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Summary. Inthis article Birkhoff Variety Theorem for many sorted algebras is proved.

A class of algebras is represented by predi¢atBlotation?’[A], whereAis an algebra, means
thatAis in class?. All algebras in our class are many sorted over many sorted sigrature
The properties of varieties:

e aclasgP of algebras is abstract

e aclassP of algebras is closed under subalgebras

e aclasgP of algebras is closed under congruences

e a clasgP of algebras is closed under products

are published in this paper as:

o for all non-empty algebra&, B overSsuch thatA andB areisomorphic and?[A] holds
(B

o for every non-empty algebra over S and for strict non-empty subalgebi®zof A such
that P[A] holds?[B]

o for every non-empty algebr& over Sand for every congruende of A such thatP[A]
holds?[A/R]

e Letl be a set an& be an algebra family df over 4. Suppose that for every sesuch
thati € | there exists an algebraover 4 such thatA = F (i) andP[A]. ThernP[[]F].

This paper is formalization of parts of [21].

MML Identifier: BIRKHOFF.

WWW: http://mizar.org/JFM/Vol9/birkhoff.html

The articles([15],[[5],120],[[19],[1141,[122],.13],[123],[14],[11],[[27],[110],[[18] . 12], 18], [15],. [13],
[11], [12], [9], [6], and [7] provide the notation and terminology for this paper.

Let Sbe a non empty non void many sorted signatureXldéte a non-empty many sorted set
indexed by the carrier &, let A be a non-empty algebra ov8rand letF be a many sorted function
from X into the sorts ofA. The functorF* yielding a many sorted function from Fr@€) into A is
defined by:

(Def. 1) F*is a homomorphism of Fr¢X) into A andF* | FreeGenerat¢K) = F o ReverséX).

Next we state the proposition

(1) LetSbe a non empty non void many sorted signatérbe a non-empty algebra ovBrX
be a non-empty many sorted set indexed by the carri& afidF be a many sorted function
from X into the sorts ofA. Then rng F (k) C rng, F#(k).

In this article we present several logical schemes. The scliedmeeAlg 1deals with a non

empty non void many sorted signatufie a non-empty algebr@® over 4, and a unary predicatg,
and states that:
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There exists a strict non-empty algelkeover 4 and there exists a many sorted
functionF from 3B into A such that
0 2A,

(i)  Fis an epimorphism of3 ontoA, and
(iii)  for every non-empty algebrB over 4 and for every many sorted functidh
from B into B such thatG is a homomorphism of8 into B and P[B] there exists
a many sorted functioll from A into B such thatH is a homomorphism oA into
B andH o F = G and for every many sorted functid¢ from A into B such that
KoF =GholdsH =K

provided the following requirements are met:

e For all non-empty algebras, B over4 such thatA andB are isomorphic ane’[A]

holds?[B],

e For every non-empty algebraover 4 and for every strict non-empty subalgel#a

of A such thatP[A] holds?[B], and

e Letl be a set andF be an algebra family of over 4. Suppose that for every set

such thai € | there exists an algebraover 4 such thatA = F(i) andP[A]. Then
P[MFI.

The schem&xFreeAlg Zeals with a non empty non void many sorted signafiira non-empty
many sorted seB indexed by the carrier ofl, and a unary predicatg, and states that:

There exists a strict non-empty algebkaover 4 and there exists a many sorted
functionF from B into the sorts ofA such that
(i) P[A], and
(ii) for every non-empty algebrB over4 and for every many sorted functidh
from B into the sorts oB such thatP[B] there exists a many sorted functibinfrom
A into B such thatH is a homomorphism of\ into B andH o F = G and for every
many sorted functiolk from A into B such thaK is a homomorphism oA into B
andKoF =G holdsH =K
provided the following conditions are satisfied:

e For all non-empty algebras, B over 4 such thatA andB are isomorphic an@’[A]
holds®[B],

e For every non-empty algebiover 4 and for every strict non-empty subalgela
of A such thatP[A] holds?[B], and

e Letl be a set andr be an algebra family of over 4. Suppose that for every set
such that € | there exists an algebraover 4 such thatA = F (i) andP[A]. Then
P F].

The scheméex hashdeals with a non empty non void many sorted signatd@renon-empty
algebragB, C over A4, a many sorted functio from the carrier of2 — N into the sorts ofB, a
many sorted functiorE from the carrier of4 —— N into the sorts of”, and a unary predicat&,
and states that:

There exists a many sorted functidnfrom B into C such thaH is a homomorphism
of Binto ¢ andE* = H o D*
provided the parameters meet the following conditions:

e P[(],and

e Let C be a non-empty algebra ovet andG be a many sorted function from (the
carrier of 4) — N into the sorts ofC. SupposeP|C]. Then there exists a many
sorted functiorh from B8 into C such thath is a homomorphism of8 into C and
G=hoD.

The schemé&qTermsdeals with a non empty non void many sorted signatiy@ non-empty
algebraB over 4, a many sorted functiog from the carrier of2 — N into the sorts ofB, a sort
symbolD of 4, elementsE, ¥ of the sorts of (N) (D), and a unary predicat®, and states that:

For every non-empty algebBover 4 such thatP[B] holdsB = (£, F)
provided the parameters meet the following requirements:
o CHD)(E)=CHD)(¥),and
e LetC be a non-empty algebra over andG be a many sorted function from (the
carrier of 4) — N into the sorts ofC. SupposeP|C]. Then there exists a many
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sorted functiorh from 3 into C such thath is a homomorphism o8 into C and
G=hoC(C.

The schemé&reelsGerdeals with a non empty non void many sorted signatiira non-empty
many sorted seB indexed by the carrier of, a strict non-empty algebré over 4, a many sorted
function D from B into the sorts of”, and a unary predicat®, and states that:

D° Bis a non-empty generator set 6f
provided the parameters satisfy the following conditions:

e LetC be a non-empty algebra ovéarandG be a many sorted function from into
the sorts ofC. SupposeP[C]. Then there exists a many sorted functiérfrom C
into C such that

(i) Hisahomomorphism of into C,

(i) HoD=G,and
(i)  for every many sorted functioK from C into C such thaK is a homomor-
phism of C intoC andK o D = G holdsH =K,

° fP[C], and

e For every non-empty algebiover 4 and for every strict non-empty subalgela
of A such thatP[A] holds?[B].

The schemddash is ontodeals with a non empty non void many sorted signatéiye strict
non-empty algebrs over 4, a many sorted functiog’ from the carrier of4 — N into the sorts
of B, and a unary predicatg, and states that:

C* is an epimorphism of Fréghe carrier of2) — N) onto 3
provided the parameters satisfy the following conditions:

e Let C be a non-empty algebra ovet andG be a many sorted function from (the
carrier of 4) — N into the sorts ofC. SupposeP|C]. Then there exists a many
sorted functiorH from B into C such that

(i) Hisahomomorphism aB intoC,

(i) HoC=G,and
(i)  for every many sorted functioK from B into C such tha is a homomor-
phism of B into C andK o ¢ = G holdsH =K,

e P[B], and

e For every non-empty algebiover 4 and for every strict non-empty subalgela
of A such thatP[A] holds?[B].

The schem&inGenAlginVardeals with a non empty non void many sorted signatiira strict
finitely-generated non-empty algeb#over 4, a non-empty algebr& over 4, a many sorted
function  from the carrier of2 —— N into the sorts ofC, and two unary predicateB8, Q, and
states that:

P[B]
provided the parameters meet the following conditions:

. Q3],

e P[(C],

e LetC be a non-empty algebra over andG be a many sorted function from (the
carrier of 2) — N into the sorts ofC. SupposeQ[C]. Then there exists a many
sorted functiorh from ( into C such thath is a homomorphism of” into C and
G=hoD,

e For all non-empty algebras, B over 4 such thatA andB are isomorphic an@’[A]
holds®[B], and

e For every non-empty algebraover 4 and for every congruende of A such that
P[A] holdsP[A/R].

The schem&uotEpideals with a non empty non void many sorted signatérenon-empty
algebragB, C over 4, and a unary predicat®, and states that:

P[(C]
provided the parameters satisfy the following conditions:

e There exists a many sorted function frabninto ¢ which is an epimorphism oB
ontoC,

o P[B],
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e For all non-empty algebra&, B over4 such thatA andB are isomorphic ane’[A]
holds?[B], and

e For every non-empty algebraover 4 and for every congruende of A such that
P[A] holdsP[A/R].

The schem@llFinGendeals with a non empty non void many sorted signatlira non-empty
algebraB over 4, and a unary predicatg, and states that:

P[B]
provided the parameters satisfy the following conditions:

e For every strict non-empty finitely-generated subalgébed B holds?[B],

e For all non-empty algebra&, B over 4 such thatA andB are isomorphic ane’[A]
holds?[B],

e For every non-empty algebfover.4 and for every strict non-empty subalgel®a
of A such thatP[A] holds?[B],

e For every non-empty algebraover 4 and for every congruende of A such that
P[A] holdsP[A/R], and

e Letl be a set andF be an algebra family of over 4. Suppose that for every set
such thai € | there exists an algebraover 4 such thatA = F(i) andP[A]. Then
P[MF].

The scheméreelnModIsInVar ldeals with a non empty non void many sorted signatiira
non-empty algebra over 4, and two unary predicateB, Q, and states that:

Q%]
provided the following requirements are met:

e LetAbe anon-empty algebra ovar ThenQJA] if and only if for every sort symbol
s of 4 and for every elemerg of (the equations of)(s) such that for every non-
empty algebr® over 4 such thatP[B] holdsB = e holdsA = e, and

o P[B].

The schemd-reelnModIsInVardeals with a non empty non void many sorted signaté@rex
strict non-empty algebr@ over 4, a many sorted functiod@ from the carrier of4 — N into the
sorts of B, and two unary predicateB, Q, and states that:

P[B]
provided the parameters meet the following requirements:

e LetAbe anon-empty algebra ovar ThenQ[A] if and only if for every sort symbol
s of 4 and for every elemer# of (the equations 0f3)(s) such that for every non-
empty algebrd over 4 such thatP[B] holdsB |= e holdsA |= e,

e Let C be a non-empty algebra ovetr and G be a many sorted function from (the
carrier of 4) — N into the sorts ofC. SupposeQ[C]. Then there exists a many
sorted functiorH from 3B into C such that

(i) Hisahomomorphism aB intoC,

(i) HoC=G,and
(iii)  for every many sorted functioK from B into C such tha is a homomor-
phism of B into C andK o ¢ = G holdsH =K,

.« QB

e For all non-empty algebra&, B over4 such thatA andB are isomorphic ane’[A]
holds?[B],

e For every non-empty algebfaover 4 and for every strict non-empty subalgela
of A such thatP[A] holds?[B], and

e Letl be a set andF be an algebra family of over 4. Suppose that for every set
such thai € | there exists an algebraover 4 such thatA = F(i) andP[A]. Then
P[MFI.

The schemdirkhoff deals with a non empty non void many sorted signaté@rand a unary

predicateP, and states that:
There exists a séf of equations of2 such that for every non-empty algelXaver
4 holdsP[A] iff AEE

provided the following conditions are satisfied:

e For all non-empty algebras, B over 4 such thatA andB are isomorphic an@®[A]
holds?[B],
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e For every non-empty algebfaover 4 and for every strict non-empty subalgelda
of A such thatP[A] holds?[B],

e For every non-empty algebraover 4 and for every congruende of A such that
P[A] holdsP[A/R], and

e Letl be a set andF be an algebra family of over 4. Suppose that for every set
such thai € | there exists an algebraover 4 such thatA = F(i) andP[A]. Then

P[MF].
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