y;y ranges over
points ofX: [ Qy, {y}] C G}.

(14) LetX be a non empty topological spadtbe a compact non empty topological space, and
G be an open subset ¢, X]. Then{x;x ranges over points of: [ Qy, {x}] C G} € the
topology ofX.

(15) For all non empty topological spacésY and for every poink of X holds[: X[{x}, Y ] and
Y are homeomorphic.

(16) For all non empty topological spac8sT such thatSandT are homeomorphic an8lis
compact holdg is compact.

(17) For all topological spaces, Y and for every subspacg of X holds[Y, X; ] is a subspace
of [Y, X1.

(18) LetX be a non empty topological spadebe a compact non empty topological spacke
a point ofX, andZ be a subset ofY, X . If Z=[Qy, {x}], thenZ is compact.

(19) LetX be a non empty topological spadtbe a compact non empty topological space, and
x be a point ofX. Then[Y, X[{x} ] is compact.

(20) LetX,Y be compact non empty topological spaces &ie a family of subsets oX.
Suppos&k = {Q; Q ranges over open subsettf[: Qy, Q] C (JBaseApp(Qpy xj)}- Then
Ris open and a cover @by.
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(21) LetX,Y be compact nhon empty topological spadefie a family of subsets of, andF
be a family of subsets dfY, X . Suppose that

(i) Fisacoverof:Y, X]and open, and
(i) R={Q;Q ranges over open subsets Xf VE, :family of subsets of Y, X ] (Fi CF A Ris
finite A [Qy, Q] CUF1)}.
ThenRis open and a cover of.
(22) LetX,Y be compact non empty topological spadefie a family of subsets of, andF
be a family of subsets dfY, X . Suppose that
(i) Fisacoverof:Y, X]and open, and
(i) R ={Q;Q ranges over open subsets Xf VEy :tamily of subsets of Y, X ] (Fi CF A Ris
finite A [Qy, Q] CUF1)}.
Then there exists a famil@ of subsets oK such thatC C RandC is finite and a cover oX.
(23) LetX,Y be compact non empty topological spaces Brixk a family of subsets dfY, X .

Supposé- is a cover offY, X ] and open. Then there exists a fanfyof subsets of Y, X]
such thatG C F andG is a cover of;Y, X ] and finite.

(24) For all topological spacel, T» such thafl; is compact andy is compact hold§ T1, T> ]
is compact.

Let Ty, T, be compact topological spaces. Note that, T> ] is compact.
We now state two propositions:

(25) LetX,Y be non empty topological space§, be a non empty subspaceXf andY; be a
non empty subspace ¥t Then[: X;, Y1 ] is a subspace dfX, Y.

(26) LetX, Y be non empty topological spacesbe a non empty subset o¥, X, V be a
non empty subset of, andW be a non empty subset ¥f Suppos& = [W,V ]. Then the
topological structure of Y [W, X[V ] = the topological structure dfY, X ]|Z.

Let T be a topological space. Note that there exists a subgewdfich is compact.

Let T be a topological space and IBthe a compact subset @f. One can verify thal [P is
compact.

One can prove the following proposition

(27) LetT;, T, be topological space& be a subset ofy, andS, be a subset of,. If S is
compact and, is compact, theflS;, S is a compact subset 6Ty, To .
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