Birkhoff Theorem for Many Sorted Algebras

Artur Korniłowicz Warsaw University Białystok

Summary. In this article Birkhoff Variety Theorem for many sorted algebras is proved. A class of algebras is represented by predicate \mathcal{P} . Notation $\mathcal{P}[A]$, where A is an algebra, means that A is in class \mathcal{P} . All algebras in our class are many sorted over many sorted signature S. The properties of varieties:

- ullet a class $\mathcal P$ of algebras is abstract
- ullet a class ${\mathcal P}$ of algebras is closed under subalgebras
- ullet a class ${\mathcal P}$ of algebras is closed under congruences
- ullet a class ${\mathcal P}$ of algebras is closed under products

are published in this paper as:

- for all non-empty algebras A, B over S such that A and B are isomorphic and $\mathcal{P}[A]$ holds $\mathcal{P}[B]$
- for every non-empty algebra A over S and for strict non-empty subalgebra B of A such that $\mathcal{P}[A]$ holds $\mathcal{P}[B]$
- for every non-empty algebra A over S and for every congruence R of A such that $\mathcal{P}[A]$ holds $\mathcal{P}[A/R]$
- Let I be a set and F be an algebra family of I over \mathcal{A} . Suppose that for every set i such that $i \in I$ there exists an algebra A over \mathcal{A} such that A = F(i) and $\mathcal{P}[A]$. Then $\mathcal{P}[\prod F]$.

This paper is formalization of parts of [21].

MML Identifier: BIRKHOFF.

WWW: http://mizar.org/JFM/Vol9/birkhoff.html

The articles [16], [5], [20], [19], [14], [22], [3], [23], [4], [1], [17], [10], [18], [2], [8], [15], [13], [11], [12], [9], [6], and [7] provide the notation and terminology for this paper.

Let S be a non-empty non void many sorted signature, let X be a non-empty many sorted set indexed by the carrier of S, let A be a non-empty algebra over S, and let F be a many sorted function from X into the sorts of A. The functor $F^{\#}$ yielding a many sorted function from Free(X) into A is defined by:

(Def. 1) $F^{\#}$ is a homomorphism of Free(X) into A and $F^{\#}$ \(\text{FreeGenerator}(X) = $F \circ \text{Reverse}(X)$.

Next we state the proposition

(1) Let S be a non-empty non void many sorted signature, A be a non-empty algebra over S, X be a non-empty many sorted set indexed by the carrier of S, and F be a many sorted function from X into the sorts of A. Then $\operatorname{rng}_{\kappa} F(\kappa) \subseteq \operatorname{rng}_{\kappa} F^{\#}(\kappa)$.

In this article we present several logical schemes. The scheme $ExFreeAlg\ 1$ deals with a non empty non void many sorted signature \mathcal{A} , a non-empty algebra \mathcal{B} over \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

There exists a strict non-empty algebra A over \mathcal{A} and there exists a many sorted function F from \mathcal{B} into A such that

- (i) $\mathcal{P}[A]$,
- (ii) F is an epimorphism of \mathcal{B} onto A, and
- (iii) for every non-empty algebra B over $\mathcal A$ and for every many sorted function G from $\mathcal B$ into B such that G is a homomorphism of $\mathcal B$ into B and $\mathcal P[B]$ there exists a many sorted function B from B such that B is a homomorphism of B into B and B such that B such

provided the following requirements are met:

- For all non-empty algebras A, B over \mathcal{A} such that A and B are isomorphic and $\mathcal{P}[A]$ holds $\mathcal{P}[B]$,
- For every non-empty algebra A over \mathcal{A} and for every strict non-empty subalgebra B of A such that $\mathcal{P}[A]$ holds $\mathcal{P}[B]$, and
- Let I be a set and F be an algebra family of I over \mathcal{A} . Suppose that for every set i such that $i \in I$ there exists an algebra A over \mathcal{A} such that A = F(i) and $\mathcal{P}[A]$. Then $\mathcal{P}[\prod F]$.

The scheme $ExFreeAlg\ 2$ deals with a non-empty non-void many sorted signature \mathcal{A} , a non-empty many sorted set \mathcal{B} indexed by the carrier of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

There exists a strict non-empty algebra A over \mathcal{A} and there exists a many sorted function F from \mathcal{B} into the sorts of A such that

- (i) $\mathcal{P}[A]$, and
- (ii) for every non-empty algebra B over $\mathcal A$ and for every many sorted function G from $\mathcal B$ into the sorts of B such that $\mathcal P[B]$ there exists a many sorted function H from A into B such that H is a homomorphism of A into B and $H \circ F = G$ and for every many sorted function K from A into B such that K is a homomorphism of A into B and $K \circ F = G$ holds H = K

provided the following conditions are satisfied:

- For all non-empty algebras A, B over \mathcal{A} such that A and B are isomorphic and $\mathcal{P}[A]$ holds $\mathcal{P}[B]$,
- For every non-empty algebra A over \mathcal{A} and for every strict non-empty subalgebra B of A such that $\mathcal{P}[A]$ holds $\mathcal{P}[B]$, and
- Let I be a set and F be an algebra family of I over \mathcal{A} . Suppose that for every set i such that $i \in I$ there exists an algebra A over \mathcal{A} such that A = F(i) and $\mathcal{P}[A]$. Then $\mathcal{P}[\prod F]$.

The scheme $Ex\ hash\ deals$ with a non empty non void many sorted signature \mathcal{A} , non-empty algebras \mathcal{B} , \mathcal{C} over \mathcal{A} , a many sorted function \mathcal{D} from the carrier of $\mathcal{A} \longmapsto \mathbb{N}$ into the sorts of \mathcal{B} , a many sorted function \mathcal{E} from the carrier of $\mathcal{A} \longmapsto \mathbb{N}$ into the sorts of \mathcal{C} , and a unary predicate \mathcal{P} , and states that:

There exists a many sorted function H from $\mathcal B$ into $\mathcal C$ such that H is a homomorphism of $\mathcal B$ into $\mathcal C$ and $\mathcal E^\#=H\circ\mathcal D^\#$

provided the parameters meet the following conditions:

- $\mathcal{P}[\mathcal{C}]$, and
- Let C be a non-empty algebra over $\mathcal A$ and G be a many sorted function from (the carrier of $\mathcal A$) $\longmapsto \mathbb N$ into the sorts of C. Suppose $\mathcal P[C]$. Then there exists a many sorted function h from $\mathcal B$ into C such that h is a homomorphism of $\mathcal B$ into C and $G = h \circ \mathcal D$.

The scheme EqTerms deals with a non empty non void many sorted signature \mathcal{A} , a non-empty algebra \mathcal{B} over \mathcal{A} , a many sorted function \mathcal{C} from the carrier of $\mathcal{A} \longmapsto \mathbb{N}$ into the sorts of \mathcal{B} , a sort symbol \mathcal{D} of \mathcal{A} , elements \mathcal{E} , \mathcal{F} of the sorts of $T_{\mathcal{A}}(\mathbb{N})(\mathcal{D})$, and a unary predicate \mathcal{P} , and states that:

For every non-empty algebra B over \mathcal{A} such that $\mathcal{P}[B]$ holds $B \models \langle \mathcal{E}, \mathcal{F} \rangle$ provided the parameters meet the following requirements:

- $\mathcal{C}^{\#}(\mathcal{D})(\mathcal{E}) = \mathcal{C}^{\#}(\mathcal{D})(\mathcal{F})$, and
- Let C be a non-empty algebra over \mathcal{A} and G be a many sorted function from (the carrier of \mathcal{A}) $\longmapsto \mathbb{N}$ into the sorts of C. Suppose $\mathcal{P}[C]$. Then there exists a many

sorted function h from \mathcal{B} into C such that h is a homomorphism of \mathcal{B} into C and $G = h \circ C$.

The scheme *FreeIsGen* deals with a non empty non void many sorted signature \mathcal{A} , a non-empty many sorted set \mathcal{B} indexed by the carrier of \mathcal{A} , a strict non-empty algebra \mathcal{C} over \mathcal{A} , a many sorted function \mathcal{D} from \mathcal{B} into the sorts of \mathcal{C} , and a unary predicate \mathcal{P} , and states that:

 $\mathcal{D}^{\circ}\mathcal{B}$ is a non-empty generator set of \mathcal{C} provided the parameters satisfy the following conditions:

- Let C be a non-empty algebra over $\mathcal A$ and G be a many sorted function from $\mathcal B$ into the sorts of C. Suppose $\mathcal P[C]$. Then there exists a many sorted function H from C into C such that
 - (i) H is a homomorphism of C into C,
 - (ii) $H \circ \mathcal{D} = G$, and
 - (iii) for every many sorted function K from C into C such that K is a homomorphism of C into C and $K \circ D = G$ holds H = K,
- $\mathcal{P}[\mathcal{C}]$, and
- For every non-empty algebra A over \mathcal{A} and for every strict non-empty subalgebra B of A such that $\mathcal{P}[A]$ holds $\mathcal{P}[B]$.

The scheme *Hash is onto* deals with a non empty non void many sorted signature \mathcal{A} , a strict non-empty algebra \mathcal{B} over \mathcal{A} , a many sorted function \mathcal{C} from the carrier of $\mathcal{A} \longmapsto \mathbb{N}$ into the sorts of \mathcal{B} , and a unary predicate \mathcal{P} , and states that:

 $\mathcal{C}^{\#}$ is an epimorphism of Free((the carrier of \mathcal{A}) $\longmapsto \mathbb{N}$) onto \mathcal{B} provided the parameters satisfy the following conditions:

- Let C be a non-empty algebra over \mathcal{A} and G be a many sorted function from (the carrier of \mathcal{A}) $\longmapsto \mathbb{N}$ into the sorts of C. Suppose $\mathcal{P}[C]$. Then there exists a many sorted function H from \mathcal{B} into C such that
 - (i) H is a homomorphism of \mathcal{B} into C,
 - (ii) $H \circ C = G$, and
 - (iii) for every many sorted function K from \mathcal{B} into C such that K is a homomorphism of \mathcal{B} into C and $K \circ \mathcal{C} = G$ holds H = K,
- $\mathcal{P}[\mathcal{B}]$, and
- For every non-empty algebra A over \mathcal{A} and for every strict non-empty subalgebra B of A such that $\mathcal{P}[A]$ holds $\mathcal{P}[B]$.

The scheme FinGenAlgInVar deals with a non empty non void many sorted signature \mathcal{A} , a strict finitely-generated non-empty algebra \mathcal{B} over \mathcal{A} , a non-empty algebra \mathcal{C} over \mathcal{A} , a many sorted function \mathcal{D} from the carrier of $\mathcal{A} \longmapsto \mathbb{N}$ into the sorts of \mathcal{C} , and two unary predicates \mathcal{P} , \mathcal{Q} , and states that:

 $\mathcal{P}[\mathcal{B}]$

provided the parameters meet the following conditions:

- $Q[\mathcal{B}]$,
- $\mathcal{P}[\mathcal{C}]$,
- Let C be a non-empty algebra over $\mathcal A$ and G be a many sorted function from (the carrier of $\mathcal A$) $\longmapsto \mathbb N$ into the sorts of C. Suppose Q[C]. Then there exists a many sorted function h from C into C such that h is a homomorphism of C into C and $G = h \circ \mathcal D$,
- For all non-empty algebras A, B over \mathcal{A} such that A and B are isomorphic and $\mathcal{P}[A]$ holds $\mathcal{P}[B]$, and
- For every non-empty algebra A over \mathcal{A} and for every congruence R of A such that $\mathcal{P}[A]$ holds $\mathcal{P}[A/R]$.

The scheme QuotEpi deals with a non empty non void many sorted signature \mathcal{A} , non-empty algebras \mathcal{B} , \mathcal{C} over \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

 $\mathcal{P}[\mathcal{C}]$

provided the parameters satisfy the following conditions:

- There exists a many sorted function from \mathcal{B} into \mathcal{C} which is an epimorphism of \mathcal{B} onto \mathcal{C} ,
- 𝑃[𝔞],

- For all non-empty algebras A, B over \mathcal{A} such that A and B are isomorphic and $\mathcal{P}[A]$ holds $\mathcal{P}[B]$, and
- For every non-empty algebra A over \mathcal{A} and for every congruence R of A such that $\mathcal{P}[A]$ holds $\mathcal{P}[A/R]$.

The scheme *AllFinGen* deals with a non empty non void many sorted signature \mathcal{A} , a non-empty algebra \mathcal{B} over \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

 $\mathcal{P}[\mathcal{B}]$

provided the parameters satisfy the following conditions:

- For every strict non-empty finitely-generated subalgebra B of \mathcal{B} holds $\mathcal{P}[B]$,
- For all non-empty algebras A, B over \mathcal{A} such that A and B are isomorphic and $\mathcal{P}[A]$ holds $\mathcal{P}[B]$,
- For every non-empty algebra A over \mathcal{A} and for every strict non-empty subalgebra B of A such that $\mathcal{P}[A]$ holds $\mathcal{P}[B]$,
- For every non-empty algebra A over $\mathcal A$ and for every congruence R of A such that $\mathcal P[A]$ holds $\mathcal P[A/R]$, and
- Let I be a set and F be an algebra family of I over \mathcal{A} . Suppose that for every set i such that $i \in I$ there exists an algebra A over \mathcal{A} such that A = F(i) and $\mathcal{P}[A]$. Then $\mathcal{P}[\prod F]$.

The scheme $FreeInModIsInVar\ 1$ deals with a non empty non void many sorted signature \mathcal{A} , a non-empty algebra \mathcal{B} over \mathcal{A} , and two unary predicates \mathcal{P} , \mathcal{Q} , and states that:

Q[B]

provided the following requirements are met:

- Let A be a non-empty algebra over \mathcal{A} . Then Q[A] if and only if for every sort symbol s of \mathcal{A} and for every element e of (the equations of \mathcal{A})(s) such that for every non-empty algebra B over \mathcal{A} such that $\mathcal{P}[B]$ holds $B \models e$ holds $A \models e$, and
- P[B].

The scheme FreeInModIsInVar deals with a non empty non void many sorted signature \mathcal{A} , a strict non-empty algebra \mathcal{B} over \mathcal{A} , a many sorted function \mathcal{C} from the carrier of $\mathcal{A} \longmapsto \mathbb{N}$ into the sorts of \mathcal{B} , and two unary predicates \mathcal{P} , \mathcal{Q} , and states that:

 $\mathcal{P}[\mathcal{B}]$

provided the parameters meet the following requirements:

- Let A be a non-empty algebra over \mathcal{A} . Then Q[A] if and only if for every sort symbol s of \mathcal{A} and for every element e of (the equations of \mathcal{A})(s) such that for every non-empty algebra B over \mathcal{A} such that $\mathcal{P}[B]$ holds $B \models e$ holds $A \models e$,
- Let C be a non-empty algebra over \mathcal{A} and G be a many sorted function from (the carrier of \mathcal{A}) $\longmapsto \mathbb{N}$ into the sorts of C. Suppose $\mathcal{Q}[C]$. Then there exists a many sorted function H from \mathcal{B} into C such that
 - (i) H is a homomorphism of \mathcal{B} into C,
 - (ii) $H \circ C = G$, and
 - (iii) for every many sorted function K from $\mathcal B$ into C such that K is a homomorphism of $\mathcal B$ into C and $K \circ \mathcal C = G$ holds H = K,
- \bullet $Q[\mathcal{B}],$
- For all non-empty algebras A, B over \mathcal{A} such that A and B are isomorphic and $\mathcal{P}[A]$ holds $\mathcal{P}[B]$,
- For every non-empty algebra A over \mathcal{A} and for every strict non-empty subalgebra B of A such that $\mathcal{P}[A]$ holds $\mathcal{P}[B]$, and
- Let I be a set and F be an algebra family of I over \mathcal{A} . Suppose that for every set i such that $i \in I$ there exists an algebra A over \mathcal{A} such that A = F(i) and $\mathcal{P}[A]$. Then $\mathcal{P}[\prod F]$.

The scheme Birkhoff deals with a non empty non void many sorted signature $\mathcal A$ and a unary predicate $\mathcal P$, and states that:

There exists a set E of equations of \mathcal{A} such that for every non-empty algebra A over \mathcal{A} holds $\mathcal{P}[A]$ iff $A \models E$

provided the following conditions are satisfied:

• For all non-empty algebras A, B over \mathcal{A} such that A and B are isomorphic and $\mathcal{P}[A]$ holds $\mathcal{P}[B]$,

- For every non-empty algebra A over \mathcal{A} and for every strict non-empty subalgebra B of A such that $\mathcal{P}[A]$ holds $\mathcal{P}[B]$,
- For every non-empty algebra A over \mathcal{A} and for every congruence R of A such that $\mathcal{P}[A]$ holds $\mathcal{P}[A/R]$, and
- Let I be a set and F be an algebra family of I over \mathcal{A} . Suppose that for every set i such that $i \in I$ there exists an algebra A over \mathcal{A} such that A = F(i) and $\mathcal{P}[A]$. Then $\mathcal{P}[\prod F]$.

REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [2] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vol6/msualg 2.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_2.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [6] Artur Kornitowicz. Extensions of mappings on generator set. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/ Vol7/extens_1.html.
- [7] Artur Korniłowicz. Equations in many sorted algebras. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vo19/equation.html.
- [8] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_3.html.
- [9] Małgorzata Korolkiewicz. Many sorted quotient algebra. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_4.html.
- [10] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/pralq_1.html.
- [11] Beata Madras. Products of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pralg_ 2.html.
- [12] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vol6/pre_circ.html.
- [13] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, II. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vol6/msafree2.html.
- [14] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [15] Beata Perkowska. Free many sorted universal algebra. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msafree.html.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [17] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [18] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1.html.
- [19] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [20] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [21] Wolfgang Wechler. Universal Algebra for Computer Scientists, volume 25 of EATCS Monographs on TCS. Springer-Verlag, 1992.
- [22] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

[23] Edmund Woronowicz. Relations defined on sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relset_l.html.

Received June 19, 1997

Published January 2, 2004