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The articles([7],[5],[15],16],[12], 141,131, 1], 18], 9], [6], [11], [12], [10],[18], and [14] provide
the notation and terminology for this paper.

For simplicity, we use the following conventiof® denotes a strict groupi denotes a subgroup
of G, a, b, x denote elements @, andh denotes a homomorphism froGito G.

We now state the proposition

(1) For alla, bsuch thabis an element oH holdsb? € H iff H is normal.

Let us conside6. The functor AutG) yielding a non empty set of functions from the carrier of
G to the carrier ofG is defined as follows:

(Def. 1) Every element of AUG) is a homomorphism fror® to G and for evenh holdsh € Aut(G)
iff his one-to-one and an epimorphism.

We now state several propositions:

@3] Aut(G) C (the carrier ofG)the carrier oG,

(4)  idthe carrier ofc IS an element of AYG).

(5) For everyh holdsh € Aut(G) iff his an isomorphism.

(6) For every element of Aut(G) holds f~1 is a homomorphism frorts to G.
(7) For every element of Aut(G) holds f~1 is an element of AYG).

(8) For all elementd, f; of Aut(G) holdsf; - f2 is an element of AYG).

Let us considefs. The functor AutCom(G) yielding a binary operation on A(®) is defined
as follows:

(Def. 2) For all elementg, y of Aut(G) holds(AutComp(G)) (X, y) = X-V.
Let us conside6. The functor AutGroufiG) yields a strict group and is defined as follows:
(Def. 3) AutGrougG) = (Aut(G), AutCompG)).

The following three propositions are true:

1 The proposition (2) has been removed.
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(9) For all elements, y of AutGrougG) and for all elements, g of Aut(G) such thatx = f
andy =gholdsx-y= f-g.

(10)  idkhe carrier ofc = 1AutGr0u;(G)-

(11) For every element of Aut(G) and for every elemerg of AutGroupG) such thatf =g
holdsf-1=g 1.

Let us conside6. The functor InnAutG) yielding a non empty set of functions from the carrier
of G to the carrier ofG is defined by the condition (Def. 4).

(Def. 4) Letf be an element of (the carrier &)t"® camer oG Then f ¢ InnAut(G) if and only if
there exista such that for every holds f (x) = x@.

One can prove the following propositions:

(12) InnAutG) C (the carrier ofG)the carier ofG,

(13) Every element of INnnA(6) is an element of AYtS).

(14) InnAuG) C Aut(G).

(15) For all elementd, g of InnAut(G) holds(AutCompG))(f,g) = f-g.
(16) idne carrier ofc IS an element of INNAYG).

(17) For every elemertt of InnAut(G) holds f ~1 is an element of INnAGG).
(18) For all elementd, g of InnAut(G) holdsf - g is an element of InnAYG).

Let us considerG. The functor InnAutGroufG) yields a normal strict subgroup of
AutGroup(G) and is defined as follows:

(Def. 5) The carrier of InnAutGroyiis) = InnAut(G).

We now state three propositions:

(ZOE] For all elements, y of InnAutGrougG) and for all elements, g of InnAut(G) such that
x=f andy=gholdsx-y= f-g.

(21) iGhe carrier ofc = 1lnnAutGrou;:(G)~

(22) For every element of InnAut(G) and for every elemerg of InnAutGrougG) such that
f=gholdsf-1=gL

Let us conside, b. The functor Conjugaté) yielding an element of InnAYG) is defined by:
(Def. 6) For evena holds(Conjugatéb))(a) = a°.
Next we state a number of propositions:
(23) For alla, b holds Conjugat@ - b) = Conjugatéb) - Conjugatéa).
(24) Conjugat€ls) = idihe carrier ofG-
(25) For everya holds(Conjugatélc))(a) = a.
(26) For everya holds Conjugatg) - Conjugat¢a') = Conjugatélc).
(27) For everya holds Conjugat@!) - Conjugatéa) = Conjugatélc).
(28) For everya holds Conjugat@ ') = (Conjugatéa)) L.

2 The proposition (19) has been removed.
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(29) For everya holds Conjugat@) - Conjugatéls) = Conjugatéa) and Conjugatéls) -

Conjugat¢a) = Conjugatéa).

(30) For every elemerit of InnAut(G) holds f - Conjugatéls) = f and Conjugatéls) - f = f.

(31) For evenG holds InnAutGroupG) andG/Z(G) are isomorphic.

(32) For everyG such thatG is a commutative group and for every elemeht of

(1
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[16]

InnAUtGrougG) holds f = Linzautcrougc)-
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