Arithmetic of Non-Negative Rational Numbers¹

Grzegorz Bancerek Białystok Technical University

MML Identifier: ARYTM_3.

WWW: http://mizar.org/JFM/Addenda/arytm_3.html

The articles [4], [5], [1], [2], and [3] provide the notation and terminology for this paper.

1. NATURAL ORDINALS

In this paper *A* is an ordinal number.

Let A be an ordinal number. One can verify that every element of A is ordinal.

One can verify the following observations:

- * every ordinal number which is empty is also natural,
- * 1 is natural and non empty, and
- * every element of ω is natural.

Let us observe that there exists an ordinal number which is non empty and natural.

Let a be a natural ordinal number. Note that succ a is natural.

The scheme $Omega\ Ind$ concerns a unary predicate $\mathcal{P},$ and states that:

For every natural ordinal number a holds $\mathcal{P}[a]$

provided the following conditions are met:

- $\mathcal{P}[\emptyset]$, and
- For every natural ordinal number a such that $\mathcal{P}[a]$ holds $\mathcal{P}[\operatorname{succ} a]$.

Let a, b be natural ordinal numbers. One can verify that a + b is natural.

The following proposition is true

(1) For all ordinal numbers a, b such that a + b is natural holds $a \in \omega$ and $b \in \omega$.

Let a, b be natural ordinal numbers. Note that a - b is natural and $a \cdot b$ is natural. The following propositions are true:

- (2) For all ordinal numbers a, b such that $a \cdot b$ is natural and non empty holds $a \in \omega$ and $b \in \omega$.
- (3) For all natural ordinal numbers a, b holds a + b = b + a.
- (4) For all natural ordinal numbers a, b holds $a \cdot b = b \cdot a$.

Let a, b be natural ordinal numbers. Let us note that the functor a+b is commutative. Let us notice that the functor $a \cdot b$ is commutative.

¹This work has been supported by KBN Grant 8 T11C 018 12.

2. RELATIVE PRIME NUMBERS AND DIVISIBILITY

Let a, b be ordinal numbers. We say that a and b are relative prime if and only if:

(Def. 1) For all ordinal numbers c, d_1 , d_2 such that $a = c \cdot d_1$ and $b = c \cdot d_2$ holds c = 1.

Let us note that the predicate a and b are relative prime is symmetric.

The following propositions are true:

- (5) \emptyset and \emptyset are not relative prime.
- (6) 1 and A are relative prime.
- (7) If \emptyset and A are relative prime, then A = 1.

In the sequel a, b, c denote natural ordinal numbers.

We now state the proposition

(8) Suppose $a \neq \emptyset$ or $b \neq \emptyset$. Then there exist natural ordinal numbers c, d_1 , d_2 such that d_1 and d_2 are relative prime and $a = c \cdot d_1$ and $b = c \cdot d_2$.

In the sequel l, m, n denote natural ordinal numbers.

Let us consider m, n. One can check that $m \div n$ is natural and $m \mod n$ is natural.

Let k, n be ordinal numbers. The predicate $k \mid n$ is defined as follows:

(Def. 2) There exists an ordinal number a such that $n = k \cdot a$.

Let us note that the predicate $k \mid n$ is reflexive.

We now state several propositions:

- (9) $a \mid b$ iff there exists c such that $b = a \cdot c$.
- (10) For all m, n such that $\emptyset \in m$ holds $n \mod m \in m$.
- (11) For all n, m holds $m \mid n$ iff $n = m \cdot (n \div m)$.
- (13)¹ For all n, m such that $n \mid m$ and $m \mid n$ holds n = m.
- (14) $n \mid \emptyset \text{ and } \mathbf{1} \mid n$.
- (15) For all n, m such that $\emptyset \in m$ and $n \mid m$ holds $n \subseteq m$.
- (16) For all n, m, l such that $n \mid m$ and $n \mid m+l$ holds $n \mid l$.

Let k, n be natural ordinal numbers. The functor lcm(k,n) yields an element of ω and is defined as follows:

(Def. 3) $k \mid \operatorname{lcm}(k,n)$ and $n \mid \operatorname{lcm}(k,n)$ and for every m such that $k \mid m$ and $n \mid m$ holds $\operatorname{lcm}(k,n) \mid m$.

Let us observe that the functor lcm(k,n) is commutative.

The following two propositions are true:

- (17) $\operatorname{lcm}(m,n) \mid m \cdot n$.
- (18) If $n \neq \emptyset$, then $m \cdot n \div \text{lcm}(m, n) \mid m$.

Let k, n be natural ordinal numbers. The functor gcd(k,n) yields an element of ω and is defined as follows:

(Def. 4) $gcd(k,n) \mid k$ and $gcd(k,n) \mid n$ and for every m such that $m \mid k$ and $m \mid n$ holds $m \mid gcd(k,n)$.

¹ The proposition (12) has been removed.

Let us observe that the functor gcd(k, n) is commutative.

The following propositions are true:

- (19) $gcd(a, \emptyset) = a$ and $lcm(a, \emptyset) = \emptyset$.
- (20) If $gcd(a, b) = \emptyset$, then $a = \emptyset$.
- (21) gcd(a, a) = a and lcm(a, a) = a.
- (22) $\gcd(a \cdot c, b \cdot c) = \gcd(a, b) \cdot c$.
- (23) If $b \neq \emptyset$, then $gcd(a,b) \neq \emptyset$ and $b \div gcd(a,b) \neq \emptyset$.
- (24) If $a \neq \emptyset$ or $b \neq \emptyset$, then $a \div \gcd(a,b)$ and $b \div \gcd(a,b)$ are relative prime.
- (25) a and b are relative prime iff gcd(a,b) = 1.

Let a, b be natural ordinal numbers. The functor RED(a,b) yielding an element of ω is defined by:

(Def. 5)
$$RED(a,b) = a \div gcd(a,b)$$
.

Next we state several propositions:

- (26) $RED(a,b) \cdot gcd(a,b) = a$.
- (27) If $a \neq \emptyset$ or $b \neq \emptyset$, then RED(a,b) and RED(b,a) are relative prime.
- (28) If a and b are relative prime, then RED(a,b) = a.
- (29) RED(a, 1) = a and RED(1, a) = 1.
- (30) If $b \neq \emptyset$, then RED $(b, a) \neq \emptyset$.
- (31) RED $(\emptyset, a) = \emptyset$ and if $a \neq \emptyset$, then RED $(a, \emptyset) = 1$.
- (32) If $a \neq \emptyset$, then RED(a, a) = 1.
- (33) If $c \neq \emptyset$, then RED $(a \cdot c, b \cdot c) = \text{RED}(a, b)$.

3. Non-Negative Rationals

In the sequel i, j, k are elements of ω .

The functor \mathbb{Q}_+ is defined by:

(Def. 6)
$$\mathbb{Q}_+ = (\{\langle i, j \rangle : i \text{ and } j \text{ are relative prime } \land j \neq \emptyset\} \setminus \{\langle k, \mathbf{1} \rangle\}) \cup \omega.$$

One can prove the following proposition

(34) $\omega \subseteq \mathbb{Q}_+$.

In the sequel x, y, z are elements of \mathbb{Q}_+ .

Let us mention that \mathbb{Q}_+ is non empty.

One can check that there exists an element of \mathbb{Q}_+ which is non empty and ordinal.

The following propositions are true:

- (35) $x \in \omega$ or there exist i, j such that $x = \langle i, j \rangle$ and i and j are relative prime and $j \neq 0$ and $j \neq 1$.
- (36) It is not true that there exist sets i, j such that $\langle i, j \rangle$ is an ordinal number.
- (37) If $A \in \mathbb{Q}_+$, then $A \in \omega$.

Let us mention that every ordinal element of \mathbb{Q}_+ is natural. One can prove the following two propositions:

- (38) It is not true that there exist sets i, j such that $\langle i, j \rangle \in \omega$.
- (39) $\langle i, j \rangle \in \mathbb{Q}_+$ iff i and j are relative prime and $j \neq \emptyset$ and $j \neq 1$.

Let x be an element of \mathbb{Q}_+ . The functor num x yielding an element of ω is defined as follows:

(Def. 7)(i) $\operatorname{num} x = x \text{ if } x \in \omega$,

(ii) there exists a such that $x = \langle \text{num} x, a \rangle$, otherwise.

The functor den x yielding an element of ω is defined as follows:

- (Def. 8)(i) $\operatorname{den} x = \mathbf{1}$ if $x \in \omega$,
 - (ii) there exists a such that $x = \langle a, \operatorname{den} x \rangle$, otherwise.

One can prove the following propositions:

- (40) num x and den x are relative prime.
- (41) $\operatorname{den} x \neq \emptyset$.
- (42) If $x \notin \omega$, then $x = \langle \text{num } x, \text{den } x \rangle$ and $\text{den } x \neq 1$.
- (43) $x \neq \emptyset$ iff $num x \neq \emptyset$.
- (44) $x \in \omega \text{ iff den } x = 1.$

Let i, j be natural ordinal numbers. The functor $\frac{i}{i}$ yields an element of \mathbb{Q}_+ and is defined by:

(Def. 9)
$$\frac{i}{j} = \begin{cases} (i) & \emptyset, \text{ if } j = \emptyset, \\ (ii) & \text{RED}(i, j), \text{ if } \text{RED}(j, i) = \mathbf{1}, \\ \left\langle \text{RED}(i, j), \text{RED}(j, i) \right\rangle, \text{ otherwise.} \end{cases}$$

We introduce quotient (i, j) as a synonym of $\frac{i}{j}$. We now state several propositions:

- $(45) \quad \frac{\text{num}\,x}{\text{den}\,x} = x.$
- (46) $\frac{\emptyset}{h} = \emptyset$ and $\frac{a}{1} = a$.
- (47) If $a \neq \emptyset$, then $\frac{a}{a} = 1$.
- (48) If $b \neq \emptyset$, then $\operatorname{num}(\frac{a}{b}) = \operatorname{RED}(a, b)$ and $\operatorname{den}(\frac{a}{b}) = \operatorname{RED}(b, a)$.
- (49) If *i* and *j* are relative prime and $j \neq \emptyset$, then num $(\frac{i}{j}) = i$ and den $(\frac{i}{j}) = j$.
- (50) If $c \neq \emptyset$, then $\frac{a \cdot c}{b \cdot c} = \frac{a}{b}$.

In the sequel i, j, k are natural ordinal numbers. We now state the proposition

(51) If $j \neq \emptyset$ and $l \neq \emptyset$, then $\frac{i}{j} = \frac{k}{l}$ iff $i \cdot l = j \cdot k$.

Let x, y be elements of \mathbb{Q}_+ . The functor x + y yields an element of \mathbb{Q}_+ and is defined by:

(Def. 10)
$$x + y = \frac{\text{num} x \cdot \text{den} y + \text{num} y \cdot \text{den} x}{\text{den} x \cdot \text{den} y}$$
.

Let us observe that the functor x + y is commutative. The functor x * y yielding an element of \mathbb{Q}_+ is defined as follows:

(Def. 11)
$$x * y = \frac{\text{num} x \cdot \text{num} y}{\text{den} x \cdot \text{den} y}$$

Let us observe that the functor x * y is commutative.

The following propositions are true:

- (52) If $j \neq \emptyset$ and $l \neq \emptyset$, then $\frac{i}{j} + \frac{k}{l} = \frac{i \cdot l + j \cdot k}{j \cdot l}$.
- (53) If $k \neq 0$, then $\frac{i}{k} + \frac{j}{k} = \frac{i+j}{k}$.

Let us observe that there exists an element of \mathbb{Q}_+ which is empty.

 \emptyset is an empty element of \mathbb{Q}_+ . Then **1** is a non empty ordinal element of \mathbb{Q}_+ .

Next we state a number of propositions:

- (54) x * 0 = 0.
- $(55) \quad \frac{i}{i} * \frac{k}{l} = \frac{i \cdot k}{i \cdot l}.$
- (56) x + 0 = x.
- (57) (x+y)+z=x+(y+z).
- (58) (x*y)*z = x*(y*z).
- (59) x * 1 = x.
- (60) If $x \neq \emptyset$, then there exists y such that x * y = 1.
- (61) If $x \neq \emptyset$, then there exists z such that y = x * z.
- (62) If $x \neq \emptyset$ and x * y = x * z, then y = z.
- (63) x*(y+z) = x*y+x*z.
- (64) For all ordinal elements i, j of \mathbb{Q}_+ holds i+j=i+j.
- (65) For all ordinal elements i, j of \mathbb{Q}_+ holds $i * j = i \cdot j$.
- (66) There exists y such that x = y + y.

Let x, y be elements of \mathbb{Q}_+ . The predicate $x \leq y$ is defined as follows:

(Def. 12) There exists an element z of \mathbb{Q}_+ such that y = x + z.

Let us note that the predicate $x \le y$ is connected. We introduce y < x as an antonym of $x \le y$. In the sequel r, s, t denote elements of \mathbb{Q}_+ .

The following propositions are true:

- (68)² It is not true that there exists a set y such that $\langle 0, y \rangle \in \mathbb{Q}_+$.
- (69) If s + t = r + t, then s = r.
- (70) If $r + s = \emptyset$, then $r = \emptyset$.
- (71) $0 \le s$.
- (72) If $s \le \emptyset$, then $s = \emptyset$.
- (73) If $r \le s$ and $s \le r$, then r = s.
- (74) If $r \le s$ and $s \le t$, then $r \le t$.
- (75) $r < s \text{ iff } r \le s \text{ and } r \ne s.$
- (76) If r < s and $s \le t$ or $r \le s$ and s < t, then r < t.
- (77) If r < s and s < t, then r < t.

² The proposition (67) has been removed.

- (78) If $x \in \omega$ and $x + y \in \omega$, then $y \in \omega$.
- (79) For every ordinal element *i* of \mathbb{Q}_+ such that i < x and x < i + 1 holds $x \notin \omega$.
- (80) If $t \neq \emptyset$, then there exists r such that r < t and $r \notin \omega$.
- (81) ${s: s < t} \in \mathbb{Q}_+ \text{ iff } t = \emptyset.$
- (82) Let A be a subset of \mathbb{Q}_+ . Suppose there exists t such that $t \in A$ and $t \neq \emptyset$ and for all r, s such that $r \in A$ and $s \leq r$ holds $s \in A$. Then there exist elements r_1 , r_2 , r_3 of \mathbb{Q}_+ such that $r_1 \in A$ and $r_2 \in A$ and $r_3 \in A$ and $r_1 \neq r_2$ and $r_2 \neq r_3$ and $r_3 \neq r_1$.
- (83) $s+t \le r+t \text{ iff } s \le r.$
- $(85)^3$ s < s + t.
- (86) If $r * s = \emptyset$, then $r = \emptyset$ or $s = \emptyset$.
- (87) If $r \le s * t$, then there exists an element t_0 of \mathbb{Q}_+ such that $r = s * t_0$ and $t_0 \le t$.
- (88) If $t \neq \emptyset$ and $s * t \leq r * t$, then $s \leq r$.
- (89) For all elements r_1 , r_2 , s_1 , s_2 of \mathbb{Q}_+ such that $r_1 + r_2 = s_1 + s_2$ holds $r_1 \leq s_1$ or $r_2 \leq s_2$.
- (90) If $s \le r$, then $s * t \le r * t$.
- (91) For all elements r_1 , r_2 , s_1 , s_2 of \mathbb{Q}_+ such that $r_1 * r_2 = s_1 * s_2$ holds $r_1 \le s_1$ or $r_2 \le s_2$.
- (92) r = 0 iff r + s = s.
- (93) For all elements s_1 , t_1 , s_2 , t_2 of \mathbb{Q}_+ such that $s_1 + t_1 = s_2 + t_2$ and $s_1 \le s_2$ holds $t_2 \le t_1$.
- (94) If $r \le s$ and $s \le r + t$, then there exists an element t_0 of \mathbb{Q}_+ such that $s = r + t_0$ and $t_0 \le t$.
- (95) If $r \le s + t$, then there exist elements s_0 , t_0 of \mathbb{Q}_+ such that $r = s_0 + t_0$ and $s_0 \le s$ and $t_0 \le t$.
- (96) If r < s and r < t, then there exists an element t_0 of \mathbb{Q}_+ such that $t_0 \le s$ and $t_0 \le t$ and $r < t_0$.
- (97) If $r \le s$ and $s \le t$ and $s \ne t$, then $r \ne t$.
- (98) If s < r + t and $t \ne \emptyset$, then there exist elements r_0 , t_0 of \mathbb{Q}_+ such that $s = r_0 + t_0$ and $t_0 \le r$ and $t_0 \le t$ and $t_0 \ne t$.
- (99) For every non empty subset A of \mathbb{Q}_+ such that $A \in \mathbb{Q}_+$ there exists s such that $s \in A$ and for every r such that $r \in A$ holds $r \leq s$.
- (100) There exists t such that r + t = s or s + t = r.
- (101) If r < s, then there exists t such that r < t and t < s.
- (102) There exists s such that r < s.
- (103) If $t \neq \emptyset$, then there exists s such that $s \in \omega$ and $r \leq s * t$.

The scheme *DisNat* deals with elements \mathcal{A} , \mathcal{B} , \mathcal{C} of \mathbb{Q}_+ and a unary predicate \mathcal{P} , and states that: There exists s such that $s \in \omega$ and $\mathcal{P}[s]$ and not $\mathcal{P}[s+\mathcal{B}]$ provided the parameters satisfy the following conditions:

- $\mathcal{B} = \mathbf{1}$,
- $\mathcal{A} = \emptyset$,
- $C \in \omega$,
- $\mathcal{P}[\mathcal{A}]$, and
- Not $\mathcal{P}[\mathcal{C}]$.

³ The proposition (84) has been removed.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
- [2] Grzegorz Bancerek. Sequences of ordinal numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [3] Grzegorz Bancerek. Ordinal arithmetics. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/ordinal3.html.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- $\textbf{[5]} \quad \textbf{Zinaida Trybulec. Properties of subsets. } \textit{Journal of Formalized Mathematics}, \textbf{1}, \textbf{1989}. \ \texttt{http://mizar.org/JFM/Vol1/subset_1.html}.$

Received March 7, 1998

Published January 2, 2004