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Summary. Basing on the notion of real linear space ($eé [11]) we introduce real uni-
tary space. At first, we define the scalar product of two vectors and examine some of its
properties. On the base of this notion we introduce the norm and the distance in real unitary
space and study properties of these concepts. Next, proceeding from the definition of the se-
quence in real unitary space and basic operations on sequences we prove several theorems
which will be used in our further considerations.
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The articlesl[4],[[12],[[1],[19], 5], [2], B8], [13], [8], [6], [11], [10], and 7] provide the notation and
terminology for this paper.

We consider unitary space structures as extensions of RLS structure as systems

( a carrier, a zero, an addition, an external multiplication, a scalar product
where the carrier is a set, the zero is an element of the carrier, the addition is a binary operation on
the carrier, the external multiplication is a function frd@rR, the carrier:into the carrier, and the
scalar product is a function frofrthe carrierthe carrierj:into R.

Let us note that there exists a unitary space structure which is non empty and strict.

Let D be a non empty set, |& be an element db, let a be a binary operation oD, let m be
a function from[R, D] into D, and lets be a function from: D, D] into R. One can check that
(D,Z,a,m,s) is non empty.

We follow the rulesX is a hon empty unitary space structuaeh are real numbers, andy are
points ofX.

Let us consideK and let us consider, y. The functor(x]y) yields a real number and is defined
by:

(Def. 1) (x]y) = (the scalar product of)({x, y)).

Let I1 be a non empty unitary space structure. We say Ithet real unitary space-like if and
only if the condition (Def. 2) is satisfied.

(Def. 2) Letx, y, z be points ofl; and givena. Then(x|x) = 0 iff x= 0, and 0< (x|x) and
(xly) = (y1x) and((x+Y)|2) = (x2) + (y|2) and((a-x)|y) = a- (xly).

Let us note that there exists a non empty unitary space structure which is real unitary space-like,
real linear space-like, Abelian, add-associative, right zeroed, right complementable, and strict.

A real unitary space is a real unitary space-like real linear space-like Abelian add-associative
right zeroed right complementable non empty unitary space structure.

We use the following conventiorX denotes a real unitary space and, z, u, v denote points
of X.

Let us consideK and let us consides, y. Let us note that the functdx|y) is commutative.

We now state a number of propositions:
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©6f] (0x|ox) =o.

() (K(y+2) = (xy) + (X2).

8 (K(ay)=a-(xly).

©) ((@x)ly)=X(@y).

(10) ((a-x+b-y)[z) =a-(x|2)+b-(y[2).

(11) (X/(a-y+b-2)=a-(xly)+b-(x2).

(12) ((=x3ly) = (X-y).

(13)  ((=x)]y) = —(xly).

(14)  (x=y) = —(xly).

(15) ((=x)|=y) = (Xly).

16) ((x=y)[2) = (X2) - (y/2)-

17) Xl(y—2)=(xy) - (x2).

(18) ((x=y)[(u=v)) = ((xu) = (Xv) = (y|u)) + (Y|V).
(19) (Ox[x)=0

(20) (x|0x)=0

1) ((x+Y)(x+Yy)) = (Xx) +2- (xly) + (Yly)-
(22) ((x+y)(x=y)) = (Xx) = (Yly)-

(23) ((x=Y)I(x=y)) = ((XIx) = 2- (X)) + (Y]y)-

24) [(:y) < V(X%) -/ (Y1y)-
Let us consideK and let us considet, y. We say thak, y are orthogonal if and only if:
(Def. 3) (x]y)=0.

Let us note that the predicatey are orthogonal is symmetric.
Next we state several propositions:

(ZGE] If X, y are orthogonal, ther, —y are orthogonal.
(27) Ifx, y are orthogonal, ther x, y are orthogonal.
(28) If x, y are orthogonal, therx, —y are orthogonal.
(29) x, Ox are orthogonal.
(30) If x, y are orthogonal, the{x+Y)|(x+Y)) = (X|X) + (Y]y)-
(31) Ifx, yare orthogonal, the((x—y)|(x—Y)) = (X|X) + (y]y).
Let us consideK, x. The functor]|x|| yielding a real number is defined as follows:
(Def. 4) [|X|| = /(X[x).
Next we state several propositions:

(32) ||x|| =0iff x=0x.

1 The propositions (1)—(5) have been removed.
2 The proposition (25) has been removed.
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(33) x| =1al-[[x]-
(34) 0< x|
(35)  [(xy)[ < [Ix[|- [[yll-
(36) x4yl < [IX][+[Ivl-
@7) =l = [I]]-
38) Xl = lIyll < [Ix=ylI-
39) [IXI= Iyl < [Ix=ylI
Let us considek, x, y. The functomp(x,y) yields a real number and is defined by:
(Def. 5) p(xy) = [x—VYl.
One can prove the following proposition
(40) p(x,y) =p(¥;X).

Let us considek, x, y. Let us observe that the functp(x,y) is commutative.
One can prove the following propositions:

(41) p(x,x)=0.

(42) p(x,2) <p(xy) +p(¥.2).

(43) x#yiff p(xy) #0.

(44) p(xy) =0.

(45) x#yiff p(x,y) > 0.

46) p(x.y) =/ ((x=y)[(x~y)).
47) p(x+y,u+v) <p(x,u)+p(y,v).
(48) p X.U)+p(y, V).
(49) p
(50) p(x—zy—2) <p(zX)+p(zY).

We use the following conventios, s;, S3, &4 denote sequences ¥fandk, n, mdenote natural
numbers.
The schem&x Seq in RU8eals with a non empty unitary space structdrand a unary functor
F yielding a point of4, and states that:
There exists a sequensgof 4 such that for every holdss; (n) = F(n)
for all values of the parameters.
Let us consideK and let us consides;. The functor—s; yields a sequence of and is defined

by:
(Def. 1qﬂ For everyn holds(—s;)(n) = —s1(n).

Let us considek, let us consides;, and let us considet The functors; + x yields a sequence
of X and is defined as follows:

(Def. 12| For everyn holds(s; +x)(n) = s1(n) +x.

We now state the proposition

3 The definitions (Def. 6)—(Def. 9) have been removed.
4 The definition (Def. 11) has been removed.
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+S3=+%.

Let us consideK, sp, s3. Let us note that the funct®p + sz is commutative.
We now state a number of propositions:

(56) S+ (S3+S4) = (S2+8) +u.

(57)
(58)
(59)
(68f]
(69)
(70)
(71)
(72)
(73)
(74)
(75)
(76)
(77)
(78)
(79)
(80)
(81)
(82)
(83)
(84)
(85)

If s is constant andg is constant and; = s, + Sz, thens; is constant.

If s is constant andg is constant and; = s, — Sz, thens; is constant.

If s, is constant and; = a- s, thens; is constant.

s is constant iff for everyr holdss; (n) = s;(n+1).

s is constant iff for alln, k holdss; (n) = s (n+ k).

1 is constant iff for alln, m holdss; (n) = s;(m).

-3=%+-%

S = S1 + Ox.
a(e+ss)=a-t+as.
(a+b)-s;=a-s;+b-sp.
(a-b)-si=a-(b-s1).

1.5 =5.
(1) -s1=—s1.
S1—X=S1+—X.

S-S8=—(8—-%).

S = 51 — Ox.
S =—9.
- (S+%) =S %

(2+S3) — =S+ (S3—%4).
- (S—%)=(2—S) +%

a(p-)=agp—a-s.
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