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The articlesl[5],[[4],[16], 1], [2], and [3] provide the notation and terminology for this paper.
In this paperr, s, t, X, y denote elements @}, .
The subset DedekindCuts 0f2is defined as follows:

(Def. 1) DedekindCuts- {A; Aranges over subsets@f,: r € A = Ag(s<r = se€A) A Vs (S€
ANT<I\{Qy}-

Let us mention that DedekindCuts is hon empty.
The functorR, is defined by:

(Def. 2) R, = (Q;UDedekindCuts\ {{s:s<t}:t#0}.

In the sequek, y, zdenote elements d& . .
The following propositions are true:

(1) Qi CR4.
(2) WCR,.

One can verify thaR , is non empty.
Let us considek. The functor DedekindCutyielding an element of DedekindCuts is defined

by:
(Def. 3)(i) There exists such tha = r and DedekindCut = {s:s<r} if xe Q,
(i) DedekindCutx = x, otherwise.

One can prove the following proposition
(3) Itis not true that there exists a setuch that{0, y) € R...

Let x be an element of DedekindCuts. The functor Glxadelds an element oR.. and is
defined as follows:

(Def. 4)(i) There exists such that Glued = r and for everys holdss € xiff s<r if there existy
such that for everg holdss € xiff s<r,

(i) Gluedx = x, otherwise.

Letx, y be elements oR .. The predicata <y is defined by:

1This work has been supported by KBN Grant 8 T11C 018 12.
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(Def. 5)(i) There exisK, y such thak =X andy =y andx <Yy if xe Q; andy € Q,,
(i) xeyifxeQ,andy¢Q.,
(i) y¢xifx¢ Q4 andy € Q4
(iv) xCy, otherwise.

Let us note that the predicate< y is connected. We introduge< x as an antonym of <.
Let A, B be elements of DedekindCuts. The functor B yielding an element of DedekindCuts
is defined by:

(Def.6) A+B={r+s:rc A A seB}.

Let us note that the funct@k+ B is commutative.
Let A, B be elements of DedekindCuts. The funcfot B yields an element of DedekindCuts
and is defined by:

(Def. 7) AxB={rxs:reA A se€B}.

Let us notice that the funct@d* B is commutative.
Letx, y be elements aR ;. The functorx+y yielding an element aR , is defined by:

i) X ify=0,
(Def. 8) x+y={ii) v, if x=0,
Glued(DedekindCuk+ DedekindCuy), otherwise.

Let us notice that the functor+y is commutative. The functorxy yielding an element oR . is
defined by:

(Def. 9) xxy= Glued(DedekindCuk DedekindCuy).

Let us notice that the functor«y is commutative.
One can prove the following propositions:

(4) Ifx=0,thenxxy=0.
6] If x+y=0,thenx=0.
(1) x+(y+2)=(x+y)+z

(8) I1is C-linear, wherel; = {A;Aranges over subsets @f,.: r € A = A (s<r = s¢e
A) AVs(SEAANT<S)}.

(9) LetX,Y be subsets dR,. Suppose there exiskssuch thatx € X and there existg such
thatx € Y and for allx, y such thax € X andy € Y holdsx <y. Then there existz such that
for all x, y such thatk € X andy € Y holdsx < zandz<.

(10) Ifx <Yy, then there existasuch thak+z=y.
(11) There existzsuch thak+z=yory+z=x.
(12) Ifx+y=x+ztheny=z

(13) xx(y*2) = (xxy)*z

(14) xx(y+2z) =xxy+Xx*zZ

(15) If x# 0, then there existg such thaix+y = 1.
(16) Ifx=1 thenxxy=Yy.

(A7) Ifxe wandy € w, theny+xe w.

1 The proposition (5) has been removed.
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(18) For every subsei of R, such thad € A and for allx, y such thaix € A andy = 1 holds
X+Yy € Aholdsw C A

(19) For every such thatx € w and for everyy holdsy € x iff y € wandy # x andy < x.
(20) Ifx=y+zthenz<x.

(21) 0eR;andleR,.

(22) Ifxe Q4 andy € Q., then there exist, y such thaix = X andy =y andxxy =X Y.
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