Asymptotic Notation. Part I: Theory ${ }^{11}$

Richard Krueger
University of Alberta
Edmonton

Piotr Rudnicki
University of Alberta
Edmonton

Paul Shelley
University of Alberta
Edmonton

Abstract

Summary. The widely used textbook by Brassard and Bratley [3] includes a chapter devoted to asymptotic notation (Chapter 3, pp. 79-97). We have attempted to test how suitable the current version of Mizar is for recording this type of material in its entirety. A more detailed report on this experiment will be available separately. This article presents the development of notions and a follow-up article [11] includes examples and solutions to problems. The preliminaries introduce a number of properties of real sequences, some operations on real sequences, and a characterization of convergence. The remaining sections in this article correspond to sections of Chapter 3 of [3]. Section 2 defines the O notation and proves the threshold, maximum, and limit rules. Section 3 introduces the Ω and Θ notations and their analogous rules. Conditional asymptotic notation is defined in Section 4 where smooth functions are also discussed. Section 5 defines some operations on asymptotic notation (we have decided not to introduce the asymptotic notation for functions of several variables as it is a straightforward generalization of notions for unary functions).

MML Identifier: ASYMP T_0.
WWW:http://mizar.org/JFM/Vol11/asympt_0.html

The articles [14], [18], [2], [16], [7], [4], [5], [15], [1], [9], [8], [12], [13], [6], [17], and [10] provide the notation and terminology for this paper.

1. Preliminaries

In this paper c, d denote real numbers and n, N denote natural numbers.
In this article we present several logical schemes. The scheme FinSegRngl deals with natural numbers \mathcal{A}, \mathcal{B}, a non empty set \mathcal{C}, and a unary functor \mathcal{F} yielding an element of \mathcal{C}, and states that: $\{\mathcal{F}(i) ; i$ ranges over natural numbers: $\mathcal{A} \leq i \wedge i \leq \mathcal{B}\}$ is a finite non empty subset of \mathcal{C}
provided the following requirement is met:

- $\mathcal{A} \leq \mathcal{B}$.

The scheme FinImInitl deals with a natural number \mathcal{A}, a non empty set \mathcal{B}, and a unary functor \mathcal{F} yielding an element of \mathcal{B}, and states that:
$\{\mathcal{F}(n) ; n$ ranges over natural numbers: $n \leq \mathcal{A}\}$ is a finite non empty subset of \mathcal{B} for all values of the parameters.

The scheme FinImInit2 deals with a natural number \mathcal{A}, a non empty set \mathcal{B}, and a unary functor \mathcal{F} yielding an element of \mathcal{B}, and states that:
$\{\mathcal{F}(n) ; n$ ranges over natural numbers: $n<\mathcal{A}\}$ is a finite non empty subset of \mathcal{B} provided the parameters have the following property:

- $\mathcal{A}>0$.

[^0]Let c be a real number. We say that c is logbase if and only if:
(Def. 3) $c>0$ and $c \neq 1$.
One can check the following observations:

* there exists a real number which is positive,
* there exists a real number which is negative,
* there exists a real number which is logbase,
* there exists a real number which is non negative,
* there exists a real number which is non positive, and
* there exists a real number which is non logbase.

Let f be a sequence of real numbers. We say that f is eventually-nonnegative if and only if:
(Def. 4) There exists N such that for every n such that $n \geq N$ holds $f(n) \geq 0$.
We say that f is positive if and only if:
(Def. 5) For every n holds $f(n)>0$.
We say that f is eventually-positive if and only if:
(Def. 6) There exists N such that for every n such that $n \geq N$ holds $f(n)>0$.
We say that f is eventually-nonzero if and only if:
(Def. 7) There exists N such that for every n such that $n \geq N$ holds $f(n) \neq 0$.
We say that f is eventually-nondecreasing if and only if:
(Def. 8) There exists N such that for every n such that $n \geq N$ holds $f(n) \leq f(n+1)$.
Let us observe that there exists a sequence of real numbers which is eventually-nonnegative, eventually-nonzero, positive, eventually-positive, and eventually-nondecreasing.

One can verify the following observations:

* every sequence of real numbers which is positive is also eventually-positive,
* every sequence of real numbers which is eventually-positive is also eventually-nonnegative and eventually-nonzero, and
* every sequence of real numbers which is eventually-nonnegative and eventually-nonzero is also eventually-positive.

Let f, g be eventually-nonnegative sequences of real numbers. Note that $f+g$ is eventuallynonnegative.

Let f be a sequence of real numbers and let c be a real number. The functor $c+f$ yields a sequence of real numbers and is defined by:
(Def. 9) For every n holds $(c+f)(n)=c+f(n)$.
We introduce $f+c$ as a synonym of $c+f$.
Let f be an eventually-nonnegative sequence of real numbers and let c be a positive real number. Observe that $c f$ is eventually-nonnegative.

Let f be an eventually-nonnegative sequence of real numbers and let c be a non negative real number. Note that $c+f$ is eventually-nonnegative.

Let f be an eventually-nonnegative sequence of real numbers and let c be a positive real number. One can verify that $c+f$ is eventually-positive.

Let f, g be sequences of real numbers. The functor $\max (f, g)$ yields a sequence of real numbers and is defined as follows:

[^1](Def. 10) For every n holds $(\max (f, g))(n)=\max (f(n), g(n))$.
Let us notice that the functor $\max (f, g)$ is commutative.
Let f be a sequence of real numbers and let g be an eventually-nonnegative sequence of real numbers. Note that $\max (f, g)$ is eventually-nonnegative.

Let f be a sequence of real numbers and let g be an eventually-positive sequence of real numbers. Note that $\max (f, g)$ is eventually-positive.

Let f, g be sequences of real numbers. We say that g majorizes f if and only if:
(Def. 11) There exists N such that for every n such that $n \geq N$ holds $f(n) \leq g(n)$.
Next we state several propositions:
(1) Let f be a sequence of real numbers and N be a natural number. Suppose that for every n such that $n \geq N$ holds $f(n) \leq f(n+1)$. Let n, m be natural numbers. If $N \leq n$ and $n \leq m$, then $f(n) \leq f(m)$.
(2) Let f, g be eventually-positive sequences of real numbers. If f / g is convergent and $\lim (f / g) \neq 0$, then g / f is convergent and $\lim (g / f)=(\lim (f / g))^{-1}$.
(3) For every eventually-nonnegative sequence f of real numbers such that f is convergent holds $0 \leq \lim f$.
(4) Let f, g be sequences of real numbers. If f is convergent and g is convergent and g majorizes f, then $\lim f \leq \lim g$.
(5) Let f be a sequence of real numbers and g be an eventually-nonzero sequence of real numbers. If f / g is divergent to $+\infty$, then g / f is convergent and $\lim (g / f)=0$.

2. A NOTATION FOR "THE ORDER OF"

Let f be an eventually-nonnegative sequence of real numbers. The functor $O(f)$ yielding a non empty set of functions from \mathbb{N} to \mathbb{R} is defined as follows:
(Def. 12) $O(f)=\left\{t ; t\right.$ ranges over elements of $\mathbb{R}^{\mathbb{N}}: \bigvee_{c, N}\left(c>0 \wedge \wedge_{n}(n \geq N \Rightarrow t(n) \leq c \cdot f(n) \wedge\right.$ $t(n) \geq 0))\}$.

We now state a number of propositions:
(6) Let x be a set and f be an eventually-nonnegative sequence of real numbers. Suppose $x \in O(f)$. Then x is an eventually-nonnegative sequence of real numbers.
(7) Let f be a positive sequence of real numbers and t be an eventually-nonnegative sequence of real numbers. Then $t \in O(f)$ if and only if there exists c such that $c>0$ and for every n holds $t(n) \leq c \cdot f(n)$.
(8) Let f be an eventually-positive sequence of real numbers, t be an eventually-nonnegative sequence of real numbers, and N be a natural number. Suppose $t \in O(f)$ and for every n such that $n \geq N$ holds $f(n)>0$. Then there exists c such that $c>0$ and for every n such that $n \geq N$ holds $t(n) \leq c \cdot f(n)$.
(9) For all eventually-nonnegative sequences f, g of real numbers holds $O(f+g)=$ $O(\max (f, g))$.
(10) For every eventually-nonnegative sequence f of real numbers holds $f \in O(f)$.
(11) For all eventually-nonnegative sequences f, g of real numbers such that $f \in O(g)$ holds $O(f) \subseteq O(g)$.
(12) For all eventually-nonnegative sequences f, g, h of real numbers such that $f \in O(g)$ and $g \in O(h)$ holds $f \in O(h)$.
(13) Let f be an eventually-nonnegative sequence of real numbers and c be a positive real number. Then $O(f)=O(c f)$.
(14) Let c be a non negative real number and x, f be eventually-nonnegative sequences of real numbers. If $x \in O(f)$, then $x \in O(c+f)$.
(15) For all eventually-positive sequences f, g of real numbers such that f / g is convergent and $\lim (f / g)>0$ holds $O(f)=O(g)$.
(16) Let f, g be eventually-positive sequences of real numbers. If f / g is convergent and $\lim (f / g)=0$, then $f \in O(g)$ and $g \notin O(f)$.
(17) Let f, g be eventually-positive sequences of real numbers. If f / g is divergent to $+\infty$, then $f \notin O(g)$ and $g \in O(f)$.

3. Other Asymptotic Notation

Let f be an eventually-nonnegative sequence of real numbers. The functor $\Omega(f)$ yields a non empty set of functions from \mathbb{N} to \mathbb{R} and is defined as follows:
(Def. 13) $\Omega(f)=\left\{t ; t\right.$ ranges over elements of $\mathbb{R}^{\mathbb{N}}: \bigvee_{d, N}\left(d>0 \wedge \wedge_{n}(n \geq N \Rightarrow t(n) \geq d \cdot f(n) \wedge\right.$ $t(n) \geq 0))\}$.

One can prove the following propositions:
(18) Let x be a set and f be an eventually-nonnegative sequence of real numbers. Suppose $x \in \Omega(f)$. Then x is an eventually-nonnegative sequence of real numbers.
(19) For all eventually-nonnegative sequences f, g of real numbers holds $f \in \Omega(g)$ iff $g \in O(f)$.
(20) For every eventually-nonnegative sequence f of real numbers holds $f \in \Omega(f)$.
(21) For all eventually-nonnegative sequences f, g, h of real numbers such that $f \in \Omega(g)$ and $g \in \Omega(h)$ holds $f \in \Omega(h)$.
(22) For all eventually-positive sequences f, g of real numbers such that f / g is convergent and $\lim (f / g)>0$ holds $\Omega(f)=\Omega(g)$.
(23) Let f, g be eventually-positive sequences of real numbers. If f / g is convergent and $\lim (f / g)=0$, then $g \in \Omega(f)$ and $f \notin \Omega(g)$.
(24) Let f, g be eventually-positive sequences of real numbers. If f / g is divergent to $+\infty$, then $g \notin \Omega(f)$ and $f \in \Omega(g)$.
(25) Let f, t be positive sequences of real numbers. Then $t \in \Omega(f)$ if and only if there exists d such that $d>0$ and for every n holds $d \cdot f(n) \leq t(n)$.
(26) For all eventually-nonnegative sequences f, g of real numbers holds $\Omega(f+g)=$ $\Omega(\max (f, g))$.

Let f be an eventually-nonnegative sequence of real numbers. The functor $\Theta(f)$ yielding a non empty set of functions from \mathbb{N} to \mathbb{R} is defined by:
(Def. 14) $\quad \Theta(f)=O(f) \cap \Omega(f)$.
The following propositions are true:
(27) Let f be an eventually-nonnegative sequence of real numbers. Then $\Theta(f)=\{t ; t$ ranges over elements of $\mathbb{R}^{\mathbb{N}}: \bigvee_{c, d, N}\left(c>0 \wedge d>0 \wedge \wedge_{n}(n \geq N \Rightarrow d \cdot f(n) \leq t(n) \wedge t(n) \leq\right.$ $c \cdot f(n)))\}$.
(28) For every eventually-nonnegative sequence f of real numbers holds $f \in \Theta(f)$.
(29) For all eventually-nonnegative sequences f, g of real numbers such that $f \in \Theta(g)$ holds $g \in \Theta(f)$.
(30) For all eventually-nonnegative sequences f, g, h of real numbers such that $f \in \Theta(g)$ and $g \in \Theta(h)$ holds $f \in \Theta(h)$.
(31) Let f, t be positive sequences of real numbers. Then $t \in \Theta(f)$ if and only if there exist c, d such that $c>0$ and $d>0$ and for every n holds $d \cdot f(n) \leq t(n)$ and $t(n) \leq c \cdot f(n)$.
(32) For all eventually-nonnegative sequences f, g of real numbers holds $\Theta(f+g)=$ $\Theta(\max (f, g))$.
(33) For all eventually-positive sequences f, g of real numbers such that f / g is convergent and $\lim (f / g)>0$ holds $f \in \Theta(g)$.
(34) Let f, g be eventually-positive sequences of real numbers. If f / g is convergent and $\lim (f / g)=0$, then $f \in O(g)$ and $f \notin \Theta(g)$.
(35) Let f, g be eventually-positive sequences of real numbers. If f / g is divergent to $+\infty$, then $f \in \Omega(g)$ and $f \notin \Theta(g)$.

4. Conditional Asymptotic Notation

Let f be an eventually-nonnegative sequence of real numbers and let X be a set. The functor $O(f \mid X)$ yields a non empty set of functions from \mathbb{N} to \mathbb{R} and is defined as follows:
(Def. 15) $O(f \mid X)=\left\{t ; t\right.$ ranges over elements of $\mathbb{R}^{\mathbb{N}}: \bigvee_{c, N}\left(c>0 \wedge \wedge_{n}(n \geq N \wedge n \in X \Rightarrow t(n) \leq\right.$ $c \cdot f(n) \wedge t(n) \geq 0))\}$.

Let f be an eventually-nonnegative sequence of real numbers and let X be a set. The functor $\Omega(f \mid X)$ yielding a non empty set of functions from \mathbb{N} to \mathbb{R} is defined as follows:
(Def. 16) $\Omega(f \mid X)=\left\{t ; t\right.$ ranges over elements of $\mathbb{R}^{\mathbb{N}}: \bigvee_{d, N}\left(d>0 \wedge \wedge_{n}(n \geq N \wedge n \in X \Rightarrow t(n) \geq\right.$ $d \cdot f(n) \wedge t(n) \geq 0))\}$.

Let f be an eventually-nonnegative sequence of real numbers and let X be a set. The functor $\Theta(f \mid X)$ yields a non empty set of functions from \mathbb{N} to \mathbb{R} and is defined by the condition (Def. 17).
(Def. 17) $\Theta(f \mid X)=\left\{t ; t\right.$ ranges over elements of $\mathbb{R}^{\mathbb{N}}: \bigvee_{c, d, N}\left(c>0 \wedge d>0 \wedge \wedge_{n}(n \geq N \wedge n \in\right.$ $X \Rightarrow d \cdot f(n) \leq t(n) \wedge t(n) \leq c \cdot f(n)))\}$.

The following proposition is true
(36) For every eventually-nonnegative sequence f of real numbers and for every set X holds $\Theta(f \mid X)=O(f \mid X) \cap \Omega(f \mid X)$.

Let f be a sequence of real numbers and let b be a natural number. The functor f_{b} yielding a sequence of real numbers is defined as follows:
(Def. 18) For every n holds $f_{b}(n)=f(b \cdot n)$.
Let f be an eventually-nonnegative sequence of real numbers and let b be a natural number. We say that f is smooth w.r.t. b if and only if:
(Def. 19) f is eventually-nondecreasing and $f_{b} \in O(f)$.
Let f be an eventually-nonnegative sequence of real numbers. We say that f is smooth if and only if:
(Def. 20) For every natural number b such that $b \geq 2$ holds f is smooth w.r.t. b.
One can prove the following propositions:
(37) Let f be an eventually-nonnegative sequence of real numbers. Given a natural number b such that $b \geq 2$ and f is smooth w.r.t. b. Then f is smooth.
(38) Let f be an eventually-nonnegative sequence of real numbers, t be an eventuallynonnegative eventually-nondecreasing sequence of real numbers, and b be a natural number. Suppose f is smooth and $b \geq 2$ and $t \in O\left(f \mid\left\{b^{n}: n\right.\right.$ ranges over natural numbers $\left.\}\right)$. Then $t \in O(f)$.
(39) Let f be an eventually-nonnegative sequence of real numbers, t be an eventuallynonnegative eventually-nondecreasing sequence of real numbers, and b be a natural number. Suppose f is smooth and $b \geq 2$ and $t \in \Omega\left(f \mid\left\{b^{n}: n\right.\right.$ ranges over natural numbers $\left.\}\right)$. Then $t \in \Omega(f)$.
(40) Let f be an eventually-nonnegative sequence of real numbers, t be an eventuallynonnegative eventually-nondecreasing sequence of real numbers, and b be a natural number. Suppose f is smooth and $b \geq 2$ and $t \in \Theta\left(f \mid\left\{b^{n}: n\right.\right.$ ranges over natural numbers $\left.\}\right)$. Then $t \in \Theta(f)$.

5. Operations on Asymptotic Notation

Let X be a non empty set and let F, G be non empty sets of functions from X to \mathbb{R}. The functor $F+G$ yields a non empty set of functions from X to \mathbb{R} and is defined by the condition (Def. 21).
(Def. 21) $F+G=\left\{t ; t\right.$ ranges over elements of $\mathbb{R}^{X}: \bigvee_{f, g: \text { element of } \mathbb{R}^{X}}(f \in F \wedge g \in G \wedge$ $\left.\left.\wedge_{n: \text { element of } X} t(n)=f(n)+g(n)\right)\right\}$.

Let X be a non empty set and let F, G be non empty sets of functions from X to \mathbb{R}. The functor $\max (F, G)$ yielding a non empty set of functions from X to \mathbb{R} is defined by the condition (Def. 22).
(Def. 22) $\max (F, G)=\left\{t ; t\right.$ ranges over elements of $\mathbb{R}^{X}: \bigvee_{f, g \text { :element of } \mathbb{R}^{X}}(f \in F \wedge g \in G \wedge$ \wedge_{n} :element of $\left.\left.X t(n)=\max (f(n), g(n))\right)\right\}$.

The following propositions are true:
(41) For all eventually-nonnegative sequences f, g of real numbers holds $O(f)+O(g)=O(f+$ $g)$.
(42) For all eventually-nonnegative sequences f, g of real numbers holds $\max (O(f), O(g))=$ $O(\max (f, g))$.

Let F, G be non empty sets of functions from \mathbb{N} to \mathbb{R}. The functor F^{G} yields a non empty set of functions from \mathbb{N} to \mathbb{R} and is defined by the condition (Def. 23).
(Def. 23) $F^{G}=\left\{t ; t\right.$ ranges over elements of $\mathbb{R}^{\mathbb{N}}: \bigvee_{f, g: \text { element of } \mathbb{R}^{\mathbb{N}}} \bigvee_{N: \text { element of } \mathbb{N}}(f \in F \wedge g \in$ $\left.\left.G \wedge \bigwedge_{n: \text { element of } \mathbb{N}}\left(n \geq N \Rightarrow t(n)=f(n)^{g(n)}\right)\right)\right\}$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/nat_1.html
[2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
[3] Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics. Prentice Hall, 1996.
[4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 2.html
[6] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html
[8] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/seq_2.html
[9] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http: //mizar.org/ JFM/Vol1/seq_1.html
[10] Jarosław Kotowicz. The limit of a real function at infinity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/limfunc1.html.
[11] Richard Krueger, Piotr Rudnicki, and Paul Shelley. Asymptotic notation. Part II: Examples and problems. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Vol11/asympt_1.html
[12] Rafał Kwiatek. Factorial and Newton coefficients. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/ newton.html
[13] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/power.html
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[15] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/fraenkel.html.
[16] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[17] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/square_1.html
[18] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.htm]

Received November 4, 1999

Published January 2, 2004

[^0]: ${ }^{1}$ This work has been supported by NSERC Grant OGP9207.

[^1]: ${ }^{1}$ The definitions (Def. 1) and (Def. 2) have been removed.

