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Summary. In this article Birkhoff Variety Theorem for many sorted algebras is proved.
A class of algebras is represented by predicateP . NotationP [A], whereA is an algebra, means
thatA is in classP . All algebras in our class are many sorted over many sorted signatureS.
The properties of varieties:

• a classP of algebras is abstract
• a classP of algebras is closed under subalgebras
• a classP of algebras is closed under congruences
• a classP of algebras is closed under products

are published in this paper as:

• for all non-empty algebrasA, B overSsuch thatA andB are isomorphic andP [A] holds
P [B]

• for every non-empty algebraA overSand for strict non-empty subalgebraB of A such
thatP [A] holdsP [B]

• for every non-empty algebraA overSand for every congruenceR of A such thatP [A]
holdsP [A/R]

• Let I be a set andF be an algebra family ofI overA . Suppose that for every seti such
that i ∈ I there exists an algebraA overA such thatA = F(i) andP [A]. ThenP [∏F ].

This paper is formalization of parts of [21].

MML Identifier: BIRKHOFF.

WWW: http://mizar.org/JFM/Vol9/birkhoff.html

The articles [16], [5], [20], [19], [14], [22], [3], [23], [4], [1], [17], [10], [18], [2], [8], [15], [13],
[11], [12], [9], [6], and [7] provide the notation and terminology for this paper.

Let S be a non empty non void many sorted signature, letX be a non-empty many sorted set
indexed by the carrier ofS, let A be a non-empty algebra overS, and letF be a many sorted function
from X into the sorts ofA. The functorF# yielding a many sorted function from Free(X) into A is
defined by:

(Def. 1) F# is a homomorphism of Free(X) into A andF# � FreeGenerator(X) = F ◦Reverse(X).

Next we state the proposition

(1) Let Sbe a non empty non void many sorted signature,A be a non-empty algebra overS, X
be a non-empty many sorted set indexed by the carrier ofS, andF be a many sorted function
from X into the sorts ofA. Then rngκ F(κ)⊆ rngκ F#(κ).

In this article we present several logical schemes. The schemeExFreeAlg 1deals with a non
empty non void many sorted signatureA , a non-empty algebraB overA , and a unary predicateP ,
and states that:
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There exists a strict non-empty algebraA over A and there exists a many sorted
functionF from B into A such that

(i) P [A],
(ii) F is an epimorphism ofB ontoA, and

(iii) for every non-empty algebraB overA and for every many sorted functionG
from B into B such thatG is a homomorphism ofB into B andP [B] there exists
a many sorted functionH from A into B such thatH is a homomorphism ofA into
B and H ◦ F = G and for every many sorted functionK from A into B such that
K ◦F = G holdsH = K

provided the following requirements are met:
• For all non-empty algebrasA, B overA such thatA andB are isomorphic andP [A]

holdsP [B],
• For every non-empty algebraA overA and for every strict non-empty subalgebraB

of A such thatP [A] holdsP [B], and
• Let I be a set andF be an algebra family ofI over A . Suppose that for every seti

such thati ∈ I there exists an algebraA overA such thatA = F(i) andP [A]. Then
P [∏F ].

The schemeExFreeAlg 2deals with a non empty non void many sorted signatureA , a non-empty
many sorted setB indexed by the carrier ofA , and a unary predicateP , and states that:

There exists a strict non-empty algebraA over A and there exists a many sorted
functionF from B into the sorts ofA such that

(i) P [A], and
(ii) for every non-empty algebraB overA and for every many sorted functionG

from B into the sorts ofB such thatP [B] there exists a many sorted functionH from
A into B such thatH is a homomorphism ofA into B andH ◦F = G and for every
many sorted functionK from A into B such thatK is a homomorphism ofA into B
andK ◦F = G holdsH = K

provided the following conditions are satisfied:
• For all non-empty algebrasA, B overA such thatA andB are isomorphic andP [A]

holdsP [B],
• For every non-empty algebraA overA and for every strict non-empty subalgebraB

of A such thatP [A] holdsP [B], and
• Let I be a set andF be an algebra family ofI over A . Suppose that for every seti

such thati ∈ I there exists an algebraA overA such thatA = F(i) andP [A]. Then
P [∏F ].

The schemeEx hashdeals with a non empty non void many sorted signatureA , non-empty
algebrasB, C overA , a many sorted functionD from the carrier ofA 7−→ N into the sorts ofB, a
many sorted functionE from the carrier ofA 7−→ N into the sorts ofC , and a unary predicateP ,
and states that:

There exists a many sorted functionH from B into C such thatH is a homomorphism
of B into C andE# = H ◦D#

provided the parameters meet the following conditions:
• P [C ], and
• Let C be a non-empty algebra overA andG be a many sorted function from (the

carrier ofA) 7−→ N into the sorts ofC. SupposeP [C]. Then there exists a many
sorted functionh from B into C such thath is a homomorphism ofB into C and
G = h◦D.

The schemeEqTermsdeals with a non empty non void many sorted signatureA , a non-empty
algebraB overA , a many sorted functionC from the carrier ofA 7−→ N into the sorts ofB, a sort
symbolD of A , elementsE , F of the sorts of TA(N)(D), and a unary predicateP , and states that:

For every non-empty algebraB overA such thatP [B] holdsB |= 〈〈E , F 〉〉
provided the parameters meet the following requirements:

• C #(D)(E) = C #(D)(F ), and
• Let C be a non-empty algebra overA andG be a many sorted function from (the

carrier ofA) 7−→ N into the sorts ofC. SupposeP [C]. Then there exists a many
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sorted functionh from B into C such thath is a homomorphism ofB into C and
G = h◦C .

The schemeFreeIsGendeals with a non empty non void many sorted signatureA , a non-empty
many sorted setB indexed by the carrier ofA , a strict non-empty algebraC overA , a many sorted
functionD from B into the sorts ofC , and a unary predicateP , and states that:

D ◦ B is a non-empty generator set ofC
provided the parameters satisfy the following conditions:

• Let C be a non-empty algebra overA andG be a many sorted function fromB into
the sorts ofC. SupposeP [C]. Then there exists a many sorted functionH from C
into C such that

(i) H is a homomorphism ofC into C,
(ii) H ◦D = G, and

(iii) for every many sorted functionK from C into C such thatK is a homomor-
phism ofC into C andK ◦D = G holdsH = K,

• P [C ], and
• For every non-empty algebraA overA and for every strict non-empty subalgebraB

of A such thatP [A] holdsP [B].
The schemeHash is ontodeals with a non empty non void many sorted signatureA , a strict

non-empty algebraB overA , a many sorted functionC from the carrier ofA 7−→ N into the sorts
of B, and a unary predicateP , and states that:

C # is an epimorphism of Free((the carrier ofA) 7−→ N) ontoB
provided the parameters satisfy the following conditions:

• Let C be a non-empty algebra overA andG be a many sorted function from (the
carrier ofA) 7−→ N into the sorts ofC. SupposeP [C]. Then there exists a many
sorted functionH from B into C such that

(i) H is a homomorphism ofB into C,
(ii) H ◦C = G, and

(iii) for every many sorted functionK from B into C such thatK is a homomor-
phism ofB into C andK ◦C = G holdsH = K,

• P [B], and
• For every non-empty algebraA overA and for every strict non-empty subalgebraB

of A such thatP [A] holdsP [B].
The schemeFinGenAlgInVardeals with a non empty non void many sorted signatureA , a strict

finitely-generated non-empty algebraB over A , a non-empty algebraC over A , a many sorted
function D from the carrier ofA 7−→ N into the sorts ofC , and two unary predicatesP , Q , and
states that:

P [B]
provided the parameters meet the following conditions:

• Q [B],
• P [C ],
• Let C be a non-empty algebra overA andG be a many sorted function from (the

carrier ofA) 7−→ N into the sorts ofC. SupposeQ [C]. Then there exists a many
sorted functionh from C into C such thath is a homomorphism ofC into C and
G = h◦D,

• For all non-empty algebrasA, B overA such thatA andB are isomorphic andP [A]
holdsP [B], and

• For every non-empty algebraA over A and for every congruenceR of A such that
P [A] holdsP [A/R].

The schemeQuotEpideals with a non empty non void many sorted signatureA , non-empty
algebrasB, C overA , and a unary predicateP , and states that:

P [C ]
provided the parameters satisfy the following conditions:

• There exists a many sorted function fromB into C which is an epimorphism ofB
ontoC ,

• P [B],
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• For all non-empty algebrasA, B overA such thatA andB are isomorphic andP [A]
holdsP [B], and

• For every non-empty algebraA over A and for every congruenceR of A such that
P [A] holdsP [A/R].

The schemeAllFinGendeals with a non empty non void many sorted signatureA , a non-empty
algebraB overA , and a unary predicateP , and states that:

P [B]
provided the parameters satisfy the following conditions:

• For every strict non-empty finitely-generated subalgebraB of B holdsP [B],
• For all non-empty algebrasA, B overA such thatA andB are isomorphic andP [A]

holdsP [B],
• For every non-empty algebraA overA and for every strict non-empty subalgebraB

of A such thatP [A] holdsP [B],
• For every non-empty algebraA over A and for every congruenceR of A such that

P [A] holdsP [A/R], and
• Let I be a set andF be an algebra family ofI over A . Suppose that for every seti

such thati ∈ I there exists an algebraA overA such thatA = F(i) andP [A]. Then
P [∏F ].

The schemeFreeInModIsInVar 1deals with a non empty non void many sorted signatureA , a
non-empty algebraB overA , and two unary predicatesP , Q , and states that:

Q [B]
provided the following requirements are met:

• Let A be a non-empty algebra overA . ThenQ [A] if and only if for every sort symbol
s of A and for every elemente of (the equations ofA)(s) such that for every non-
empty algebraB overA such thatP [B] holdsB |= eholdsA |= e, and

• P [B].
The schemeFreeInModIsInVardeals with a non empty non void many sorted signatureA , a

strict non-empty algebraB overA , a many sorted functionC from the carrier ofA 7−→ N into the
sorts ofB, and two unary predicatesP , Q , and states that:

P [B]
provided the parameters meet the following requirements:

• Let A be a non-empty algebra overA . ThenQ [A] if and only if for every sort symbol
s of A and for every elemente of (the equations ofA)(s) such that for every non-
empty algebraB overA such thatP [B] holdsB |= eholdsA |= e,

• Let C be a non-empty algebra overA andG be a many sorted function from (the
carrier ofA) 7−→ N into the sorts ofC. SupposeQ [C]. Then there exists a many
sorted functionH from B into C such that

(i) H is a homomorphism ofB into C,
(ii) H ◦C = G, and

(iii) for every many sorted functionK from B into C such thatK is a homomor-
phism ofB into C andK ◦C = G holdsH = K,

• Q [B],
• For all non-empty algebrasA, B overA such thatA andB are isomorphic andP [A]

holdsP [B],
• For every non-empty algebraA overA and for every strict non-empty subalgebraB

of A such thatP [A] holdsP [B], and
• Let I be a set andF be an algebra family ofI over A . Suppose that for every seti

such thati ∈ I there exists an algebraA overA such thatA = F(i) andP [A]. Then
P [∏F ].

The schemeBirkhoff deals with a non empty non void many sorted signatureA and a unary
predicateP , and states that:

There exists a setE of equations ofA such that for every non-empty algebraA over
A holdsP [A] iff A |= E

provided the following conditions are satisfied:
• For all non-empty algebrasA, B overA such thatA andB are isomorphic andP [A]

holdsP [B],
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• For every non-empty algebraA overA and for every strict non-empty subalgebraB
of A such thatP [A] holdsP [B],

• For every non-empty algebraA over A and for every congruenceR of A such that
P [A] holdsP [A/R], and

• Let I be a set andF be an algebra family ofI over A . Suppose that for every seti
such thati ∈ I there exists an algebraA overA such thatA = F(i) andP [A]. Then
P [∏F ].
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