Introduction to the Homotopy Theory

Adam Grabowski University of Białystok

Summary. The paper introduces some preliminary notions concerning the homotopy theory according to [15]: paths and arcwise connected to topological spaces. The basic operations on paths (addition and reversing) are defined. In the last section the predicate: P,Q are homotopic is defined. We also showed some properties of the product of two topological spaces needed to prove reflexivity and symmetry of the above predicate.

MML Identifier: BORSUK_2.

WWW: http://mizar.org/JFM/Vol9/borsuk_2.html

The articles [20], [10], [22], [16], [23], [7], [9], [8], [19], [13], [4], [1], [12], [18], [11], [17], [21], [24], [14], [6], [5], [2], and [3] provide the notation and terminology for this paper.

1. Preliminaries

In this paper T, T_1 , T_2 , S are non empty topological spaces.

The scheme FrCard deals with a non empty set \mathcal{A} , a set \mathcal{B} , a unary functor \mathcal{F} yielding a set, and a unary predicate \mathcal{P} , and states that:

 $\overline{\{\mathcal{F}(w); w \text{ ranges over elements of } \mathcal{A} : w \in \mathcal{B} \land \mathcal{P}[w]\}} \leq \overline{\overline{\mathcal{B}}}$ for all values of the parameters.

Next we state the proposition

- (1) Let f be a map from T_1 into S and g be a map from T_2 into S. Suppose that T_1 is a subspace of T and T_2 is a subspace of T and T_2 is a subspace of T and T_2 is compact and T is a T_2 space and T is continuous and T is continuous and T is a T space and T is continuous and T is continuous and T into T
- Let S, T be non empty topological spaces. Observe that there exists a map from S into T which is continuous.

Let T be a non empty topological structure. Note that id_T is open and continuous.

Let T be a non empty topological structure. One can verify that there exists a map from T into T which is continuous and one-to-one.

We now state the proposition

(3)¹ Let S, T be non empty topological spaces and f be a map from S into T. If f is a homeomorphism, then f^{-1} is open.

1

© Association of Mizar Users

¹ The proposition (2) has been removed.

2. Paths and arcwise connected spaces

Let T be a topological structure and let a, b be points of T. Let us assume that there exists a map f from \mathbb{I} into T such that f is continuous and f(0) = a and f(1) = b. A map from \mathbb{I} into T is said to be a path from a to b if:

(Def. 1) It is continuous and it(0) = a and it(1) = b.

We now state the proposition

(4) Let T be a non empty topological space and a be a point of T. Then there exists a map f from \mathbb{I} into T such that f is continuous and f(0) = a and f(1) = a.

Let T be a non empty topological space and let a be a point of T. One can verify that there exists a path from a to a which is continuous.

Let *T* be a topological structure. We say that *T* is arcwise connected if and only if:

(Def. 2) For all points a, b of T there exists a map f from \mathbb{I} into T such that f is continuous and f(0) = a and f(1) = b.

One can verify that there exists a topological space which is arcwise connected and non empty. Let T be an arcwise connected topological structure and let a, b be points of T. Let us note that the path from a to b can be characterized by the following (equivalent) condition:

(Def. 3) It is continuous and it(0) = a and it(1) = b.

Let T be an arcwise connected topological structure and let a, b be points of T. Note that every path from a to b is continuous.

Next we state the proposition

(5) For every non empty topological space G_1 such that G_1 is arcwise connected holds G_1 is connected.

One can verify that every non empty topological space which is arcwise connected is also connected.

3. Basic operations on paths

Let T be a non empty topological space, let a, b, c be points of T, let P be a path from a to b, and let Q be a path from b to c. Let us assume that there exist maps f, g from \mathbb{I} into T such that f is continuous and f(0) = a and f(1) = b and g is continuous and g(0) = b and g(1) = c. The functor P + Q yielding a path from a to c is defined by the condition (Def. 4).

- (Def. 4) Let t be a point of \mathbb{I} and t' be a real number such that t = t'. Then
 - (i) if $0 \le t'$ and $t' \le \frac{1}{2}$, then $(P+Q)(t) = P(2 \cdot t')$, and
 - (ii) if $\frac{1}{2} \le t'$ and $t' \le 1$, then $(P+Q)(t) = Q(2 \cdot t' 1)$.

Let T be a non empty topological space and let a be a point of T. Note that there exists a path from a to a which is constant.

The following propositions are true:

- (6) Let T be a non empty topological space, a be a point of T, and P be a constant path from a to a. Then $P = \mathbb{I} \longmapsto a$.
- (7) Let T be a non empty topological space, a be a point of T, and P be a constant path from a to a. Then P + P = P.

Let T be a non empty topological space, let a be a point of T, and let P be a constant path from a to a. Observe that P+P is constant.

Let T be a non empty topological space, let a, b be points of T, and let P be a path from a to b. Let us assume that there exists a map f from \mathbb{I} into T such that f is continuous and f(0) = a and f(1) = b. The functor -P yielding a path from b to a is defined as follows:

(Def. 5) For every point t of \mathbb{I} and for every real number t' such that t = t' holds (-P)(t) = P(1 - t').

One can prove the following proposition

(8) Let T be a non empty topological space, a be a point of T, and P be a constant path from a to a. Then -P = P.

Let T be a non empty topological space, let a be a point of T, and let P be a constant path from a to a. Note that -P is constant.

4. The product of two topological spaces

We now state the proposition

(9) Let X, Y be non empty topological spaces, A be a family of subsets of Y, and f be a map from X into Y. Then $f^{-1}(\bigcup A) = \bigcup (f^{-1}(A))$.

Let S_1 , S_2 , T_1 , T_2 be non empty topological spaces, let f be a map from S_1 into S_2 , and let g be a map from T_1 into T_2 . Then [:f,g:] is a map from $[:S_1,T_1:]$ into $[:S_2,T_2:]$.

One can prove the following three propositions:

- (10) Let S_1 , S_2 , T_1 , T_2 be non empty topological spaces, f be a continuous map from S_1 into T_1 , g be a continuous map from S_2 into T_2 , and P_1 , P_2 be subsets of $[:T_1, T_2:]$. If $P_2 \in \text{BaseAppr}(P_1)$, then $[:f,g:]^{-1}(P_2)$ is open.
- (11) Let S_1 , S_2 , T_1 , T_2 be non empty topological spaces, f be a continuous map from S_1 into T_1 , g be a continuous map from S_2 into T_2 , and T_2 be a subset of $[:T_1, T_2:]$. If T_2 is open, then $[:f, g:]^{-1}(P_2)$ is open.
- (12) Let S_1 , S_2 , T_1 , T_2 be non empty topological spaces, f be a continuous map from S_1 into T_1 , and g be a continuous map from S_2 into T_2 . Then [:f,g:] is continuous.

One can check that every topological structure which is empty is also T_0 .

Let T_1 , T_2 be discernible non empty topological spaces. Note that $[:T_1, T_2:]$ is discernible. One can prove the following proposition

 $(14)^2$ For all non empty topological spaces T_1 , T_2 such that T_1 is a T_1 space and T_2 is a T_1 space holds $[:T_1, T_2:]$ is a T_1 space.

Let T_1 , T_2 be T_1 non empty topological spaces. Observe that $[:T_1, T_2:]$ is T_1 .

Let T_1 , T_2 be T_2 non empty topological spaces. Observe that $[:T_1, T_2:]$ is T_2 .

One can check that \mathbb{I} is compact and T_2 .

Let *n* be a natural number. Note that \mathcal{E}_T^n is T_2 .

Let T be a non empty arcwise connected topological space, let a, b be points of T, and let P, Q be paths from a to b. We say that P, Q are homotopic if and only if the condition (Def. 6) is satisfied.

- (Def. 6) There exists a map f from $[:\mathbb{I}, \mathbb{I}:]$ into T such that
 - (i) f is continuous, and
 - (ii) for every point s of \mathbb{I} holds f(s,0) = P(s) and f(s,1) = Q(s) and for every point t of \mathbb{I} holds f(0,t) = a and f(1,t) = b.

Let us notice that the predicate P, Q are homotopic is reflexive and symmetric.

² The proposition (13) has been removed.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Józef Białas and Yatsuka Nakamura. Dyadic numbers and T₄ topological spaces. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/urysohnl.html.
- [3] Józef Białas and Yatsuka Nakamura. The theorem of Weierstrass. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/weierstr.html.
- [4] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/pcomps_1.html.
- [5] Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/funct_3.html.
- [6] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [7] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [8] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [9] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [10] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc 1.html.
- [11] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [12] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [13] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [14] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topmetr.html.
- [15] Marvin J. Greenberg. Lectures on Algebraic Topology. W. A. Benjamin, Inc., 1973.
- [16] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/real_1.html.
- [17] Jaroslaw Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/seqm_3.html.
- [18] Beata Padlewska. Connected spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/connsp_1.html.
- [19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [21] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/borsuk_1.html.
- [22] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [23] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [24] Mariusz Żynel and Adam Guzowski. T_0 topological spaces. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/t_Otopsp.html.

Received September 10, 1997

Published January 2, 2004