Introduction to Banach and Hilbert Spaces — Part III

Jan Popiołek Warsaw University Białystok

Summary. The article is a continuation of [7] and of [8]. First we define the following concepts: the Cauchy sequence, the bounded sequence and the subsequence. The last part of this article contains definitions of the complete space and the Hilbert space.

MML Identifier: BHSP_3.

WWW: http://mizar.org/JFM/Vol3/bhsp_3.html

The articles [9], [2], [10], [1], [12], [3], [4], [5], [11], [6], [7], and [8] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: X is a real unitary space, x, g are points of X, a, r, M are real numbers, s_1 , s_2 , s_3 , s_4 are sequences of X, N_1 is an increasing sequence of naturals, and k, n, m are natural numbers.

Let us consider X and let us consider s_1 . We say that s_1 is Cauchy if and only if:

(Def. 1) For every r such that r > 0 there exists k such that for all n, m such that $n \ge k$ and $m \ge k$ holds $\rho(s_1(n), s_1(m)) < r$.

We introduce s_1 is a Cauchy sequence as a synonym of s_1 is Cauchy.

The following propositions are true:

- (1) If s_1 is constant, then s_1 is a Cauchy sequence.
- (2) s_1 is a Cauchy sequence if and only if for every r such that r > 0 there exists k such that for all n, m such that $n \ge k$ and $m \ge k$ holds $||s_1(n) s_1(m)|| < r$.
- (3) If s_2 is a Cauchy sequence and s_3 is a Cauchy sequence, then $s_2 + s_3$ is a Cauchy sequence.
- (4) If s_2 is a Cauchy sequence and s_3 is a Cauchy sequence, then $s_2 s_3$ is a Cauchy sequence.
- (5) If s_1 is a Cauchy sequence, then $a \cdot s_1$ is a Cauchy sequence.
- (6) If s_1 is a Cauchy sequence, then $-s_1$ is a Cauchy sequence.
- (7) If s_1 is a Cauchy sequence, then $s_1 + x$ is a Cauchy sequence.
- (8) If s_1 is a Cauchy sequence, then $s_1 x$ is a Cauchy sequence.
- (9) If s_1 is convergent, then s_1 is a Cauchy sequence.

Let us consider X and let us consider s_2 , s_3 . We say that s_2 is compared to s_3 if and only if:

(Def. 2) For every r such that r > 0 there exists m such that for every n such that $n \ge m$ holds $\rho(s_2(n), s_3(n)) < r$.

The following propositions are true:

- (10) s_1 is compared to s_1 .
- (11) If s_2 is compared to s_3 , then s_3 is compared to s_2 .

Let us consider X and let us consider s_2 , s_3 . Let us notice that the predicate s_2 is compared to s_3 is reflexive and symmetric.

Next we state several propositions:

- (12) If s_2 is compared to s_3 and s_3 is compared to s_4 , then s_2 is compared to s_4 .
- (13) s_2 is compared to s_3 iff for every r such that r > 0 there exists m such that for every n such that $n \ge m$ holds $||s_2(n) s_3(n)|| < r$.
- (14) If there exists k such that for every n such that $n \ge k$ holds $s_2(n) = s_3(n)$, then s_2 is compared to s_3 .
- (15) If s_2 is a Cauchy sequence and compared to s_3 , then s_3 is a Cauchy sequence.
- (16) If s_2 is convergent and compared to s_3 , then s_3 is convergent.
- (17) If s_2 is convergent and $\lim s_2 = g$ and s_2 is compared to s_3 , then s_3 is convergent and $\lim s_3 = g$.

Let us consider X and let us consider s_1 . We say that s_1 is bounded if and only if:

(Def. 3) There exists M such that M > 0 and for every n holds $||s_1(n)|| \le M$.

One can prove the following propositions:

- (18) If s_2 is bounded and s_3 is bounded, then $s_2 + s_3$ is bounded.
- (19) If s_1 is bounded, then $-s_1$ is bounded.
- (20) If s_2 is bounded and s_3 is bounded, then $s_2 s_3$ is bounded.
- (21) If s_1 is bounded, then $a \cdot s_1$ is bounded.
- (22) If s_1 is constant, then s_1 is bounded.
- (23) For every m there exists M such that M > 0 and for every n such that $n \le m$ holds $||s_1(n)|| < M$.
- (24) If s_1 is convergent, then s_1 is bounded.
- (25) If s_2 is bounded and compared to s_3 , then s_3 is bounded.

Let us consider X, N_1 , s_1 . Then $s_1 \cdot N_1$ is a sequence of X.

Let X be a non empty 1-sorted structure and let s_5 , s be sequences of X. We say that s_5 is a subsequence of s if and only if:

(Def. 4) There exists an increasing sequence N of naturals such that $s_5 = s \cdot N$.

One can prove the following propositions:

- (26) Let *X* be a real unitary space, *s* be a sequence of *X*, *N* be an increasing sequence of naturals, and *n* be a natural number. Then $(s \cdot N)(n) = s(N(n))$.
- (27) s_1 is a subsequence of s_1 .
- (28) If s_2 is a subsequence of s_3 and s_3 is a subsequence of s_4 , then s_2 is a subsequence of s_4 .

- (29) If s_1 is constant and s_2 is a subsequence of s_1 , then s_2 is constant.
- (30) If s_1 is constant and s_2 is a subsequence of s_1 , then $s_1 = s_2$.
- (31) If s_1 is bounded and s_2 is a subsequence of s_1 , then s_2 is bounded.
- (32) If s_1 is convergent and s_2 is a subsequence of s_1 , then s_2 is convergent.
- (33) If s_2 is a subsequence of s_1 and s_1 is convergent, then $\lim s_2 = \lim s_1$.
- (34) If s_1 is a Cauchy sequence and s_2 is a subsequence of s_1 , then s_2 is a Cauchy sequence.

Let us consider X, let us consider s_1 , and let us consider k. The functor $s_1 \uparrow k$ yielding a sequence of X is defined as follows:

(Def. 5) For every n holds $(s_1 \uparrow k)(n) = s_1(n+k)$.

Next we state a number of propositions:

- (35) $s_1 \uparrow 0 = s_1$.
- (36) $s_1 \uparrow k \uparrow m = s_1 \uparrow m \uparrow k$.
- $(37) \quad s_1 \uparrow k \uparrow m = s_1 \uparrow (k+m).$
- (38) $(s_2 + s_3) \uparrow k = s_2 \uparrow k + s_3 \uparrow k$.
- (39) $(-s_1) \uparrow k = -s_1 \uparrow k$.
- (40) $(s_2 s_3) \uparrow k = s_2 \uparrow k s_3 \uparrow k$.
- $(41) \quad (a \cdot s_1) \uparrow k = a \cdot (s_1 \uparrow k).$
- $(42) \quad (s_1 \cdot N_1) \uparrow k = s_1 \cdot (N_1 \uparrow k).$
- (43) $s_1 \uparrow k$ is a subsequence of s_1 .
- (44) If s_1 is convergent, then $s_1 \uparrow k$ is convergent and $\lim(s_1 \uparrow k) = \lim s_1$.
- (46)¹ If s_1 is convergent and there exists k such that $s_1 = s_2 \uparrow k$, then s_2 is convergent.
- (47) If s_1 is a Cauchy sequence and there exists k such that $s_1 = s_2 \uparrow k$, then s_2 is a Cauchy sequence.
- (48) If s_1 is a Cauchy sequence, then $s_1 \uparrow k$ is a Cauchy sequence.
- (49) If s_2 is compared to s_3 , then $s_2 \uparrow k$ is compared to $s_3 \uparrow k$.
- (50) If s_1 is bounded, then $s_1 \uparrow k$ is bounded.
- (51) If s_1 is constant, then $s_1 \uparrow k$ is constant.

Let us consider *X*. We say that *X* is complete if and only if:

(Def. 6) For every s_1 such that s_1 is a Cauchy sequence holds s_1 is convergent.

We introduce *X* is a complete space as a synonym of *X* is complete.

One can prove the following proposition

 $(53)^2$ If X is a complete space and s_1 is a Cauchy sequence, then s_1 is bounded.

Let us consider *X*. We say that *X* is Hilbert if and only if:

(Def. 7) X is a real unitary space and a complete space.

We introduce *X* is a Hilbert space as a synonym of *X* is Hilbert.

¹ The proposition (45) has been removed.

² The proposition (52) has been removed.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
- [3] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [5] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/seqm_3.html.
- [6] Jan Popiołek. Real normed space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/normsp_1.html.
- [7] Jan Popiolek. Introduction to Banach and Hilbert spaces part I. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/bhsp_1.html.
- [8] Jan Popiołek. Introduction to Banach and Hilbert spaces part II. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/bhsp_2.html.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [10] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [11] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/rlvect_1.html.
- [12] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received July 19, 1991

Published January 2, 2004