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The articles [7], [5], [15], [16], [2], [4], [3], [1], [8], [9], [6], [11], [12], [10], [13], and [14] provide
the notation and terminology for this paper.

For simplicity, we use the following convention:G denotes a strict group,H denotes a subgroup
of G, a, b, x denote elements ofG, andh denotes a homomorphism fromG to G.

We now state the proposition

(1) For alla, b such thatb is an element ofH holdsba ∈ H iff H is normal.

Let us considerG. The functor Aut(G) yielding a non empty set of functions from the carrier of
G to the carrier ofG is defined as follows:

(Def. 1) Every element of Aut(G) is a homomorphism fromG to G and for everyh holdsh∈Aut(G)
iff h is one-to-one and an epimorphism.

We now state several propositions:

(3)1 Aut(G)⊆ (the carrier ofG)the carrier ofG.

(4) idthe carrier ofG is an element of Aut(G).

(5) For everyh holdsh∈ Aut(G) iff h is an isomorphism.

(6) For every elementf of Aut(G) holds f−1 is a homomorphism fromG to G.

(7) For every elementf of Aut(G) holds f−1 is an element of Aut(G).

(8) For all elementsf1, f2 of Aut(G) holds f1 · f2 is an element of Aut(G).

Let us considerG. The functor AutComp(G) yielding a binary operation on Aut(G) is defined
as follows:

(Def. 2) For all elementsx, y of Aut(G) holds(AutComp(G))(x, y) = x ·y.

Let us considerG. The functor AutGroup(G) yields a strict group and is defined as follows:

(Def. 3) AutGroup(G) = 〈Aut(G),AutComp(G)〉.

The following three propositions are true:

1 The proposition (2) has been removed.
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(9) For all elementsx, y of AutGroup(G) and for all elementsf , g of Aut(G) such thatx = f
andy = g holdsx ·y = f ·g.

(10) idthe carrier ofG = 1AutGroup(G).

(11) For every elementf of Aut(G) and for every elementg of AutGroup(G) such thatf = g
holds f−1 = g−1.

Let us considerG. The functor InnAut(G) yielding a non empty set of functions from the carrier
of G to the carrier ofG is defined by the condition (Def. 4).

(Def. 4) Let f be an element of (the carrier ofG)the carrier ofG. Then f ∈ InnAut(G) if and only if
there existsa such that for everyx holds f (x) = xa.

One can prove the following propositions:

(12) InnAut(G)⊆ (the carrier ofG)the carrier ofG.

(13) Every element of InnAut(G) is an element of Aut(G).

(14) InnAut(G)⊆ Aut(G).

(15) For all elementsf , g of InnAut(G) holds(AutComp(G))( f , g) = f ·g.

(16) idthe carrier ofG is an element of InnAut(G).

(17) For every elementf of InnAut(G) holds f−1 is an element of InnAut(G).

(18) For all elementsf , g of InnAut(G) holds f ·g is an element of InnAut(G).

Let us considerG. The functor InnAutGroup(G) yields a normal strict subgroup of
AutGroup(G) and is defined as follows:

(Def. 5) The carrier of InnAutGroup(G) = InnAut(G).

We now state three propositions:

(20)2 For all elementsx, y of InnAutGroup(G) and for all elementsf , g of InnAut(G) such that
x = f andy = g holdsx ·y = f ·g.

(21) idthe carrier ofG = 1InnAutGroup(G).

(22) For every elementf of InnAut(G) and for every elementg of InnAutGroup(G) such that
f = g holds f−1 = g−1.

Let us considerG, b. The functor Conjugate(b) yielding an element of InnAut(G) is defined by:

(Def. 6) For everya holds(Conjugate(b))(a) = ab.

Next we state a number of propositions:

(23) For alla, b holds Conjugate(a·b) = Conjugate(b) ·Conjugate(a).

(24) Conjugate(1G) = idthe carrier ofG.

(25) For everya holds(Conjugate(1G))(a) = a.

(26) For everya holds Conjugate(a) ·Conjugate(a−1) = Conjugate(1G).

(27) For everya holds Conjugate(a−1) ·Conjugate(a) = Conjugate(1G).

(28) For everya holds Conjugate(a−1) = (Conjugate(a))−1.

2 The proposition (19) has been removed.
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(29) For everya holds Conjugate(a) · Conjugate(1G) = Conjugate(a) and Conjugate(1G) ·
Conjugate(a) = Conjugate(a).

(30) For every elementf of InnAut(G) holds f ·Conjugate(1G) = f and Conjugate(1G) · f = f .

(31) For everyG holds InnAutGroup(G) andG/Z(G) are isomorphic.

(32) For every G such that G is a commutative group and for every elementf of
InnAutGroup(G) holds f = 1InnAutGroup(G).
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