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Summary. The aim of the article is to check the compatibility of the automorphisms
of universal algebras introduced in [10] and the corresponding concept for many sorted alge-
bras introduced in [11].
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The articles [15], [8], [21], [22], [5], [7], [6], [2], [4], [16], [17], [13], [19], [20], [1], [12], [3], [10],
[14], [18], [11], and [9] provide the notation and terminology for this paper.

1. ON THE GROUP OFAUTOMORPHISMS OFUNIVERSAL ALGEBRA

In this paperU1 is a universal algebra andf , g are functions fromU1 into U1.
We now state the proposition

(1) idthe carrier ofU1 is an isomorphism ofU1 andU1.

Let us considerU1. The functor UAAut(U1) yields a non empty set of functions from the carrier
of U1 to the carrier ofU1 and is defined by the conditions (Def. 1).

(Def. 1)(i) Every element of UAAut(U1) is a function fromU1 into U1, and

(ii) for every functionh from U1 into U1 holdsh∈ UAAut(U1) iff h is an isomorphism ofU1

andU1.

Next we state several propositions:

(2) UAAut(U1)⊆ (the carrier ofU1)the carrier ofU1.

(4)1 idthe carrier ofU1 ∈ UAAut(U1).

(5) For all f , g such thatf is an element of UAAut(U1) andg= f−1 holdsg is an isomorphism
of U1 andU1.

(6) For every elementf of UAAut(U1) holds f−1 ∈ UAAut(U1).

1 The proposition (3) has been removed.
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(7) For all elementsf1, f2 of UAAut(U1) holds f1 · f2 ∈ UAAut(U1).

Let us considerU1. The functor UAAutComp(U1) yielding a binary operation on UAAut(U1) is
defined by:

(Def. 2) For all elementsx, y of UAAut(U1) holds(UAAutComp(U1))(x, y) = y·x.

Let us considerU1. The functor UAAutGroup(U1) yields a group and is defined by:

(Def. 3) UAAutGroup(U1) = 〈UAAut(U1),UAAutComp(U1)〉.

Let us considerU1. One can check that UAAutGroup(U1) is strict.
The following propositions are true:

(8) For all elementsx, y of UAAutGroup(U1) and for all elementsf , g of UAAut(U1) such
thatx = f andy = g holdsx ·y = g· f .

(9) idthe carrier ofU1 = 1UAAutGroup(U1).

(10) For every elementf of UAAut(U1) and for every elementg of UAAutGroup(U1) such that
f = g holds f−1 = g−1.

2. SOME PROPERTIES OFMANY SORTED FUNCTIONS

In the sequelI denotes a set andA, B, C denote many sorted sets indexed byI .
Let us considerI , A, B. We say thatA is transformable toB if and only if:

(Def. 4) For every seti such thati ∈ I holds ifB(i) = /0, thenA(i) = /0.

Let us note that the predicateA is transformable toB is reflexive.
Next we state several propositions:

(11) If A is transformable toB andB is transformable toC, thenA is transformable toC.

(12) For every setx and for every many sorted setA indexed by{x} holdsA = {x} 7−→ A(x).

(13) For all function yielding functionsF , G, H holds(H ◦G)◦F = H ◦ (G◦F).

(14) LetA, B be non-empty many sorted sets indexed byI andF be a many sorted function from
A into B. If F is “1-1” and onto, thenF−1 is “1-1” and onto.

(15) LetA, B be non-empty many sorted sets indexed byI andF be a many sorted function from
A into B. If F is “1-1” and onto, then(F−1)−1 = F.

(16) For all function yielding functionsF , G such thatF is “1-1” andG is “1-1” holdsG◦F is
“1-1”.

(17) LetB, C be non-empty many sorted sets indexed byI , F be a many sorted function fromA
into B, andG be a many sorted function fromB into C. If F is onto andG is onto, thenG◦F
is onto.

(18) LetA, B, C be non-empty many sorted sets indexed byI , F be a many sorted function from
A into B, andG be a many sorted function fromB into C. If F is “1-1” and onto andG is
“1-1” and onto, then(G◦F)−1 = F−1◦G−1.

(19) LetA, B be non-empty many sorted sets indexed byI , F be a many sorted function fromA
into B, andG be a many sorted function fromB into A. If F is “1-1” and onto andG◦F = idA,
thenG = F−1.
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3. ON THE GROUP OFAUTOMORPHISMS OFMANY SORTED ALGEBRA

In the sequelSdenotes a non void non empty many sorted signature andU2, U3 denote non-empty
algebras overS.

Let us considerI , A, B. The functor MSFuncs(A,B) yielding a many sorted set indexed byI is
defined by:

(Def. 5) For every seti such thati ∈ I holds(MSFuncs(A,B))(i) = B(i)A(i).

One can prove the following three propositions:

(21)2 Let A, B be many sorted sets indexed byI . SupposeA is transformable toB. Let x be a set.
If x∈ ∏MSFuncs(A,B), thenx is a many sorted function fromA into B.

(22) Let A, B be many sorted sets indexed byI . SupposeA is transformable toB. Let g be a
many sorted function fromA into B. Theng∈ ∏MSFuncs(A,B).

(23) For all many sorted setsA, B indexed byI such thatA is transformable toB holds
MSFuncs(A,B) is non-empty.

Let us considerI , A, B. Let us assume thatA is transformable toB. A non empty set is called a
set of many sorted functions fromA into B if:

(Def. 6) For every setx such thatx∈ it holdsx is a many sorted function fromA into B.

Let us considerI , A. One can verify that MSFuncs(A,A) is non-empty.
Let us considerS, U2, U3. A set of many sorted functions fromU2 intoU3 is a set of many sorted

functions from the sorts ofU2 into the sorts ofU3.
Let I be a set and letD be a many sorted set indexed byI . Note that there exists a set of many

sorted functions fromD into D which is non empty.
Let I be a set, letD be a many sorted set indexed byI , and letA be a non empty set of many

sorted functions fromD into D. We see that the element ofA is a many sorted function fromD into
D.

The following propositions are true:

(24) idA is onto.

(25) idA is “1-1”.

(27)3 idthe sorts ofU2 ∈ ∏MSFuncs(the sorts ofU2, the sorts ofU2).

Let us considerS, U2. The functor MSAAut(U2) yields a set of many sorted functions from the
sorts ofU2 into the sorts ofU2 and is defined by the conditions (Def. 7).

(Def. 7)(i) Every element of MSAAut(U2) is a many sorted function fromU2 into U2, and

(ii) for every many sorted functionh from U2 into U2 holds h ∈ MSAAut(U2) iff h is an
isomorphism ofU2 andU2.

Next we state several propositions:

(29)4 For every elementf of MSAAut(U2) holds f ∈ ∏MSFuncs(the sorts ofU2, the sorts of
U2).

(30) MSAAut(U2)⊆ ∏MSFuncs(the sorts ofU2, the sorts ofU2).

(31) idthe sorts ofU2 ∈MSAAut(U2).

(32) For every elementf of MSAAut(U2) holds f−1 ∈MSAAut(U2).

2 The proposition (20) has been removed.
3 The proposition (26) has been removed.
4 The proposition (28) has been removed.
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(33) For all elementsf1, f2 of MSAAut(U2) holds f1◦ f2 ∈MSAAut(U2).

(34) For every many sorted functionF from MSAlg(U1) into MSAlg(U1) and for every element
f of UAAut(U1) such thatF = {0} 7−→ f holdsF ∈MSAAut(MSAlg(U1)).

Let us considerS, U2. The functor MSAAutComp(U2) yields a binary operation on
MSAAut(U2) and is defined by:

(Def. 8) For all elementsx, y of MSAAut(U2) holds(MSAAutComp(U2))(x, y) = y◦x.

Let us considerS, U2. The functor MSAAutGroup(U2) yielding a group is defined by:

(Def. 9) MSAAutGroup(U2) = 〈MSAAut(U2),MSAAutComp(U2)〉.

Let us considerS, U2. Observe that MSAAutGroup(U2) is strict.
The following propositions are true:

(35) For all elementsx, y of MSAAutGroup(U2) and for all elementsf , g of MSAAut(U2) such
thatx = f andy = g holdsx ·y = g◦ f .

(36) idthe sorts ofU2 = 1MSAAutGroup(U2).

(37) For every elementf of MSAAut(U2) and for every elementg of MSAAutGroup(U2) such
that f = g holds f−1 = g−1.

4. ON THE RELATIONSHIP OFAUTOMORPHISMS OF1-SORTED ANDMANY SORTED

ALGEBRAS

The following propositions are true:

(38) LetU4, U5 be universal algebras. SupposeU4 andU5 are similar. LetF be a many sorted
function from MSAlg(U4) into (MSAlg(U5)overMSSign(U4)). ThenF(0) is a function from
U4 into U5.

(39) For every elementf of UAAut(U1) holds {0} 7−→ f is a many sorted function from
MSAlg(U1) into MSAlg(U1).

(40) Let h be a function. Suppose domh = UAAut(U1) and for every setx such thatx ∈
UAAut(U1) holds h(x) = {0} 7−→ x. Then h is a homomorphism from UAAutGroup(U1)
to MSAAutGroup(MSAlg(U1)).

(41) Leth be a homomorphism from UAAutGroup(U1) to MSAAutGroup(MSAlg(U1)). If for
every setx such thatx∈ UAAut(U1) holdsh(x) = {0} 7−→ x, thenh is an isomorphism.

(42) UAAutGroup(U1) and MSAAutGroup(MSAlg(U1)) are isomorphic.
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