Series in Banach and Hilbert Spaces

Elżbieta Kraszewska Warsaw University Białystok Jan Popiołek Warsaw University Białystok

Summary. In [14] the series of real numbers were investigated. The introduction to Banach and Hilbert spaces ([10], [11],[12]), enables us to arrive at the concept of series in Hilbert space. We start with the notions: partial sums of series, sum and *n*-th sum of series, convergent series (summable series), absolutely convergent series. We prove some basic theorems: the necessary condition for a series to converge, Weierstrass' test, d'Alembert's test, Cauchy's test.

MML Identifier: BHSP 4.

WWW: http://mizar.org/JFM/Vol4/bhsp_4.html

The articles [17], [2], [15], [4], [1], [3], [7], [5], [6], [14], [8], [16], [9], [10], [11], [12], and [13] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: X is a real unitary space, a, b, r are real numbers, s_1 , s_2 , s_3 are sequences of X, R_1 , R_2 , R_3 are sequences of real numbers, and k, n, m are natural numbers.

The scheme $Rec\ Func\ Ex\ RUS$ deals with a real unitary space \mathcal{A} , a point \mathcal{B} of \mathcal{A} , and a binary functor \mathcal{F} yielding a point of \mathcal{A} , and states that:

There exists a function f from $\mathbb N$ into the carrier of $\mathcal A$ such that $f(0) = \mathcal B$ and for every element n of $\mathbb N$ and for every point x of $\mathcal A$ such that x = f(n) holds $f(n+1) = \mathcal F(n,x)$

for all values of the parameters.

Let us consider X and let us consider s_1 . The functor $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}$ yields a sequence of X and is defined by:

(Def. 1)
$$(\sum_{\alpha=0}^{\kappa}(s_1)(\alpha))_{\kappa\in\mathbb{N}}(0) = s_1(0)$$
 and for every n holds $(\sum_{\alpha=0}^{\kappa}(s_1)(\alpha))_{\kappa\in\mathbb{N}}(n+1) = (\sum_{\alpha=0}^{\kappa}(s_1)(\alpha))_{\kappa\in\mathbb{N}}(n) + s_1(n+1)$.

The following propositions are true:

- $(1) \quad (\sum_{\alpha=0}^{\kappa} (s_2)(\alpha))_{\kappa \in \mathbb{N}} + (\sum_{\alpha=0}^{\kappa} (s_3)(\alpha))_{\kappa \in \mathbb{N}} = (\sum_{\alpha=0}^{\kappa} (s_2 + s_3)(\alpha))_{\kappa \in \mathbb{N}}.$
- $(2) \quad (\sum_{\alpha=0}^{\kappa} (s_2)(\alpha))_{\kappa \in \mathbb{N}} (\sum_{\alpha=0}^{\kappa} (s_3)(\alpha))_{\kappa \in \mathbb{N}} = (\sum_{\alpha=0}^{\kappa} (s_2 s_3)(\alpha))_{\kappa \in \mathbb{N}}.$
- $(3) \quad (\sum_{\alpha=0}^{\kappa} (a \cdot s_1)(\alpha))_{\kappa \in \mathbb{N}} = a \cdot (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}.$
- $(4) \quad (\sum_{\alpha=0}^{\kappa} (-s_1)(\alpha))_{\kappa \in \mathbb{N}} = -(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}.$
- $(5) \quad a \cdot (\sum_{\alpha=0}^{\kappa} (s_2)(\alpha))_{\kappa \in \mathbb{N}} + b \cdot (\sum_{\alpha=0}^{\kappa} (s_3)(\alpha))_{\kappa \in \mathbb{N}} = (\sum_{\alpha=0}^{\kappa} (a \cdot s_2 + b \cdot s_3)(\alpha))_{\kappa \in \mathbb{N}}.$

Let us consider X and let us consider s_1 . We say that s_1 is summable if and only if:

(Def. 2) $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}$ is convergent.

The functor $\sum s_1$ yielding a point of X is defined as follows:

(Def. 3)
$$\sum s_1 = \lim((\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}).$$

Next we state several propositions:

- (6) If s_2 is summable and s_3 is summable, then $s_2 + s_3$ is summable and $\sum (s_2 + s_3) = \sum s_2 + \sum s_3$.
- (7) If s_2 is summable and s_3 is summable, then $s_2 s_3$ is summable and $\sum (s_2 s_3) = \sum s_2 \sum s_3$.
- (8) If s_1 is summable, then $a \cdot s_1$ is summable and $\sum (a \cdot s_1) = a \cdot \sum s_1$.
- (9) If s_1 is summable, then s_1 is convergent and $\lim s_1 = 0_X$.
- (10) Suppose X is a Hilbert space. Then s_1 is summable if and only if for every r such that r > 0 there exists k such that for all n, m such that $n \ge k$ and $m \ge k$ holds $\|(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(n) (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(m)\| < r$.
- (11) If s_1 is summable, then $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}$ is bounded.
- (12) For all s_1 , s_2 such that for every n holds $s_2(n) = s_1(0)$ holds $(\sum_{\alpha=0}^{\kappa} (s_1 \uparrow 1)(\alpha))_{\kappa \in \mathbb{N}} = (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}} \uparrow 1 s_2$.
- (13) If s_1 is summable, then for every k holds $s_1 \uparrow k$ is summable.
- (14) If there exists k such that $s_1 \uparrow k$ is summable, then s_1 is summable.

Let us consider X, s_1 , n. The functor $\sum_{\kappa=0}^{n} s_1(\kappa)$ yielding a point of X is defined by:

(Def. 4)
$$\sum_{\kappa=0}^{n} s_1(\kappa) = (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(n)$$
.

We now state several propositions:

- $(16)^1 \quad \sum_{\kappa=0}^0 s_1(\kappa) = s_1(0).$
- (17) $\sum_{\kappa=0}^{1} s_1(\kappa) = \sum_{\kappa=0}^{0} s_1(\kappa) + s_1(1)$.
- (18) $\sum_{\kappa=0}^{1} s_1(\kappa) = s_1(0) + s_1(1)$.
- (19) $\sum_{\kappa=0}^{n+1} s_1(\kappa) = \sum_{\kappa=0}^{n} s_1(\kappa) + s_1(n+1).$
- (20) $s_1(n+1) = \sum_{\kappa=0}^{n+1} s_1(\kappa) \sum_{\kappa=0}^{n} s_1(\kappa).$
- (21) $s_1(1) = \sum_{\kappa=0}^{1} s_1(\kappa) \sum_{\kappa=0}^{0} s_1(\kappa).$

Let us consider X, s_1 , n, m. The functor $\sum_{\kappa=n+1}^{m} s_1(\kappa)$ yields a point of X and is defined as follows:

(Def. 5)
$$\sum_{\kappa=n+1}^{m} s_1(\kappa) = \sum_{\kappa=0}^{n} s_1(\kappa) - \sum_{\kappa=0}^{m} s_1(\kappa)$$
.

One can prove the following propositions:

- $(23)^2 \quad \sum_{\kappa=1+1}^0 s_1(\kappa) = s_1(1).$
- (24) $\sum_{\kappa=n+1+1}^{n} s_1(\kappa) = s_1(n+1).$
- (25) Suppose X is a Hilbert space. Then s_1 is summable if and only if for every r such that r > 0 there exists k such that for all n, m such that $n \ge k$ and $m \ge k$ holds $\|\sum_{\kappa=0}^n s_1(\kappa) \sum_{\kappa=0}^m s_1(\kappa)\| < r$.

¹ The proposition (15) has been removed.

² The proposition (22) has been removed.

(26) Suppose *X* is a Hilbert space. Then s_1 is summable if and only if for every *r* such that r > 0 there exists *k* such that for all *n*, *m* such that $n \ge k$ and $m \ge k$ holds $\|\sum_{\kappa=n+1}^m s_1(\kappa)\| < r$.

Let us consider R_1 , n. The functor $\sum_{\kappa=0}^{n} R_1(\kappa)$ yielding a real number is defined by:

(Def. 6)
$$\sum_{\kappa=0}^{n} R_1(\kappa) = (\sum_{\alpha=0}^{\kappa} (R_1)(\alpha))_{\kappa \in \mathbb{N}}(n)$$
.

Let us consider R_1 , n, m. The functor $\sum_{\kappa=n+1}^m R_1(\kappa)$ yielding a real number is defined as follows:

(Def. 7)
$$\sum_{\kappa=n+1}^{m} R_1(\kappa) = \sum_{\kappa=0}^{n} R_1(\kappa) - \sum_{\kappa=0}^{m} R_1(\kappa)$$
.

Let us consider X, s_1 . We say that s_1 is absolutely summable if and only if:

(Def. 8) $||s_1||$ is summable.

Next we state a number of propositions:

- (27) If s_2 is absolutely summable and s_3 is absolutely summable, then $s_2 + s_3$ is absolutely summable.
- (28) If s_1 is absolutely summable, then $a \cdot s_1$ is absolutely summable.
- (29) If for every *n* holds $||s_1||(n) \le R_1(n)$ and R_1 is summable, then s_1 is absolutely summable.
- (30) If for every n holds $s_1(n) \neq 0_X$ and $R_1(n) = \frac{\|s_1(n+1)\|}{\|s_1(n)\|}$ and R_1 is convergent and $\lim R_1 < 1$, then s_1 is absolutely summable.
- (31) If r > 0 and there exists m such that for every n such that $n \ge m$ holds $||s_1(n)|| \ge r$, then s_1 is not convergent or $\lim s_1 \ne 0_X$.
- (32) If for every n holds $s_1(n) \neq 0_X$ and there exists m such that for every n such that $n \geq m$ holds $\frac{\|s_1(n+1)\|}{\|s_1(n)\|} \geq 1$, then s_1 is not summable.
- (33) If for every n holds $s_1(n) \neq 0_X$ and for every n holds $R_1(n) = \frac{\|s_1(n+1)\|}{\|s_1(n)\|}$ and R_1 is convergent and $\lim R_1 > 1$, then s_1 is not summable.
- (34) If for every n holds $R_1(n) = \sqrt[n]{\|s_1(n)\|}$ and R_1 is convergent and $\lim R_1 < 1$, then s_1 is absolutely summable.
- (35) If for every n holds $R_1(n) = \sqrt[n]{\|s_1\|(n)}$ and there exists m such that for every n such that $n \ge m$ holds $R_1(n) \ge 1$, then s_1 is not summable.
- (36) If for every n holds $R_1(n) = \sqrt[n]{\|s_1\|(n)}$ and R_1 is convergent and $\lim R_1 > 1$, then s_1 is not summable.
- (37) $(\sum_{\alpha=0}^{\kappa} ||s_1||(\alpha))_{\kappa \in \mathbb{N}}$ is non-decreasing.
- (38) For every n holds $(\sum_{\alpha=0}^{\kappa} ||s_1||(\alpha))_{\kappa \in \mathbb{N}}(n) \geq 0$.
- (39) For every n holds $\|(\sum_{\alpha=0}^{\kappa}(s_1)(\alpha))_{\kappa\in\mathbb{N}}(n)\| \leq (\sum_{\alpha=0}^{\kappa}\|s_1\|(\alpha))_{\kappa\in\mathbb{N}}(n)$.
- (40) For every n holds $\|\sum_{\kappa=0}^n s_1(\kappa)\| \le \sum_{\kappa=0}^n \|s_1\|(\kappa)$.
- (41) For all n, m holds $\|(\sum_{\alpha=0}^{\kappa}(s_1)(\alpha))_{\kappa\in\mathbb{N}}(m) (\sum_{\alpha=0}^{\kappa}(s_1)(\alpha))_{\kappa\in\mathbb{N}}(n)\| \le |(\sum_{\alpha=0}^{\kappa}\|s_1\|(\alpha))_{\kappa\in\mathbb{N}}(m) (\sum_{\alpha=0}^{\kappa}\|s_1\|(\alpha))_{\kappa\in\mathbb{N}}(n)\|.$
- (42) For all n, m holds $\|\sum_{\kappa=0}^{m} s_1(\kappa) \sum_{\kappa=0}^{n} s_1(\kappa)\| \le \|\sum_{\kappa=0}^{m} \|s_1\|(\kappa) \sum_{\kappa=0}^{n} \|s_1\|(\kappa)\|$.
- (43) For all n, m holds $\|\sum_{\kappa=m+1}^{n} s_1(\kappa)\| \le |\sum_{\kappa=m+1}^{n} \|s_1\|(\kappa)\|$.
- (44) If X is a Hilbert space, then if s_1 is absolutely summable, then s_1 is summable.

Let us consider X, s_1 , R_1 . The functor $R_1 \cdot s_1$ yielding a sequence of X is defined by:

(Def. 9) For every n holds $(R_1 \cdot s_1)(n) = R_1(n) \cdot s_1(n)$.

The following propositions are true:

- (45) $R_1 \cdot (s_2 + s_3) = R_1 \cdot s_2 + R_1 \cdot s_3$.
- (46) $(R_2+R_3)\cdot s_1 = R_2\cdot s_1 + R_3\cdot s_1$.
- (47) $(R_2 R_3) \cdot s_1 = R_2 \cdot (R_3 \cdot s_1).$
- (48) $(aR_1) \cdot s_1 = a \cdot (R_1 \cdot s_1).$
- (49) $R_1 \cdot -s_1 = (-R_1) \cdot s_1$.
- (50) If R_1 is convergent and s_1 is convergent, then $R_1 \cdot s_1$ is convergent.
- (51) If R_1 is bounded and s_1 is bounded, then $R_1 \cdot s_1$ is bounded.
- (52) If R_1 is convergent and s_1 is convergent, then $R_1 \cdot s_1$ is convergent and $\lim (R_1 \cdot s_1) = \lim R_1 \cdot \lim s_1$.

Let us consider R_1 . We say that R_1 is Cauchy if and only if:

(Def. 10) For every r such that r > 0 there exists k such that for all n, m such that $n \ge k$ and $m \ge k$ holds $|R_1(n) - R_1(m)| < r$.

We introduce R_1 is a Cauchy sequence as a synonym of R_1 is Cauchy.

Next we state four propositions:

- (53) If X is a Hilbert space, then if s_1 is a Cauchy sequence and R_1 is a Cauchy sequence, then $R_1 \cdot s_1$ is a Cauchy sequence.
- (54) For every n holds $(\sum_{\alpha=0}^{\kappa}((R_1-R_1\uparrow 1)\cdot(\sum_{\alpha=0}^{\kappa}(s_1)(\alpha))_{\kappa\in\mathbb{N}})(\alpha))_{\kappa\in\mathbb{N}}(n)=(\sum_{\alpha=0}^{\kappa}(R_1\cdot s_1)(\alpha))_{\kappa\in\mathbb{N}}(n+1)-(R_1\cdot(\sum_{\alpha=0}^{\kappa}(s_1)(\alpha))_{\kappa\in\mathbb{N}})(n+1).$
- (55) For every n holds $(\sum_{\alpha=0}^{\kappa} (R_1 \cdot s_1)(\alpha))_{\kappa \in \mathbb{N}} (n+1) = (R_1 \cdot (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}})(n+1) (\sum_{\alpha=0}^{\kappa} ((R_1 \uparrow 1 R_1) \cdot (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}})(\alpha))_{\kappa \in \mathbb{N}} (n).$
- (56) For every n holds $\sum_{\kappa=0}^{n+1} (R_1 \cdot s_1)(\kappa) = (R_1 \cdot (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}})(n+1) \sum_{\kappa=0}^{n} ((R_1 \uparrow 1 R_1) \cdot (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}})(\kappa)$.

REFERENCES

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/nat 1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq_2.html.
- [6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/seqm_3.html.
- [7] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/seq_1.html.
- [8] Jan Popiołek. Some properties of functions modul and signum. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/
- [9] Jan Popiolek. Real normed space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/normsp_1.html.

- [10] Jan Popiolek. Introduction to Banach and Hilbert spaces part I. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/bhsp_1.html.
- [11] Jan Popiolek. Introduction to Banach and Hilbert spaces part II. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/bhsp_2.html.
- [12] Jan Popiolek. Introduction to Banach and Hilbert spaces part III. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/bhsp_3.html.
- [13] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/power.html.
- [14] Konrad Raczkowski and Andrzej Nędzusiak. Series. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/series_1.html.
- [15] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [16] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [17] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received April 1, 1992

Published January 2, 2004