Non-Negative Real Numbers. Part I¹

Andrzej Trybulec University of Białystok

MML Identifier: ARYTM_2.

WWW: http://mizar.org/JFM/Addenda/arytm_2.html

The articles [5], [4], [6], [1], [2], and [3] provide the notation and terminology for this paper.

In this paper r, s, t, x', y' denote elements of \mathbb{Q}_+ .

The subset DedekindCuts of $2^{\mathbb{Q}_+}$ is defined as follows:

(Def. 1) DedekindCuts = $\{A; A \text{ ranges over subsets of } \mathbb{Q}_+: r \in A \Rightarrow \bigwedge_s (s \leq r \Rightarrow s \in A) \land \bigvee_s (s \in A \land r < s)\} \setminus \{\mathbb{Q}_+\}.$

Let us mention that DedekindCuts is non empty.

The functor \mathbb{R}_+ is defined by:

(Def. 2)
$$\mathbb{R}_+ = (\mathbb{Q}_+ \cup \text{DedekindCuts}) \setminus \{\{s : s < t\} : t \neq \emptyset\}.$$

In the sequel x, y, z denote elements of \mathbb{R}_+ .

The following propositions are true:

- (1) $\mathbb{Q}_+ \subseteq \mathbb{R}_+$.
- (2) $\omega \subseteq \mathbb{R}_+$.

One can verify that \mathbb{R}_+ is non empty.

Let us consider x. The functor DedekindCut x yielding an element of DedekindCuts is defined by:

- (Def. 3)(i) There exists r such that x = r and DedekindCut $x = \{s : s < r\}$ if $x \in \mathbb{Q}_+$,
 - (ii) DedekindCut x = x, otherwise.

One can prove the following proposition

(3) It is not true that there exists a set y such that $\langle \emptyset, y \rangle \in \mathbb{R}_+$.

Let x be an element of DedekindCuts. The functor Glued x yields an element of \mathbb{R}_+ and is defined as follows:

- (Def. 4)(i) There exists r such that Glued x = r and for every s holds $s \in x$ iff s < r if there exists r such that for every s holds $s \in x$ iff s < r,
 - (ii) Glued x = x, otherwise.

Let x, y be elements of \mathbb{R}_+ . The predicate $x \leq y$ is defined by:

¹This work has been supported by KBN Grant 8 T11C 018 12.

(Def. 5)(i) There exist x', y' such that x = x' and y = y' and $x' \le y'$ if $x \in \mathbb{Q}_+$ and $y \in \mathbb{Q}_+$,

- (ii) $x \in y \text{ if } x \in \mathbb{Q}_+ \text{ and } y \notin \mathbb{Q}_+,$
- (iii) $y \notin x \text{ if } x \notin \mathbb{Q}_+ \text{ and } y \in \mathbb{Q}_+,$
- (iv) $x \subseteq y$, otherwise.

Let us note that the predicate $x \le y$ is connected. We introduce y < x as an antonym of $x \le y$.

Let A, B be elements of DedekindCuts. The functor A + B yielding an element of DedekindCuts is defined by:

(Def. 6)
$$A + B = \{r + s : r \in A \land s \in B\}.$$

Let us note that the functor A + B is commutative.

Let A, B be elements of DedekindCuts. The functor A * B yields an element of DedekindCuts and is defined by:

(Def. 7)
$$A * B = \{r * s : r \in A \land s \in B\}.$$

Let us notice that the functor A * B is commutative.

Let x, y be elements of \mathbb{R}_+ . The functor x + y yielding an element of \mathbb{R}_+ is defined by:

(Def. 8)
$$x+y=$$
 (i) x , if $y=\emptyset$, (ii) y , if $x=\emptyset$, Glued (DedekindCut $x+$ DedekindCut y), otherwise.

Let us notice that the functor x + y is commutative. The functor x * y yielding an element of \mathbb{R}_+ is defined by:

(Def. 9)
$$x * y = \text{Glued} (\text{DedekindCut } x * \text{DedekindCut } y).$$

Let us notice that the functor x * y is commutative.

One can prove the following propositions:

- (4) If x = 0, then x * y = 0.
- $(6)^1$ If $x + y = \emptyset$, then $x = \emptyset$.
- (7) x + (y + z) = (x + y) + z.
- (8) I_1 is \subseteq -linear, where $I_1 = \{A; A \text{ ranges over subsets of } \mathbb{Q}_+ : r \in A \Rightarrow \bigwedge_s (s \leq r \Rightarrow s \in A) \land \bigvee_s (s \in A \land r < s) \}.$
- (9) Let X, Y be subsets of \mathbb{R}_+ . Suppose there exists x such that $x \in X$ and there exists x such that $x \in Y$ and for all x, y such that $x \in X$ and $y \in Y$ holds $x \le y$. Then there exists z such that for all x, y such that $x \in X$ and $y \in Y$ holds $x \le z$ and $z \le y$.
- (10) If $x \le y$, then there exists z such that x + z = y.
- (11) There exists z such that x + z = y or y + z = x.
- (12) If x + y = x + z, then y = z.
- (13) x*(y*z) = (x*y)*z.
- (14) x*(y+z) = x*y+x*z.
- (15) If $x \neq \emptyset$, then there exists y such that x * y = 1.
- (16) If x = 1, then x * y = y.
- (17) If $x \in \omega$ and $y \in \omega$, then $y + x \in \omega$.

¹ The proposition (5) has been removed.

- (18) For every subset A of \mathbb{R}_+ such that $\emptyset \in A$ and for all x, y such that $x \in A$ and y = 1 holds $x + y \in A$ holds $\omega \subseteq A$.
- (19) For every x such that $x \in \omega$ and for every y holds $y \in x$ iff $y \in \omega$ and $y \neq x$ and $y \leq x$.
- (20) If x = y + z, then $z \le x$.
- (21) $\emptyset \in \mathbb{R}_+$ and $\mathbf{1} \in \mathbb{R}_+$.
- (22) If $x \in \mathbb{Q}_+$ and $y \in \mathbb{Q}_+$, then there exist x', y' such that x = x' and y = y' and x * y = x' * y'.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.
- [2] Grzegorz Bancerek. Sequences of ordinal numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/ordinal2.html.
- [3] Grzegorz Bancerek. Arithmetic of non negative rational numbers. Journal of Formalized Mathematics, Addenda, 1998. http://mizar.org/JFM/Addenda/arytm_3.html.
- [4] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [6] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received March 7, 1998

Published January 2, 2004