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Summary. In [14] the series of real numbers were investigated. The introduction to
Banach and Hilbert space$ ([10], [11].[12]), enables us to arrive at the concept of series in
Hilbert space. We start with the notions: partial sums of series, sunm-#8mdum of series,
convergent series (summable series), absolutely convergent series. We prove some basic the-
orems: the necessary condition for a series to converge, Weierstrass’ test, d’Alembert’s test,
Cauchy’s test.
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The articles([117],[[2],115],14],01], 131, [[7], 5], 6], [14], 18], [16], [9], [10], [11],[12], and [13]
provide the notation and terminology for this paper.
For simplicity, we adopt the following conventiorX is a real unitary space, b, r are real
numberss:, S, S3 are sequences of, Ry, Ry, Rz are sequences of real numbers, &nd, m are
natural numbers.
The schemd&ec Func Ex RUS8eals with a real unitary spacg, a pointB of A4, and a binary
functor ¥ yielding a point of4, and states that:
There exists a functior from N into the carrier of4 such thatf (0) = B and for
every element of N and for every poink of 4 such thak = f(n) holdsf(n+1) =
F(n,x)

for all values of the parameters.

Let us consideX and let us consides;. The functor(S§_o(s1)(a))ken Yields a sequence of
and is defined by:

(Def. 1) (Sh_o(s1)(a))ken(0) = s1(0) and for everyn holds (T§_o(s1)(0))ken(n+ 1) =
(Ya—o(s1)(@))ken(n) +s1(n+1).

The following propositions are true:

(1) (Ya—o(s2)(@))ken+ (Fo—o(s8)(@))ken = (Ta—o(S2+S8)(a) ken-

) (Ya—o(s2)(@))ken — (Fo—0(S8)(@))ken = (Fa—o(S2 —S8)(a) )ken-

(3) (Xa=o(a-s1)(o))ken = a- (Fa—o(S)(A))ken-

(@) (Yo—o(—S1)(0))ken = —(Za—0(S2)(@))ken-

(5) a-(Ya=o(S2)(0))ken +b- (Fa—0(S3)(0))ken = (Fa—o(a-S2+b-53) (@) Jken-
Let us consideK and let us consides;. We say thas; is summable if and only if:

(Def. 2) (Y§—o(s1)(a))ken is convergent.
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The functory s; yielding a point ofX is defined as follows:

(Def. 3) 351 =lim((Fa—o(S1)(a))ken)-

Next we state several propositions:

(6) If s is summable and; is summable, thes, + s3 is summable an§ (S + %) = Y S+
2S5

(7) If s is summable and; is summable, thes, — s3 is summable an§ (s, — ) = Y —
2 Ss

(8) If s1is summable, thea-s; is summable an§ (a-s) =a- S .
(9) If s1is summable, thes, is convergent and lirsy = Ox.

(10) Suppos is a Hilbert space. Theg is summable if and only if for evenysuch that > 0
there existk such that for alh, m such than > k andm> k holds|| (3 §_o(s1)(a0))ken(n) —

(Ta—o(s1)(@))ken(m)| <.
(11) If s is summable, thefiy §_o(s1)(a))ken is bounded.

(12) For all's;, s, such that for everyn holds s;(n) = s1(0) holds (S§_o(s1 T 1)(Q))ken =
(To—o(s1)(@))ken T1— .

(13) If 1 is summable, then for evekyholdss; Tk is summable.

(14) If there existk such thas; Tk is summable, thegs; is summable.
Let us consideK, s;, n. The functoryy_qs1(k) yielding a point ofX is defined by:
(Def. 4) Se_os1(K) = (Ta—o(s1)(a))ken(n).
We now state several propositions:
(16§] 5R_o51(k) =51(0).
(17) Ti-oSi(K) = T oSi(K) +s1(1).
(18) Si_osi(K)=s1(0) +s1(2).
(19) 3Rigsi(k) = 3R _oS1(K) +si(n+1).
(20) si(n+1) = 3R'581(K) — TR_oSi(K).
(21) s1(1) = FxoS1(K) — 3R_oS1(K).

Let us consideX, s;, n, m. The functoryy’, ., s1(K) yields a point ofX and is defined as
follows:

(Def. 5)  3Rlni181(K) = YR_oS1(K) — TxloS1(K).

One can prove the following propositions:

23F] 59_1.150(0) =s1(D),
(24) Si_niasiK) =si(n+1).

(25) Suppose« is a Hilbert space. Thes is summable if and only if for every such that
r > 0 there exists such that for alln, m such than > k andm > k holds || 33 _gs1(K) —
Treosi(K)[[ <.

1 The proposition (15) has been removed.
2 The proposition (22) has been removed.
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Suppos& is a Hilbert space. Thes is summable if and only if for evenysuch that > 0

there exist&k such that for alh, msuch than > kandm > k holds|| 3L, 1 s1(K)|| <.

Let us consideRy, n. The functory}_,Ri(k) yielding a real number is defined by:

(Def. 6)

Yr-oRu1(K) = (T5_o(R)(a))ken(n).

Let us consideRy, n, m. The functory ', . ; Ri(k) yielding a real number is defined as follows:

(Def. 7)

Ykeni1Ru(K) = YR oRu(K) — TRl Ru(K).

Let us consideK, s;. We say thas; is absolutely summable if and only if:

(Def. 8)

|Ist|| is summable.

Next we state a number of propositions:

(27) If s is absolutely summable ars is absolutely summable, thes + s3 is absolutely
summable.

(28) If 51 is absolutely summable, thens,; is absolutely summable.

(29) If for everyn holds||s;||(n) < Ri(n) andRy is summable, thes; is absolutely summable.

(30) Iffor everyn holdss; (n) # Ox andRy(n) = “Sl(r‘*)l)” andRy is convergent and lifR; < 1,

sl

thens; is absolutely summable.

(1)

If r > 0 and there exists1such that for every such than > mholds||s;(n)|| > r, thens;

is not convergent or lirgy # Ox.

(32)

If for everyn holdss; (n) # Ox and there existsn such that for every such thatn > m

holds ISU™ Dl > 1 thens; is not summable.

[s1(M]

(33) Iffor everynholdss; (n) # Ox and for everyn holdsRy (n) = W andRy is convergent
and limRy > 1, thens; is not summable.

(34) If for everyn holdsRy(n) = {/||s1(n)|| and Ry is convergent and lil; < 1, thens; is
absolutely summable.

(35) If for everyn holdsRy(n) = {/||s1||(n) and there existan such that for every such that
n > mholdsRy(n) > 1, thens; is not summable.

(36) If for everyn holdsRy(n) = {/||s1]|(n) andRy is convergent and lirR; > 1, thens; is not
summable.

(37) (3h-ollsill(a))ken is non-decreasing.

(38) For everyn holds (3 §_olls1|l(a))ken(n) > 0.

(39) For evenyn holds||(Fg—o(s1)(0) ken (M < (Ta—ollstll (@))xer(n).

(40)  For evenyn holds||3¢_oS1(K)[| < Sx_ollstll (k).

(41) Foralin, mholds||(F5_o(s1) () Jken (M) = (35-0(S1) (@))xer (M| <[ (Za—ollsall(@))xer(m)
(Za—ollsall(@))ken(n)].

(42) Foralin, mholds||3¢"os1(K) = Sk—0S1(K)[| < [TxLolls1ll(K) = Tk=ollsall (K)I-

(43) Foralin, mholds||3g_m;151(K)[| < [Tkmyallstll(K)].

(44) If X is a Hilbert space, then § is absolutely summable, thepis summable.

Let us considekK, s;, R;. The functorR; - 5 yielding a sequence of is defined by:
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(Def. 9) For evenyn holds(R; - s1)(n) = Re(Nn) - s1(n).

The following propositions are true:

(45) Ri-(2+s3)=Ri-2+Ry-ss.

(46) (Ro+Rs) s1=Ro-s1+Rs-s1.

(47) (RRs)-s1=Rx-(Rs-s1).

(48) (aR)-s1=a:(Ri-s1).

(49) Ri-—s1=(—Ri) s

(50) If Ry is convergent ang; is convergent, theR; - s is convergent.
(51) If Ry is bounded and; is bounded, theR; - s; is bounded.

(52) If Ry is convergent ang is convergent, theR; - s; is convergent and lifiR; - s;) =lim Ry -
lims;.

Let us consideR;. We say thaR; is Cauchy if and only if:

(Def. 10) For every such thatr > 0 there existk such that for alh, m such thain > k andm > k
holds|Ri(n) —Ry(m)| <.

We introduceR; is a Cauchy sequence as a synonyrRpfs Cauchy.
Next we state four propositions:

(53) If X is a Hilbert space, then # is a Cauchy sequence aRg is a Cauchy sequence, then
Ry -s1 is a Cauchy sequence.

(54) For everyn holds (3g_o((Ri —R1 T 1) - (Ya_o(S1)(@))ken)(@))ken(n) = (Fa—o(Rua -
s1)(0) )ken(N+1) = (R - (Fg—o(S1)(a) )ken) (N+1).

(55) For everyn holds (35_o(Ri - s1)(a))ken(n+1) = (Ri - (Ta—o(S1)(®))ken)(N+ 1) —
(Ya—o((R1T1—R1) - (Ta—o(S1)(@))ken)(a))ken(n).

(56) For every holdss{5(Ry-51)(K) = (Re- (35_o(s1) (@))ken) (1) — S_o((Re 11— Ry)-
(55 _o(s0)(@))een) (K).
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