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Summary. The widely used textbook by Brassard and Bratley [3] includes a chap-
ter devoted to asymptotic notation (Chapter 3, pp. 79–97). We have attempted to test how
suitable the current version of Mizar is for recording this type of material in its entirety. A
more detailed report on this experiment will be available separately. This article presents the
development of notions and a follow-up article [11] includes examples and solutions to prob-
lems. The preliminaries introduce a number of properties of real sequences, some operations
on real sequences, and a characterization of convergence. The remaining sections in this ar-
ticle correspond to sections of Chapter 3 of [3]. Section 2 defines theO notation and proves
the threshold, maximum, and limit rules. Section 3 introduces theΩ and Θ notations and
their analogous rules. Conditional asymptotic notation is defined in Section 4 where smooth
functions are also discussed. Section 5 defines some operations on asymptotic notation (we
have decided not to introduce the asymptotic notation for functions of several variables as it is
a straightforward generalization of notions for unary functions).

MML Identifier: ASYMPT_0.

WWW: http://mizar.org/JFM/Vol11/asympt_0.html

The articles [14], [18], [2], [16], [7], [4], [5], [15], [1], [9], [8], [12], [13], [6], [17], and [10] provide
the notation and terminology for this paper.

1. PRELIMINARIES

In this paperc, d denote real numbers andn, N denote natural numbers.
In this article we present several logical schemes. The schemeFinSegRng1deals with natural

numbersA , B, a non empty setC , and a unary functorF yielding an element ofC , and states that:
{F (i); i ranges over natural numbers:A ≤ i ∧ i ≤ B} is a finite non empty subset
of C

provided the following requirement is met:
• A ≤ B.

The schemeFinImInit1 deals with a natural numberA , a non empty setB, and a unary functor
F yielding an element ofB, and states that:

{F (n);n ranges over natural numbers:n≤ A} is a finite non empty subset ofB
for all values of the parameters.

The schemeFinImInit2 deals with a natural numberA , a non empty setB, and a unary functor
F yielding an element ofB, and states that:

{F (n);n ranges over natural numbers:n < A} is a finite non empty subset ofB
provided the parameters have the following property:

• A > 0.

1This work has been supported by NSERC Grant OGP9207.

1 c© Association of Mizar Users
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Let c be a real number. We say thatc is logbase if and only if:

(Def. 3)1 c > 0 andc 6= 1.

One can check the following observations:

∗ there exists a real number which is positive,

∗ there exists a real number which is negative,

∗ there exists a real number which is logbase,

∗ there exists a real number which is non negative,

∗ there exists a real number which is non positive, and

∗ there exists a real number which is non logbase.

Let f be a sequence of real numbers. We say thatf is eventually-nonnegative if and only if:

(Def. 4) There existsN such that for everyn such thatn≥ N holds f (n)≥ 0.

We say thatf is positive if and only if:

(Def. 5) For everyn holds f (n) > 0.

We say thatf is eventually-positive if and only if:

(Def. 6) There existsN such that for everyn such thatn≥ N holds f (n) > 0.

We say thatf is eventually-nonzero if and only if:

(Def. 7) There existsN such that for everyn such thatn≥ N holds f (n) 6= 0.

We say thatf is eventually-nondecreasing if and only if:

(Def. 8) There existsN such that for everyn such thatn≥ N holds f (n)≤ f (n+1).

Let us observe that there exists a sequence of real numbers which is eventually-nonnegative,
eventually-nonzero, positive, eventually-positive, and eventually-nondecreasing.

One can verify the following observations:

∗ every sequence of real numbers which is positive is also eventually-positive,

∗ every sequence of real numbers which is eventually-positive is also eventually-nonnegative
and eventually-nonzero, and

∗ every sequence of real numbers which is eventually-nonnegative and eventually-nonzero is
also eventually-positive.

Let f , g be eventually-nonnegative sequences of real numbers. Note thatf + g is eventually-
nonnegative.

Let f be a sequence of real numbers and letc be a real number. The functorc+ f yields a
sequence of real numbers and is defined by:

(Def. 9) For everyn holds(c+ f )(n) = c+ f (n).

We introducef +c as a synonym ofc+ f .
Let f be an eventually-nonnegative sequence of real numbers and letc be a positive real number.

Observe thatc f is eventually-nonnegative.
Let f be an eventually-nonnegative sequence of real numbers and letc be a non negative real

number. Note thatc+ f is eventually-nonnegative.
Let f be an eventually-nonnegative sequence of real numbers and letc be a positive real number.

One can verify thatc+ f is eventually-positive.
Let f , g be sequences of real numbers. The functor max( f ,g) yields a sequence of real numbers

and is defined as follows:
1 The definitions (Def. 1) and (Def. 2) have been removed.



ASYMPTOTIC NOTATION. PART I: THEORY 3

(Def. 10) For everyn holds(max( f ,g))(n) = max( f (n),g(n)).

Let us notice that the functor max( f ,g) is commutative.
Let f be a sequence of real numbers and letg be an eventually-nonnegative sequence of real

numbers. Note that max( f ,g) is eventually-nonnegative.
Let f be a sequence of real numbers and letgbe an eventually-positive sequence of real numbers.

Note that max( f ,g) is eventually-positive.
Let f , g be sequences of real numbers. We say thatg majorizesf if and only if:

(Def. 11) There existsN such that for everyn such thatn≥ N holds f (n)≤ g(n).

Next we state several propositions:

(1) Let f be a sequence of real numbers andN be a natural number. Suppose that for everyn
such thatn≥ N holds f (n) ≤ f (n+ 1). Let n, m be natural numbers. IfN ≤ n andn≤ m,
then f (n)≤ f (m).

(2) Let f , g be eventually-positive sequences of real numbers. Iff/g is convergent and
lim( f/g) 6= 0, theng/ f is convergent and lim(g/ f ) = (lim( f/g))−1.

(3) For every eventually-nonnegative sequencef of real numbers such thatf is convergent
holds 0≤ lim f .

(4) Let f , g be sequences of real numbers. Iff is convergent andg is convergent andg ma-
jorizes f , then limf ≤ lim g.

(5) Let f be a sequence of real numbers andg be an eventually-nonzero sequence of real
numbers. Iff/g is divergent to+∞, theng/ f is convergent and lim(g/ f ) = 0.

2. A NOTATION FOR “ THE ORDER OF”

Let f be an eventually-nonnegative sequence of real numbers. The functorO( f ) yielding a non
empty set of functions fromN to R is defined as follows:

(Def. 12) O( f ) = {t; t ranges over elements ofRN:
∨

c,N (c > 0 ∧
∧

n (n≥ N ⇒ t(n)≤ c · f (n) ∧
t(n)≥ 0))}.

We now state a number of propositions:

(6) Let x be a set andf be an eventually-nonnegative sequence of real numbers. Suppose
x∈O( f ). Thenx is an eventually-nonnegative sequence of real numbers.

(7) Let f be a positive sequence of real numbers andt be an eventually-nonnegative sequence
of real numbers. Thent ∈ O( f ) if and only if there existsc such thatc > 0 and for everyn
holdst(n)≤ c· f (n).

(8) Let f be an eventually-positive sequence of real numbers,t be an eventually-nonnegative
sequence of real numbers, andN be a natural number. Supposet ∈O( f ) and for everyn such
thatn≥N holds f (n) > 0. Then there existsc such thatc> 0 and for everyn such thatn≥N
holdst(n)≤ c· f (n).

(9) For all eventually-nonnegative sequencesf , g of real numbers holdsO( f + g) =
O(max( f ,g)).

(10) For every eventually-nonnegative sequencef of real numbers holdsf ∈O( f ).

(11) For all eventually-nonnegative sequencesf , g of real numbers such thatf ∈ O(g) holds
O( f )⊆O(g).

(12) For all eventually-nonnegative sequencesf , g, h of real numbers such thatf ∈ O(g) and
g∈O(h) holds f ∈O(h).
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(13) Let f be an eventually-nonnegative sequence of real numbers andc be a positive real num-
ber. ThenO( f ) = O(c f).

(14) Letc be a non negative real number andx, f be eventually-nonnegative sequences of real
numbers. Ifx∈O( f ), thenx∈O(c+ f ).

(15) For all eventually-positive sequencesf , g of real numbers such thatf/g is convergent and
lim( f/g) > 0 holdsO( f ) = O(g).

(16) Let f , g be eventually-positive sequences of real numbers. Iff/g is convergent and
lim( f/g) = 0, then f ∈O(g) andg /∈O( f ).

(17) Let f , g be eventually-positive sequences of real numbers. Iff/g is divergent to+∞, then
f /∈O(g) andg∈O( f ).

3. OTHER ASYMPTOTIC NOTATION

Let f be an eventually-nonnegative sequence of real numbers. The functorΩ( f ) yields a non empty
set of functions fromN to R and is defined as follows:

(Def. 13) Ω( f ) = {t; t ranges over elements ofRN:
∨

d,N (d > 0 ∧
∧

n (n≥ N ⇒ t(n)≥ d · f (n) ∧
t(n)≥ 0))}.

One can prove the following propositions:

(18) Let x be a set andf be an eventually-nonnegative sequence of real numbers. Suppose
x∈Ω( f ). Thenx is an eventually-nonnegative sequence of real numbers.

(19) For all eventually-nonnegative sequencesf , g of real numbers holdsf ∈Ω(g) iff g∈O( f ).

(20) For every eventually-nonnegative sequencef of real numbers holdsf ∈Ω( f ).

(21) For all eventually-nonnegative sequencesf , g, h of real numbers such thatf ∈ Ω(g) and
g∈Ω(h) holds f ∈Ω(h).

(22) For all eventually-positive sequencesf , g of real numbers such thatf/g is convergent and
lim( f/g) > 0 holdsΩ( f ) = Ω(g).

(23) Let f , g be eventually-positive sequences of real numbers. Iff/g is convergent and
lim( f/g) = 0, theng∈Ω( f ) and f /∈Ω(g).

(24) Let f , g be eventually-positive sequences of real numbers. Iff/g is divergent to+∞, then
g /∈Ω( f ) and f ∈Ω(g).

(25) Let f , t be positive sequences of real numbers. Thent ∈ Ω( f ) if and only if there existsd
such thatd > 0 and for everyn holdsd · f (n)≤ t(n).

(26) For all eventually-nonnegative sequencesf , g of real numbers holdsΩ( f + g) =
Ω(max( f ,g)).

Let f be an eventually-nonnegative sequence of real numbers. The functorΘ( f ) yielding a non
empty set of functions fromN to R is defined by:

(Def. 14) Θ( f ) = O( f )∩Ω( f ).

The following propositions are true:

(27) Let f be an eventually-nonnegative sequence of real numbers. ThenΘ( f ) = {t; t ranges
over elements ofRN:

∨
c,d,N (c > 0 ∧ d > 0 ∧

∧
n (n≥ N ⇒ d · f (n) ≤ t(n) ∧ t(n) ≤

c· f (n)))}.

(28) For every eventually-nonnegative sequencef of real numbers holdsf ∈Θ( f ).
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(29) For all eventually-nonnegative sequencesf , g of real numbers such thatf ∈ Θ(g) holds
g∈Θ( f ).

(30) For all eventually-nonnegative sequencesf , g, h of real numbers such thatf ∈ Θ(g) and
g∈Θ(h) holds f ∈Θ(h).

(31) Let f , t be positive sequences of real numbers. Thent ∈Θ( f ) if and only if there existc, d
such thatc > 0 andd > 0 and for everyn holdsd · f (n)≤ t(n) andt(n)≤ c· f (n).

(32) For all eventually-nonnegative sequencesf , g of real numbers holdsΘ( f + g) =
Θ(max( f ,g)).

(33) For all eventually-positive sequencesf , g of real numbers such thatf/g is convergent and
lim( f/g) > 0 holds f ∈Θ(g).

(34) Let f , g be eventually-positive sequences of real numbers. Iff/g is convergent and
lim( f/g) = 0, then f ∈O(g) and f /∈Θ(g).

(35) Let f , g be eventually-positive sequences of real numbers. Iff/g is divergent to+∞, then
f ∈Ω(g) and f /∈Θ(g).

4. CONDITIONAL ASYMPTOTIC NOTATION

Let f be an eventually-nonnegative sequence of real numbers and letX be a set. The functorO( f |X)
yields a non empty set of functions fromN to R and is defined as follows:

(Def. 15) O( f |X) = {t; t ranges over elements ofRN:
∨

c,N (c > 0 ∧
∧

n (n≥N ∧ n∈ X ⇒ t(n)≤
c· f (n) ∧ t(n)≥ 0))}.

Let f be an eventually-nonnegative sequence of real numbers and letX be a set. The functor
Ω( f |X) yielding a non empty set of functions fromN to R is defined as follows:

(Def. 16) Ω( f |X) = {t; t ranges over elements ofRN:
∨

d,N (d > 0 ∧
∧

n (n≥N ∧ n∈ X ⇒ t(n)≥
d · f (n) ∧ t(n)≥ 0))}.

Let f be an eventually-nonnegative sequence of real numbers and letX be a set. The functor
Θ( f |X) yields a non empty set of functions fromN to R and is defined by the condition (Def. 17).

(Def. 17) Θ( f |X) = {t; t ranges over elements ofRN:
∨

c,d,N (c > 0 ∧ d > 0 ∧
∧

n (n≥ N ∧ n∈
X ⇒ d · f (n)≤ t(n) ∧ t(n)≤ c· f (n)))}.

The following proposition is true

(36) For every eventually-nonnegative sequencef of real numbers and for every setX holds
Θ( f |X) = O( f |X)∩Ω( f |X).

Let f be a sequence of real numbers and letb be a natural number. The functorfb yielding a
sequence of real numbers is defined as follows:

(Def. 18) For everyn holds fb(n) = f (b·n).

Let f be an eventually-nonnegative sequence of real numbers and letb be a natural number. We
say thatf is smooth w.r.t.b if and only if:

(Def. 19) f is eventually-nondecreasing andfb ∈O( f ).

Let f be an eventually-nonnegative sequence of real numbers. We say thatf is smooth if and
only if:

(Def. 20) For every natural numberb such thatb≥ 2 holds f is smooth w.r.t.b.

One can prove the following propositions:
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(37) Let f be an eventually-nonnegative sequence of real numbers. Given a natural numberb
such thatb≥ 2 and f is smooth w.r.t.b. Then f is smooth.

(38) Let f be an eventually-nonnegative sequence of real numbers,t be an eventually-
nonnegative eventually-nondecreasing sequence of real numbers, andb be a natural number.
Supposef is smooth andb≥ 2 andt ∈ O( f |{bn : n ranges over natural numbers}). Then
t ∈O( f ).

(39) Let f be an eventually-nonnegative sequence of real numbers,t be an eventually-
nonnegative eventually-nondecreasing sequence of real numbers, andb be a natural number.
Supposef is smooth andb≥ 2 andt ∈ Ω( f |{bn : n ranges over natural numbers}). Then
t ∈Ω( f ).

(40) Let f be an eventually-nonnegative sequence of real numbers,t be an eventually-
nonnegative eventually-nondecreasing sequence of real numbers, andb be a natural number.
Supposef is smooth andb≥ 2 andt ∈ Θ( f |{bn : n ranges over natural numbers}). Then
t ∈Θ( f ).

5. OPERATIONS ONASYMPTOTIC NOTATION

Let X be a non empty set and letF , G be non empty sets of functions fromX to R. The functor
F +G yields a non empty set of functions fromX to R and is defined by the condition (Def. 21).

(Def. 21) F + G = {t; t ranges over elements ofRX:
∨

f ,g:element ofRX ( f ∈ F ∧ g ∈ G ∧∧
n:element ofX t(n) = f (n)+g(n))}.

Let X be a non empty set and letF , G be non empty sets of functions fromX to R. The functor
max(F,G) yielding a non empty set of functions fromX to R is defined by the condition (Def. 22).

(Def. 22) max(F,G) = {t; t ranges over elements ofRX:
∨

f ,g:element ofRX ( f ∈ F ∧ g ∈ G ∧∧
n:element ofX t(n) = max( f (n),g(n)))}.

The following propositions are true:

(41) For all eventually-nonnegative sequencesf , g of real numbers holdsO( f )+O(g) = O( f +
g).

(42) For all eventually-nonnegative sequencesf , g of real numbers holds max(O( f ),O(g)) =
O(max( f ,g)).

Let F , G be non empty sets of functions fromN to R. The functorFG yields a non empty set of
functions fromN to R and is defined by the condition (Def. 23).

(Def. 23) FG = {t; t ranges over elements ofRN:
∨

f ,g:element ofRN
∨

N :element ofN ( f ∈ F ∧ g ∈
G ∧

∧
n:element ofN (n≥ N ⇒ t(n) = f (n)g(n)))}.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.
org/JFM/Vol1/nat_1.html.

[2] Grzegorz Bancerek. The ordinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/ordinal1.
html.

[3] Gilles Brassard and Paul Bratley.Fundamentals of Algorithmics. Prentice Hall, 1996.
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