JOURNAL OF FORMALIZED MATHEMATICS Volume 10, Released 1998, Published 2003 Inst. of Computer Science, Univ. of Białystok

Full Trees

Robert Milewski University of Białystok

MML Identifier: BINTREE2.
WWW: http://mizar.org/JFM/Vol10/bintree2.html

The articles [19], [10], [22], [21], [20], [2], [17], [23], [1], [24], [18], [8], [9], [13], [6], [11], [12], [16], [15], [3], [4], [5], [7], and [14] provide the notation and terminology for this paper.

1. TREES AND BINARY TREES

One can prove the following two propositions:

- (1) For every set *D* and for every finite sequence *p* and for every natural number *n* such that $p \in D^*$ holds $p \upharpoonright \text{Seg} n \in D^*$.
- (2) For every binary tree T holds every element of T is a finite sequence of elements of *Boolean*.

Let T be a binary tree. We see that the element of T is a finite sequence of elements of *Boolean*. One can prove the following propositions:

- (3) For every tree *T* such that $T = \{0, 1\}^*$ holds *T* is binary.
- (4) For every tree *T* such that $T = \{0, 1\}^*$ holds $\text{Leaves}(T) = \emptyset$.
- (5) Let *T* be a binary tree, *n* be a natural number, and *t* be an element of *T*. If $t \in T$ -level(n), then *t* is a *n*-tuple of *Boolean*.
- (6) For every tree T such that for every element t of T holds $\operatorname{succ} t = \{t \cap \langle 0 \rangle, t \cap \langle 1 \rangle\}$ holds $\operatorname{Leaves}(T) = \emptyset$.
- (7) For every tree *T* such that for every element *t* of *T* holds succ $t = \{t \cap \langle 0 \rangle, t \cap \langle 1 \rangle\}$ holds *T* is binary.
- (8) For every tree *T* holds $T = \{0, 1\}^*$ iff for every element *t* of *T* holds succ $t = \{t \cap \langle 0 \rangle, t \cap \langle 1 \rangle\}$.

In this article we present several logical schemes. The scheme *DecoratedBinTreeEx* deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , and a ternary predicate \mathcal{P} , and states that:

There exists a binary tree D decorated with elements of \mathcal{A} such that dom $D = \{0, 1\}^*$

and $D(\emptyset) = \mathcal{B}$ and for every node *x* of *D* holds $\mathcal{P}[D(x), D(x \cap \langle 0 \rangle), D(x \cap \langle 1 \rangle)]$ provided the following condition is met:

• For every element a of \mathcal{A} there exist elements b, c of \mathcal{A} such that $\mathcal{P}[a,b,c]$.

The scheme *DecoratedBinTreeEx1* deals with a non empty set \mathcal{A} , an element \mathcal{B} of \mathcal{A} , and two binary predicates \mathcal{P} , Q, and states that:

There exists a binary tree *D* decorated with elements of \mathcal{A} such that dom $D = \{0, 1\}^*$ and $D(\emptyset) = \mathcal{B}$ and for every node *x* of *D* holds $\mathcal{P}[D(x), D(x^{\frown} \langle 0 \rangle)]$ and $Q[D(x), D(x^{\frown} \langle 1 \rangle)]$

provided the parameters meet the following conditions:

- For every element a of \mathcal{A} there exists an element b of \mathcal{A} such that $\mathcal{P}[a,b]$, and
- For every element a of \mathcal{A} there exists an element b of \mathcal{A} such that Q[a,b].

Let *T* be a binary tree and let *n* be a non empty natural number. The functor NumberOnLevel(n, T) yields a function from *T*-level(n) into \mathbb{N} and is defined as follows:

(Def. 1) For every element t of T such that $t \in T$ -level(n) and for every n-tuple F of Boolean such that F = Rev(t) holds (NumberOnLevel(n, T))(t) = Absval(F) + 1.

Let *T* be a binary tree and let *n* be a non empty natural number. One can check that NumberOnLevel(n, T) is one-to-one.

2. Full Trees

Let T be a tree. We say that T is full if and only if:

(Def. 2) $T = \{0, 1\}^*$.

We now state three propositions:

- (9) $\{0,1\}^*$ is a tree.
- (10) For every tree T such that $T = \{0,1\}^*$ and for every natural number n holds $\langle \underbrace{0,\ldots,0}_n \rangle \in$

T-level(n).

(11) For every tree *T* such that $T = \{0,1\}^*$ and for every non empty natural number *n* and for every *n*-tuple *y* of *Boolean* holds $y \in T$ -level(*n*).

Let *T* be a binary tree and let *n* be a natural number. Observe that T-level(*n*) is finite. Let us observe that every tree which is full is also binary. Let us note that there exists a tree which is full. The following proposition is true

(12) For every full tree T and for every non empty natural number n holds $\text{Seg}(2^n) \subseteq \text{rngNumberOnLevel}(n,T)$.

Let T be a full tree and let n be a non empty natural number. The functor FinSeqLevel(n,T) yields a finite sequence of elements of T-level(n) and is defined by:

(Def. 3) FinSeqLevel(n, T) = (NumberOnLevel $(n, T))^{-1}$.

Let *T* be a full tree and let *n* be a non empty natural number. Observe that FinSeqLevel(n,T) is one-to-one.

Next we state a number of propositions:

- (13) For every full tree T and for every non empty natural number n holds $(\text{NumberOnLevel}(n,T))(\langle 0, \dots, 0 \rangle) = 1.$
- (14) Let *T* be a full tree, *n* be a non empty natural number, and *y* be a *n*-tuple of *Boolean*. If $y = \langle \underbrace{0, \dots, 0} \rangle$, then (NumberOnLevel(*n*,*T*))($\neg y$) = 2^{*n*}.
- (15) For every full tree T and for every non empty natural number n holds $(FinSeqLevel(n,T))(1) = \langle \underbrace{0, \dots, 0} \rangle.$

- (16) Let *T* be a full tree, *n* be a non empty natural number, and *y* be a *n*-tuple of *Boolean*. If $y = \langle \underbrace{0, \ldots, 0} \rangle$, then (FinSeqLevel(*n*,*T*))(2^{*n*}) = $\neg y$.
- (17) Let T be a full tree, n be a non empty natural number, and i be a natural number. If $i \in \text{Seg}(2^n)$, then (FinSeqLevel(n,T))(i) = Rev(n-BinarySequence(i-1)).
- (18) For every full tree *T* and for every natural number *n* holds $\overline{T \text{level}(n)} = 2^n$.
- (19) For every full tree T and for every non empty natural number n holds len FinSeqLevel $(n, T) = 2^n$.
- (20) For every full tree T and for every non empty natural number n holds dom FinSeqLevel $(n,T) = \text{Seg}(2^n)$.
- (21) For every full tree T and for every non empty natural number n holds rngFinSeqLevel(n,T) = T-level(n).
- (22) For every full tree T holds (FinSeqLevel(1,T))(1) = $\langle 0 \rangle$.
- (23) For every full tree T holds (FinSeqLevel(1,T))(2) = $\langle 1 \rangle$.
- (24) Let *T* be a full tree and *n*, *i* be non empty natural numbers. Suppose $i \le 2^{n+1}$. Let *F* be a *n*-tuple of *Boolean*. If $F = (\text{FinSeqLevel}(n,T))((i+1) \div 2)$, then $(\text{FinSeqLevel}(n+1,T))(i) = F \cap \langle (i+1) \mod 2 \rangle$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [3] Grzegorz Bancerek. Introduction to trees. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/trees_1. html.
- [4] Grzegorz Bancerek. König's Lemma. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/trees_2.html.
- [5] Grzegorz Bancerek. Joining of decorated trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/trees_ 4.html.
- [6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [7] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on binary trees. Journal of Formalized Mathematics, 5, 1993. http: //mizar.org/JFM/Vol5/bintreel.html.
- [8] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [9] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [10] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.
- [11] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/finseq_2.html.
- [12] Czesław Byliński. Some properties of restrictions of finite sequences. Journal of Formalized Mathematics, 7, 1995. http://mizar. org/JFM/Vol7/finseq_5.html.
- [13] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [14] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [15] Robert Milewski. Binary arithmetics. Binary sequences. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/ Vol10/binari_3.html.
- [16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/ Vol5/binarith.html.
- [17] Konrad Raczkowski and Andrzej Nędzusiak. Series. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/ series_1.html.

FULL TREES

- [18] Andrzej Trybulec. Domains and their Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/ Voll/domain_1.html.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [20] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/mcart_1.html.
- [21] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html.
- [22] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [23] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.
- [24] Edmund Woronowicz. Many-argument relations. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/ margrell.html.

Received February 25, 1998

Published January 2, 2004