On the Group of Automorphisms of Universal Algebra and Many Sorted Algebra

Artur Korniłowicz Institute of Mathematics Warsaw University Białystok

Summary. The aim of the article is to check the compatibility of the automorphisms of universal algebras introduced in [10] and the corresponding concept for many sorted algebras introduced in [11].

MML Identifier: AUTALG_1.

WWW: http://mizar.org/JFM/Vol6/autalg_1.html

The articles [15], [8], [21], [22], [5], [7], [6], [2], [4], [16], [17], [13], [19], [20], [1], [12], [3], [10], [14], [18], [11], and [9] provide the notation and terminology for this paper.

1. On the Group of Automorphisms of Universal Algebra

In this paper U_1 is a universal algebra and f, g are functions from U_1 into U_1 . We now state the proposition

(1) $id_{the \ carrier \ of \ U_1}$ is an isomorphism of U_1 and U_1 .

Let us consider U_1 . The functor UAAut (U_1) yields a non empty set of functions from the carrier of U_1 to the carrier of U_1 and is defined by the conditions (Def. 1).

- (Def. 1)(i) Every element of UAAut(U_1) is a function from U_1 into U_1 , and
 - (ii) for every function h from U_1 into U_1 holds $h \in UAAut(U_1)$ iff h is an isomorphism of U_1 and U_1 .

Next we state several propositions:

- (2) UAAut $(U_1) \subseteq (\text{the carrier of } U_1)^{\text{the carrier of } U_1}$.
- $(4)^1$ id_{the carrier of $U_1 \in UAAut(U_1)$.}
- (5) For all f, g such that f is an element of UAAut (U_1) and $g = f^{-1}$ holds g is an isomorphism of U_1 and U_1 .
- (6) For every element f of $UAAut(U_1)$ holds $f^{-1} \in UAAut(U_1)$.

1

¹ The proposition (3) has been removed.

(7) For all elements f_1 , f_2 of UAAut (U_1) holds $f_1 \cdot f_2 \in UAAut(U_1)$.

Let us consider U_1 . The functor UAAutComp(U_1) yielding a binary operation on UAAut(U_1) is defined by:

(Def. 2) For all elements x, y of UAAut (U_1) holds $(UAAutComp(U_1))(x, y) = y \cdot x$.

Let us consider U_1 . The functor UAAutGroup (U_1) yields a group and is defined by:

(Def. 3) $UAAutGroup(U_1) = \langle UAAut(U_1), UAAutComp(U_1) \rangle$.

Let us consider U_1 . One can check that UAAutGroup (U_1) is strict. The following propositions are true:

- (8) For all elements x, y of UAAutGroup (U_1) and for all elements f, g of UAAut (U_1) such that x = f and y = g holds $x \cdot y = g \cdot f$.
- (9) $id_{the \ carrier \ of \ U_1} = 1_{UAAutGroup(U_1)}$.
- (10) For every element f of UAAut (U_1) and for every element g of UAAutGroup (U_1) such that f = g holds $f^{-1} = g^{-1}$.

2. Some Properties of Many Sorted Functions

In the sequel *I* denotes a set and *A*, *B*, *C* denote many sorted sets indexed by *I*. Let us consider *I*, *A*, *B*. We say that *A* is transformable to *B* if and only if:

(Def. 4) For every set *i* such that $i \in I$ holds if $B(i) = \emptyset$, then $A(i) = \emptyset$.

Let us note that the predicate A is transformable to B is reflexive.

Next we state several propositions:

- (11) If A is transformable to B and B is transformable to C, then A is transformable to C.
- (12) For every set x and for every many sorted set A indexed by $\{x\}$ holds $A = \{x\} \longmapsto A(x)$.
- (13) For all function yielding functions F, G, H holds $(H \circ G) \circ F = H \circ (G \circ F)$.
- (14) Let A, B be non-empty many sorted sets indexed by I and F be a many sorted function from A into B. If F is "1-1" and onto, then F^{-1} is "1-1" and onto.
- (15) Let A, B be non-empty many sorted sets indexed by I and F be a many sorted function from A into B. If F is "1-1" and onto, then $(F^{-1})^{-1} = F$.
- (16) For all function yielding functions F, G such that F is "1-1" and G is "1-1" holds $G \circ F$ is "1-1".
- (17) Let B, C be non-empty many sorted sets indexed by I, F be a many sorted function from A into B, and G be a many sorted function from B into C. If F is onto and G is onto, then $G \circ F$ is onto.
- (18) Let A, B, C be non-empty many sorted sets indexed by I, F be a many sorted function from A into B, and G be a many sorted function from B into C. If F is "1-1" and onto and G is "1-1" and onto, then $(G \circ F)^{-1} = F^{-1} \circ G^{-1}$.
- (19) Let A, B be non-empty many sorted sets indexed by I, F be a many sorted function from A into B, and G be a many sorted function from B into A. If F is "1-1" and onto and $G \circ F = \mathrm{id}_A$, then $G = F^{-1}$.

3. On the Group of Automorphisms of Many Sorted Algebra

In the sequel S denotes a non void non empty many sorted signature and U_2 , U_3 denote non-empty algebras over S.

Let us consider I, A, B. The functor MSFuncs(A,B) yielding a many sorted set indexed by I is defined by:

(Def. 5) For every set *i* such that $i \in I$ holds (MSFuncs(A,B)) $(i) = B(i)^{A(i)}$.

One can prove the following three propositions:

- (21)² Let A, B be many sorted sets indexed by I. Suppose A is transformable to B. Let x be a set. If $x \in \prod MSFuncs(A, B)$, then x is a many sorted function from A into B.
- (22) Let A, B be many sorted sets indexed by I. Suppose A is transformable to B. Let g be a many sorted function from A into B. Then $g \in \prod MSFuncs(A, B)$.
- (23) For all many sorted sets A, B indexed by I such that A is transformable to B holds MSFuncs(A,B) is non-empty.

Let us consider *I*, *A*, *B*. Let us assume that *A* is transformable to *B*. A non empty set is called a set of many sorted functions from *A* into *B* if:

(Def. 6) For every set x such that $x \in \text{it holds } x$ is a many sorted function from A into B.

Let us consider I, A. One can verify that MSFuncs(A, A) is non-empty.

Let us consider S, U_2 , U_3 . A set of many sorted functions from U_2 into U_3 is a set of many sorted functions from the sorts of U_2 into the sorts of U_3 .

Let I be a set and let D be a many sorted set indexed by I. Note that there exists a set of many sorted functions from D into D which is non empty.

Let I be a set, let D be a many sorted set indexed by I, and let A be a non empty set of many sorted functions from D into D. We see that the element of A is a many sorted function from D into D.

The following propositions are true:

- (24) id_A is onto.
- (25) id_A is "1-1".
- $(27)^3$ id_{the sorts of $U_2 \in \prod MSFuncs$} (the sorts of U_2 , the sorts of U_2).

Let us consider S, U_2 . The functor $MSAAut(U_2)$ yields a set of many sorted functions from the sorts of U_2 into the sorts of U_2 and is defined by the conditions (Def. 7).

- (Def. 7)(i) Every element of $MSAAut(U_2)$ is a many sorted function from U_2 into U_2 , and
 - (ii) for every many sorted function h from U_2 into U_2 holds $h \in MSAAut(U_2)$ iff h is an isomorphism of U_2 and U_2 .

Next we state several propositions:

- (29)⁴ For every element f of MSAAut (U_2) holds $f \in \prod$ MSFuncs(the sorts of U_2 , the sorts of U_2).
- (30) MSAAut(U_2) $\subseteq \prod$ MSFuncs(the sorts of U_2 , the sorts of U_2).
- (31) $id_{the sorts of U_2} \in MSAAut(U_2)$.
- (32) For every element f of $MSAAut(U_2)$ holds $f^{-1} \in MSAAut(U_2)$.

² The proposition (20) has been removed.

The proposition (26) has been removed.

The proposition (26) has been removed.

⁴ The proposition (28) has been removed.

- (33) For all elements f_1 , f_2 of MSAAut (U_2) holds $f_1 \circ f_2 \in MSAAut(U_2)$.
- (34) For every many sorted function F from $MSAlg(U_1)$ into $MSAlg(U_1)$ and for every element f of $UAAut(U_1)$ such that $F = \{0\} \longmapsto f$ holds $F \in MSAAut(MSAlg(U_1))$.

Let us consider S, U_2 . The functor $MSAAutComp(U_2)$ yields a binary operation on $MSAAut(U_2)$ and is defined by:

(Def. 8) For all elements x, y of MSAAut(U_2) holds (MSAAutComp(U_2))(x, y) = $y \circ x$.

Let us consider S, U_2 . The functor MSAAutGroup(U_2) yielding a group is defined by:

(Def. 9) $MSAAutGroup(U_2) = \langle MSAAut(U_2), MSAAutComp(U_2) \rangle$.

Let us consider S, U_2 . Observe that MSAAutGroup(U_2) is strict. The following propositions are true:

- (35) For all elements x, y of MSAAutGroup(U_2) and for all elements f, g of MSAAut(U_2) such that x = f and y = g holds $x \cdot y = g \circ f$.
- (36) $id_{the sorts of U_2} = 1_{MSAAutGroup(U_2)}$.
- (37) For every element f of MSAAut (U_2) and for every element g of MSAAutGroup (U_2) such that f = g holds $f^{-1} = g^{-1}$.
 - 4. On the Relationship of Automorphisms of 1-sorted and ManySorted Algebras

The following propositions are true:

- (38) Let U_4 , U_5 be universal algebras. Suppose U_4 and U_5 are similar. Let F be a many sorted function from $MSAlg(U_4)$ into $(MSAlg(U_5) \text{ over } MSSign(U_4))$. Then F(0) is a function from U_4 into U_5 .
- (39) For every element f of $UAAut(U_1)$ holds $\{0\} \longmapsto f$ is a many sorted function from $MSAlg(U_1)$ into $MSAlg(U_1)$.
- (40) Let h be a function. Suppose $\operatorname{dom} h = \operatorname{UAAut}(U_1)$ and for every set x such that $x \in \operatorname{UAAut}(U_1)$ holds $h(x) = \{0\} \longmapsto x$. Then h is a homomorphism from $\operatorname{UAAutGroup}(U_1)$ to $\operatorname{MSAAutGroup}(\operatorname{MSAlg}(U_1))$.
- (41) Let h be a homomorphism from UAAutGroup(U_1) to MSAAutGroup(MSAlg(U_1)). If for every set x such that $x \in \text{UAAut}(U_1)$ holds $h(x) = \{0\} \longmapsto x$, then h is an isomorphism.
- (42) UAAutGroup(U_1) and MSAAutGroup(MSAlg(U_1)) are isomorphic.

REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [3] Ewa Burakowska. Subalgebras of the universal algebra. Lattices of subalgebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/unialg_2.html.
- [4] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [7] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.

- [8] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [9] Adam Grabowski. The correspondence between homomorphisms of universal algebra & many sorted algebra. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msuhom_1.html.
- [10] Małgorzata Korolkiewicz. Homomorphisms of algebras. Quotient universal algebra. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/alg_1.html.
- [11] Malgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_3.html.
- [12] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/unialg_1.html.
- [13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [14] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/pralg_1.html.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [16] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fraenkel.html.
- [17] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [18] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1.
- [19] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [20] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. *Journal of Formalized Mathematics*, 3, 1991. http://mizar.org/JFM/Vol3/group_6.html.
- [21] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [22] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.

Received December 13, 1994

Published January 2, 2004