On the Group of Inner Automorphisms

Artur Korniłowicz Institute of Mathematics Warsaw University Białystok

MML Identifier: AUTGROUP.

WWW: http://mizar.org/JFM/Vol6/autgroup.html

The articles [7], [5], [15], [16], [2], [4], [3], [1], [8], [9], [6], [11], [12], [10], [13], and [14] provide the notation and terminology for this paper.

For simplicity, we use the following convention: G denotes a strict group, H denotes a subgroup of G, a, b, x denote elements of G, and h denotes a homomorphism from G to G.

We now state the proposition

(1) For all a, b such that b is an element of H holds $b^a \in H$ iff H is normal.

Let us consider G. The functor Aut(G) yielding a non empty set of functions from the carrier of G to the carrier of G is defined as follows:

(Def. 1) Every element of Aut(G) is a homomorphism from G to G and for every h holds $h \in Aut(G)$ iff h is one-to-one and an epimorphism.

We now state several propositions:

- $(3)^1$ Aut $(G) \subseteq (\text{the carrier of } G)^{\text{the carrier of } G}$.
- (4) $id_{the \ carrier \ of \ G}$ is an element of Aut(G).
- (5) For every h holds $h \in Aut(G)$ iff h is an isomorphism.
- (6) For every element f of Aut(G) holds f^{-1} is a homomorphism from G to G.
- (7) For every element f of Aut(G) holds f^{-1} is an element of Aut(G).
- (8) For all elements f_1 , f_2 of Aut(G) holds $f_1 \cdot f_2$ is an element of Aut(G).

Let us consider G. The functor $\operatorname{AutComp}(G)$ yielding a binary operation on $\operatorname{Aut}(G)$ is defined as follows:

(Def. 2) For all elements x, y of Aut(G) holds $(AutComp(G))(x, y) = x \cdot y$.

Let us consider G. The functor AutGroup(G) yields a strict group and is defined as follows:

(Def. 3) AutGroup(G) = $\langle Aut(G), AutComp(G) \rangle$.

The following three propositions are true:

1

¹ The proposition (2) has been removed.

- (9) For all elements x, y of AutGroup(G) and for all elements f, g of Aut(G) such that x = f and y = g holds $x \cdot y = f \cdot g$.
- (10) $id_{the \ carrier \ of \ G} = 1_{AutGroup(G)}$.
- (11) For every element f of $\operatorname{Aut}(G)$ and for every element g of $\operatorname{AutGroup}(G)$ such that f=g holds $f^{-1}=g^{-1}$.

Let us consider G. The functor InnAut(G) yielding a non empty set of functions from the carrier of G to the carrier of G is defined by the condition (Def. 4).

(Def. 4) Let f be an element of (the carrier of G)^{the carrier of G}. Then $f \in \text{InnAut}(G)$ if and only if there exists a such that for every x holds $f(x) = x^a$.

One can prove the following propositions:

- (12) InnAut(G) \subseteq (the carrier of G)^{the carrier of G}.
- (13) Every element of InnAut(G) is an element of Aut(G).
- (14) $\operatorname{InnAut}(G) \subseteq \operatorname{Aut}(G)$.
- (15) For all elements f, g of InnAut(G) holds $(AutComp(G))(f,g) = f \cdot g$.
- (16) $id_{the \ carrier \ of \ G}$ is an element of InnAut(G).
- (17) For every element f of InnAut(G) holds f^{-1} is an element of InnAut(G).
- (18) For all elements f, g of InnAut(G) holds $f \cdot g$ is an element of InnAut(G).

Let us consider G. The functor InnAutGroup(G) yields a normal strict subgroup of AutGroup(G) and is defined as follows:

(Def. 5) The carrier of InnAutGroup(G) = InnAut(G).

We now state three propositions:

- (20)² For all elements x, y of InnAutGroup(G) and for all elements f, g of InnAut(G) such that x = f and y = g holds $x \cdot y = f \cdot g$.
- (21) $id_{the\ carrier\ of\ G} = 1_{InnAutGroup(G)}$.
- (22) For every element f of InnAut(G) and for every element g of InnAutGroup(G) such that f = g holds $f^{-1} = g^{-1}$.

Let us consider G, b. The functor Conjugate(b) yielding an element of InnAut(G) is defined by:

(Def. 6) For every a holds (Conjugate(b)) $(a) = a^b$.

Next we state a number of propositions:

- (23) For all a, b holds Conjugate $(a \cdot b)$ = Conjugate(b) · Conjugate(a).
- (24) Conjugate(1_G) = id_{the carrier of G}.
- (25) For every a holds (Conjugate (1_G))(a) = a.
- (26) For every a holds $Conjugate(a) \cdot Conjugate(a^{-1}) = Conjugate(1_G)$.
- (27) For every a holds $Conjugate(a^{-1}) \cdot Conjugate(a) = Conjugate(1_G)$.
- (28) For every a holds Conjugate $(a^{-1}) = (\text{Conjugate}(a))^{-1}$.

² The proposition (19) has been removed.

- (29) For every a holds $Conjugate(a) \cdot Conjugate(1_G) = Conjugate(a)$ and $Conjugate(1_G) \cdot Conjugate(a) = Conjugate(a)$.
- (30) For every element f of InnAut(G) holds $f \cdot \text{Conjugate}(1_G) = f$ and Conjugate $(1_G) \cdot f = f$.
- (31) For every G holds InnAutGroup(G) and $^{G}/_{Z(G)}$ are isomorphic.
- (32) For every G such that G is a commutative group and for every element f of InnAutGroup(G) holds $f=1_{InnAutGroup(G)}$.

REFERENCES

- [1] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc 1.html.
- [6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [8] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fraenkel.html.
- [9] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [10] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/group_3.html.
- $[11] \begin{tabular}{ll} Wojciech A. Trybulec. Groups. {\it Journal of Formalized Mathematics}, 2, 1990. $\tt http://mizar.org/JFM/Vol2/group_1.html. \\ \end{tabular}$
- [12] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_2.html.
- [13] Wojciech A. Trybulec. Commutator and center of a group. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/group_5.html.
- [14] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/group_6.html.
- [15] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [16] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received April 22, 1994

Published January 2, 2004