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Summary. In [14] the series of real numbers were investigated. The introduction to
Banach and Hilbert spaces ([10], [11],[12]), enables us to arrive at the concept of series in
Hilbert space. We start with the notions: partial sums of series, sum andn-th sum of series,
convergent series (summable series), absolutely convergent series. We prove some basic the-
orems: the necessary condition for a series to converge, Weierstrass’ test, d’Alembert’s test,
Cauchy’s test.

MML Identifier: BHSP_4.

WWW: http://mizar.org/JFM/Vol4/bhsp_4.html

The articles [17], [2], [15], [4], [1], [3], [7], [5], [6], [14], [8], [16], [9], [10], [11], [12], and [13]
provide the notation and terminology for this paper.

For simplicity, we adopt the following convention:X is a real unitary space,a, b, r are real
numbers,s1, s2, s3 are sequences ofX, R1, R2, R3 are sequences of real numbers, andk, n, m are
natural numbers.

The schemeRec Func Ex RUSdeals with a real unitary spaceA , a pointB of A , and a binary
functorF yielding a point ofA , and states that:

There exists a functionf from N into the carrier ofA such thatf (0) = B and for
every elementn of N and for every pointx of A such thatx = f (n) holds f (n+1) =
F (n,x)

for all values of the parameters.
Let us considerX and let us considers1. The functor(∑κ

α=0(s1)(α))κ∈N yields a sequence ofX
and is defined by:

(Def. 1) (∑κ
α=0(s1)(α))κ∈N(0) = s1(0) and for every n holds (∑κ

α=0(s1)(α))κ∈N(n + 1) =
(∑κ

α=0(s1)(α))κ∈N(n)+s1(n+1).

The following propositions are true:

(1) (∑κ
α=0(s2)(α))κ∈N +(∑κ

α=0(s3)(α))κ∈N = (∑κ
α=0(s2 +s3)(α))κ∈N.

(2) (∑κ
α=0(s2)(α))κ∈N− (∑κ

α=0(s3)(α))κ∈N = (∑κ
α=0(s2−s3)(α))κ∈N.

(3) (∑κ
α=0(a·s1)(α))κ∈N = a· (∑κ

α=0(s1)(α))κ∈N.

(4) (∑κ
α=0(−s1)(α))κ∈N =−(∑κ

α=0(s1)(α))κ∈N.

(5) a· (∑κ
α=0(s2)(α))κ∈N +b· (∑κ

α=0(s3)(α))κ∈N = (∑κ
α=0(a·s2 +b·s3)(α))κ∈N.

Let us considerX and let us considers1. We say thats1 is summable if and only if:

(Def. 2) (∑κ
α=0(s1)(α))κ∈N is convergent.
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The functor∑s1 yielding a point ofX is defined as follows:

(Def. 3) ∑s1 = lim((∑κ
α=0(s1)(α))κ∈N).

Next we state several propositions:

(6) If s2 is summable ands3 is summable, thens2 + s3 is summable and∑(s2 + s3) = ∑s2 +
∑s3.

(7) If s2 is summable ands3 is summable, thens2− s3 is summable and∑(s2− s3) = ∑s2−
∑s3.

(8) If s1 is summable, thena·s1 is summable and∑(a·s1) = a·∑s1.

(9) If s1 is summable, thens1 is convergent and lims1 = 0X.

(10) SupposeX is a Hilbert space. Thens1 is summable if and only if for everyr such thatr > 0
there existsk such that for alln, m such thatn≥ k andm≥ k holds‖(∑κ

α=0(s1)(α))κ∈N(n)−
(∑κ

α=0(s1)(α))κ∈N(m)‖< r.

(11) If s1 is summable, then(∑κ
α=0(s1)(α))κ∈N is bounded.

(12) For all s1, s2 such that for everyn holds s2(n) = s1(0) holds (∑κ
α=0(s1 ↑ 1)(α))κ∈N =

(∑κ
α=0(s1)(α))κ∈N ↑1−s2.

(13) If s1 is summable, then for everyk holdss1↑k is summable.

(14) If there existsk such thats1↑k is summable, thens1 is summable.

Let us considerX, s1, n. The functor∑n
κ=0s1(κ) yielding a point ofX is defined by:

(Def. 4) ∑n
κ=0s1(κ) = (∑κ

α=0(s1)(α))κ∈N(n).

We now state several propositions:

(16)1 ∑0
κ=0s1(κ) = s1(0).

(17) ∑1
κ=0s1(κ) = ∑0

κ=0s1(κ)+s1(1).

(18) ∑1
κ=0s1(κ) = s1(0)+s1(1).

(19) ∑n+1
κ=0s1(κ) = ∑n

κ=0s1(κ)+s1(n+1).

(20) s1(n+1) = ∑n+1
κ=0s1(κ)−∑n

κ=0s1(κ).

(21) s1(1) = ∑1
κ=0s1(κ)−∑0

κ=0s1(κ).

Let us considerX, s1, n, m. The functor∑m
κ=n+1s1(κ) yields a point ofX and is defined as

follows:

(Def. 5) ∑m
κ=n+1s1(κ) = ∑n

κ=0s1(κ)−∑m
κ=0s1(κ).

One can prove the following propositions:

(23)2 ∑0
κ=1+1s1(κ) = s1(1).

(24) ∑n
κ=n+1+1s1(κ) = s1(n+1).

(25) SupposeX is a Hilbert space. Thens1 is summable if and only if for everyr such that
r > 0 there existsk such that for alln, m such thatn≥ k andm≥ k holds‖∑n

κ=0s1(κ)−
∑m

κ=0s1(κ)‖< r.

1 The proposition (15) has been removed.
2 The proposition (22) has been removed.
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(26) SupposeX is a Hilbert space. Thens1 is summable if and only if for everyr such thatr > 0
there existsk such that for alln, msuch thatn≥ k andm≥ k holds‖∑m

κ=n+1s1(κ)‖< r.

Let us considerR1, n. The functor∑n
κ=0R1(κ) yielding a real number is defined by:

(Def. 6) ∑n
κ=0R1(κ) = (∑κ

α=0(R1)(α))κ∈N(n).

Let us considerR1, n, m. The functor∑m
κ=n+1R1(κ) yielding a real number is defined as follows:

(Def. 7) ∑m
κ=n+1R1(κ) = ∑n

κ=0R1(κ)−∑m
κ=0R1(κ).

Let us considerX, s1. We say thats1 is absolutely summable if and only if:

(Def. 8) ‖s1‖ is summable.

Next we state a number of propositions:

(27) If s2 is absolutely summable ands3 is absolutely summable, thens2 + s3 is absolutely
summable.

(28) If s1 is absolutely summable, thena·s1 is absolutely summable.

(29) If for everyn holds‖s1‖(n)≤ R1(n) andR1 is summable, thens1 is absolutely summable.

(30) If for everyn holdss1(n) 6= 0X andR1(n) = ‖s1(n+1)‖
‖s1(n)‖ andR1 is convergent and limR1 < 1,

thens1 is absolutely summable.

(31) If r > 0 and there existsm such that for everyn such thatn≥m holds‖s1(n)‖ ≥ r, thens1

is not convergent or lims1 6= 0X.

(32) If for everyn holdss1(n) 6= 0X and there existsm such that for everyn such thatn≥ m

holds ‖s1(n+1)‖
‖s1(n)‖ ≥ 1, thens1 is not summable.

(33) If for everyn holdss1(n) 6= 0X and for everyn holdsR1(n) = ‖s1(n+1)‖
‖s1(n)‖ andR1 is convergent

and limR1 > 1, thens1 is not summable.

(34) If for everyn holdsR1(n) = n
√
‖s1(n)‖ andR1 is convergent and limR1 < 1, thens1 is

absolutely summable.

(35) If for everyn holdsR1(n) = n
√
‖s1‖(n) and there existsm such that for everyn such that

n≥m holdsR1(n)≥ 1, thens1 is not summable.

(36) If for everyn holdsR1(n) = n
√
‖s1‖(n) andR1 is convergent and limR1 > 1, thens1 is not

summable.

(37) (∑κ
α=0‖s1‖(α))κ∈N is non-decreasing.

(38) For everyn holds(∑κ
α=0‖s1‖(α))κ∈N(n)≥ 0.

(39) For everyn holds‖(∑κ
α=0(s1)(α))κ∈N(n)‖ ≤ (∑κ

α=0‖s1‖(α))κ∈N(n).

(40) For everyn holds‖∑n
κ=0s1(κ)‖ ≤ ∑n

κ=0‖s1‖(κ).

(41) For alln, mholds‖(∑κ
α=0(s1)(α))κ∈N(m)−(∑κ

α=0(s1)(α))κ∈N(n)‖≤ |(∑κ
α=0‖s1‖(α))κ∈N(m)−

(∑κ
α=0‖s1‖(α))κ∈N(n)|.

(42) For alln, mholds‖∑m
κ=0s1(κ)−∑n

κ=0s1(κ)‖ ≤ |∑m
κ=0‖s1‖(κ)−∑n

κ=0‖s1‖(κ)|.

(43) For alln, m holds‖∑n
κ=m+1s1(κ)‖ ≤ |∑n

κ=m+1‖s1‖(κ)|.

(44) If X is a Hilbert space, then ifs1 is absolutely summable, thens1 is summable.

Let us considerX, s1, R1. The functorR1 ·s1 yielding a sequence ofX is defined by:
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(Def. 9) For everyn holds(R1 ·s1)(n) = R1(n) ·s1(n).

The following propositions are true:

(45) R1 · (s2 +s3) = R1 ·s2 +R1 ·s3.

(46) (R2 +R3) ·s1 = R2 ·s1 +R3 ·s1.

(47) (R2 R3) ·s1 = R2 · (R3 ·s1).

(48) (a R1) ·s1 = a· (R1 ·s1).

(49) R1 ·−s1 = (−R1) ·s1.

(50) If R1 is convergent ands1 is convergent, thenR1 ·s1 is convergent.

(51) If R1 is bounded ands1 is bounded, thenR1 ·s1 is bounded.

(52) If R1 is convergent ands1 is convergent, thenR1 ·s1 is convergent and lim(R1 ·s1) = lim R1 ·
lim s1.

Let us considerR1. We say thatR1 is Cauchy if and only if:

(Def. 10) For everyr such thatr > 0 there existsk such that for alln, m such thatn≥ k andm≥ k
holds|R1(n)−R1(m)|< r.

We introduceR1 is a Cauchy sequence as a synonym ofR1 is Cauchy.
Next we state four propositions:

(53) If X is a Hilbert space, then ifs1 is a Cauchy sequence andR1 is a Cauchy sequence, then
R1 ·s1 is a Cauchy sequence.

(54) For everyn holds (∑κ
α=0((R1 − R1 ↑ 1) · (∑κ

α=0(s1)(α))κ∈N)(α))κ∈N(n) = (∑κ
α=0(R1 ·

s1)(α))κ∈N(n+1)− (R1 · (∑κ
α=0(s1)(α))κ∈N)(n+1).

(55) For everyn holds (∑κ
α=0(R1 · s1)(α))κ∈N(n + 1) = (R1 · (∑κ

α=0(s1)(α))κ∈N)(n + 1) −
(∑κ

α=0((R1↑1−R1) · (∑κ
α=0(s1)(α))κ∈N)(α))κ∈N(n).

(56) For everyn holds∑n+1
κ=0(R1 ·s1)(κ) = (R1 ·(∑κ

α=0(s1)(α))κ∈N)(n+1)−∑n
κ=0((R1↑1−R1) ·

(∑κ
α=0(s1)(α))κ∈N)(κ).
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