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Summary. The aim of the article is to check the compatibility of the automorphisms
of universal algebras introduced [n [10] and the corresponding concept for many sorted alge-
bras introduced iri [11].

MML ldentifier: AUTALG_1.

WWW: http://mizar.orq/JFM/Vol6/autalg_1.html

The articles[[15],[[8],[21L],[[22],[[6],[1F],.[6],[2], 4], [16], [17],[1B],[[10],[[20] [T2],[[12] [[8],[[10],
[14], [18], [11], and [9] provide the notation and terminology for this paper.

1. ON THE GROUP OFAUTOMORPHISMS OFUNIVERSAL ALGEBRA

In this papetJ; is a universal algebra arid g are functions frontJ; into U;.
We now state the proposition

(1)  i0the carrier ofu, IS an isomorphism df; andU;.

Let us consided;. The functor UAAu{U,) yields a non empty set of functions from the carrier
of U; to the carrier ofJ; and is defined by the conditions (Def. 1).

(Def. 1)(i) Every element of UAAUt,) is a function fromJy into U1, and

(i) for every functionh from U; into U; holdsh € UAAut(U,) iff his an isomorphism dfl;
andUj.

Next we state several propositions:
(2) UAAut(U;) C (the carrier olJy)the carrer oty
(4H idthe carrier ofu; € UAAUL(Uy).

(5) Forallf, gsuch thatf is an element of UAAUtJ;) andg = f~1 holdsgis an isomorphism
of U; andU;.

(6) For every element of UAAut(U;) holds f~ € UAAut(U,).

1 The proposition (3) has been removed.
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(7) For all elementd, f; of UAAut(U;) holdsf; - fo € UAAut(Uy).

Let us considet;. The functor UAAutComgJ;) yielding a binary operation on UAA(Y,) is
defined by:

(Def. 2) For all elements, y of UAAut(U1) holds(UAAutComp(U1))(X, y) = Y- X.
Let us considet);. The functor UAAutGroug;) yields a group and is defined by:
(Def. 3) UAAutGrougU;) = (UAAut(U;), UAAutComp(U1)).

Let us considet;. One can check that UAAutGrodg, ) is strict.
The following propositions are true:

(8) For all elements, y of UAAutGroup(U;) and for all elementd, g of UAAut(U1) such
thatx = f andy =g holdsx-y=g- f.

(9)  idtne carrier oy = 1UAAutGroup(U1)-
(10) For every elemenit of UAAut(U1) and for every elemerg of UAAutGroup(U; ) such that
f =gholdsf-1=gL

2. SOME PROPERTIES OFMANY SORTED FUNCTIONS

In the sequel denotes a set amil B, C denote many sorted sets indexed by
Let us considel, A, B. We say tha# is transformable t® if and only if:

(Def. 4) For every satsuch that € | holds if B(i) = 0, thenA(i) = 0.

Let us note that the predicafeis transformable t® is reflexive.
Next we state several propositions:

(11) If Ais transformable t® andB is transformable t€, thenA is transformable t€.
(12) For every sex and for every many sorted s&tindexed by{x} holdsA = {x} — A(X).
(13) For all function yielding functiong, G, H holds(HoG)oF =H o (GoF).

(14) LetA, Bbe non-empty many sorted sets indexed bydF be a many sorted function from
AintoB. If F is “1-1” and onto, therF ~1 is “1-1” and onto.

(15) LetA, Bbe non-empty many sorted sets indexed bpdF be a many sorted function from
AintoB. If F is “1-1” and onto, therfF ~1)~1 = F.

(16) For all function yielding functionk, G such thaf is “1-1" andGis “1-1" holdsGoF is
“1-1".

(17) LetB, C be non-empty many sorted sets indexed [y be a many sorted function frok
into B, andG be a many sorted function froBiinto C. If F is onto andG is onto, therGo F
is onto.

(18) LetA, B, C be non-empty many sorted sets indexed iy be a many sorted function from
Ainto B, andG be a many sorted function frol into C. If F is “1-1" and onto and5 is
“1-1” and onto, the{GoF) 1 =F 1o G

(19) LetA, B be non-empty many sorted sets indexed Hy be a many sorted function fro
into B, andG be a many sorted function froBiinto A. If F is “1-1” and onto and>oF = ida,
thenG =F 1.
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3. ON THE GROUP OFAUTOMORPHISMS OFMANY SORTED ALGEBRA

In the sequeb denotes a non void non empty many sorted signaturdjands denote non-empty
algebras oveS.

Let us considel, A, B. The functor MSFund#\, B) yielding a many sorted set indexed bis
defined by:

(Def. 5) For every sdtsuch thai € | holds(MSFuncsA, B))(i) = B(i)A1).

One can prove the following three propositions:

(21E] Let A, B be many sorted sets indexed IbySupposé\ is transformable t®. Letx be a set.
If x € [JMSFuncgA, B), thenx is a many sorted function fros into B.

(22) LetA, B be many sorted sets indexed bySupposéA is transformable td®. Let g be a
many sorted function from into B. Theng € [1MSFuncgA, B).

(23) For all many sorted setd, B indexed byl such thatA is transformable tdB holds
MSFuncgA, B) is non-empty.

Let us considel, A, B. Let us assume thatis transformable t@. A non empty set is called a
set of many sorted functions frofinto B if:

(Def. 6) For every set such thak € it holdsx is a many sorted function from into B.

Let us considet, A. One can verify that MSFungA, A) is non-empty.

Let us conside§, Uy, Uz. A set of many sorted functions froby into Us is a set of many sorted
functions from the sorts af into the sorts otJs.

Let] be a set and IdD be a many sorted set indexed byNote that there exists a set of many
sorted functions frond into D which is non empty.

Let| be a set, leD be a many sorted set indexed hyand |letA be a non empty set of many
sorted functions fronD into D. We see that the element Afis a many sorted function froi into
D.

The following propositions are true:
(24) ida is onto.
(25) idais“1-1".
(27E| idthe sorts otu, € [1MSFuncsthe sorts ofJ,, the sorts ofJs).

Let us conside8, U,. The functor MSAAuU-) yields a set of many sorted functions from the
sorts ofU, into the sorts olJ, and is defined by the conditions (Def. 7).

(Def. 7)(i) Every element of MSAAYU,) is a many sorted function frokdy into Uy, and

(i) for every many sorted functioh from U, into U, holds h € MSAAut(U,) iff his an
isomorphism ofJ, andUs,.

Next we state several propositions:

(29@ For every element of MSAAut(U,) holds f € [JMSFuncgthe sorts olJ,, the sorts of
Uy).

(30) MSAAutUz) C [MMSFuncsthe sorts ofJ;, the sorts ofJ,).
(31) idhe sorts ofUp € MSAAUt(UZ)
(32) For every elemertt of MSAAuUt(U,) holds f = € MSAAut(Uy).

2 The proposition (20) has been removed.
3 The proposition (26) has been removed.
4 The proposition (28) has been removed.
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(33) For all elementd, f, of MSAAuUt(U;) holds f; o fo € MSAAuUt(U,).

(34) For every many sorted functiéhfrom MSAIg(U; ) into MSAIg(U; ) and for every element
f of UAAut(U;) such thaF = {0} — f holdsF € MSAAut(MSAIg(U1)).

Let us considerS U,. The functor MSAAutComfl,) yields a binary operation on
MSAAut(U,) and is defined by:

(Def. 8) For all elements, y of MSAAut(Uz) holds(MSAAutCompUz))(X, y) = yox.
Let us conside§, U,. The functor MSAAutGrouflJ,) yielding a group is defined by:
(Def. 9) MSAAuUtGrougUz) = (MSAAuUt(Uz), MSAAutCompUz)).

Let us consides, U,. Observe that MSAAutGrouyp,) is strict.
The following propositions are true:

(35) Forall elements, y of MSAAutGroupU,) and for all element$, g of MSAAut(U,) such
thatx = f andy = g holdsx-y=go f.

(36) ickhe sorts o, = 1MSAAutGrour1U2)-

(37) For every elementt of MSAAut(U,) and for every elemerg of MSAAutGroupUs) such
thatf =gholdsf~1 =g

4. ON THE RELATIONSHIP OFAUTOMORPHISMS OF1-SORTED AND MANY SORTED
ALGEBRAS

The following propositions are true:

(38) LetUy, Us be universal algebras. SuppddgeandUs are similar. Let- be a many sorted
function from MSAIgU,) into (MSAIg(Us) over MSSigriUs)). ThenF(0) is a function from
U, into Us.

(39) For every element of UAAut(U;) holds {0} — f is a many sorted function from
MSAIg(U;) into MSAIg(Us).

(40) Leth be a function. Suppose ddm= UAAut(U;) and for every sek such thatx €
UAAut(U;) holdsh(x) = {0} — x. Thenh is a homomorphism from UAAutGroup)
to MSAAutGrougdMSAIg(Uy)).

(41) Lethbe a homomorphism from UAAutGrodg; ) to MSAAutGroudMSAIg(U,)). If for
every sek such tha € UAAut(U;) holdsh(x) = {0} — x, thenh is an isomorphism.

(42) UAAutGroufU;) and MSAAutGroufMSAIg(U;)) are isomorphic.
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