Introduction to Arithmetics¹

Andrzej Trybulec University of Białystok

MML Identifier: ARYTM_0.

WWW: http://mizar.org/JFM/Addenda/arytm_0.html

The articles [7], [5], [11], [12], [3], [4], [6], [1], [2], [8], [9], and [10] provide the notation and terminology for this paper.

1. MAIN BLOCK

One can prove the following propositions:

- (1) $\mathbb{R}_+ \subseteq \mathbb{R}$.
- (2) For every element x of \mathbb{R}_+ such that $x \neq \emptyset$ holds $\langle \emptyset, x \rangle \in \mathbb{R}$.
- (3) For every set y such that $(0, y) \in \mathbb{R}$ holds $y \neq 0$.
- (4) For all elements x, y of \mathbb{R}_+ holds $x y \in \mathbb{R}$.
- (5) \mathbb{R}_+ misses [: {0}, \mathbb{R}_+ :].

2. REAL NUMBERS

We now state three propositions:

- (6) For all elements x, y of \mathbb{R}_+ such that $x y = \emptyset$ holds x = y.
- (7) It is not true that there exist sets a, b such that $\mathbf{1} = \langle a, b \rangle$.
- (8) For all elements x, y, z of \mathbb{R}_+ such that $x \neq \emptyset$ and x * y = x * z holds y = z.

3. ??????? MOVED FROM XREAL_0 ?????????

Let x, y be elements of \mathbb{R} . The functor +(x, y) yielding an element of \mathbb{R} is defined as follows:

(Def. 2)¹(i) There exist elements x', y' of \mathbb{R}_+ such that x = x' and y = y' and +(x,y) = x' + y' if $x \in \mathbb{R}_+$ and $y \in \mathbb{R}_+$,

- (ii) there exist elements x', y' of \mathbb{R}_+ such that x = x' and $y = \langle 0, y' \rangle$ and +(x,y) = x' y' if $x \in \mathbb{R}_+$ and $y \in [:\{0\}, \mathbb{R}_+:]$,
- (iii) there exist elements x', y' of \mathbb{R}_+ such that $x = \langle 0, x' \rangle$ and y = y' and +(x,y) = y' x' if $y \in \mathbb{R}_+$ and $x \in [:\{0\}, \mathbb{R}_+:]$,

1

¹This work has been supported by KBN Grant 8 T11C 018 12.

¹ The definition (Def. 1) has been removed.

(iv) there exist elements x', y' of \mathbb{R}_+ such that $x = \langle 0, x' \rangle$ and $y = \langle 0, y' \rangle$ and $+(x,y) = \langle 0, x' + y' \rangle$, otherwise.

Let us notice that the functor +(x,y) is commutative. The functor $\cdot(x,y)$ yields an element of \mathbb{R} and is defined as follows:

- (Def. 3)(i) There exist elements x', y' of \mathbb{R}_+ such that x = x' and y = y' and $\cdot (x, y) = x' * y'$ if $x \in \mathbb{R}_+$ and $y \in \mathbb{R}_+$,
 - (ii) there exist elements x', y' of \mathbb{R}_+ such that x = x' and $y = \langle 0, y' \rangle$ and $\langle (x, y) = \langle 0, x' * y' \rangle$ if $x \in \mathbb{R}_+$ and $y \in [:\{0\}, \mathbb{R}_+:]$ and $x \neq 0$,
 - (iii) there exist elements x', y' of \mathbb{R}_+ such that $x = \langle 0, x' \rangle$ and y = y' and $\cdot (x, y) = \langle 0, y' * x' \rangle$ if $y \in \mathbb{R}_+$ and $x \in [:\{0\}, \mathbb{R}_+:]$ and $y \neq 0$,
 - (iv) there exist elements x', y' of \mathbb{R}_+ such that $x = \langle 0, x' \rangle$ and $y = \langle 0, y' \rangle$ and (x, y) = y' * x' if $x \in [:\{0\}, \mathbb{R}_+:]$ and $y \in [:\{0\}, \mathbb{R}_+:]$,
 - (v) $\cdot (x, y) = 0$, otherwise.

Let us note that the functor $\cdot(x, y)$ is commutative.

In the sequel x, y denote elements of \mathbb{R} .

Let *x* be an element of \mathbb{R} . The functor ${}^{op}x$ yields an element of \mathbb{R} and is defined as follows:

(Def. 4)
$$+(x, {}^{op}x) = 0.$$

Let us note that the functor ${}^{op}x$ is involutive. The functor ${}^{inv}x$ yielding an element of $\mathbb R$ is defined by:

(Def. 5)(i)
$$\cdot (x, \text{inv } x) = \mathbf{1} \text{ if } x \neq 0,$$

(ii) inv x = 0, otherwise.

Let us notice that the functor inv x is involutive.

4. Definition of the Set of All Complex Numbers

In the sequel a, b denote elements of \mathbb{R} .

We now state the proposition

$$(10)^2 \quad [0 \longmapsto a, \mathbf{1} \longmapsto b] \notin \mathbb{R}.$$

Let x, y be elements of \mathbb{R} . The functor x + yi yielding an element of \mathbb{C} is defined as follows:

(Def. 7)³
$$x + yi = \begin{cases} i & x, \text{ if } y = 0, \\ [0 \longmapsto x, \mathbf{1} \longmapsto y], \text{ otherwise.} \end{cases}$$

We now state two propositions:

- (11) For every element c of \mathbb{C} there exist elements r, s of \mathbb{R} such that c = r + si.
- (12) For all elements x_1, x_2, y_1, y_2 of \mathbb{R} such that $x_1 + x_2i = y_1 + y_2i$ holds $x_1 = y_1$ and $x_2 = y_2$.

Next we state a number of propositions:

- (13) For all elements x, o of \mathbb{R} such that o = 0 holds +(x, o) = x.
- (14) For all elements x, o of \mathbb{R} such that o = 0 holds $\cdot (x, o) = 0$.
- (15) For all elements x, y, z of \mathbb{R} holds $\cdot (x, \cdot (y, z)) = \cdot (\cdot (x, y), z)$.
- (16) For all elements x, y, z of \mathbb{R} holds $\cdot (x, +(y, z)) = +(\cdot (x, y), \cdot (x, z))$.

² The proposition (9) has been removed.

³ The definition (Def. 6) has been removed.

- (17) For all elements x, y of \mathbb{R} holds $\cdot ({}^{op}x, y) = {}^{op} \cdot (x, y)$.
- (18) For every element x of \mathbb{R} holds $\cdot(x,x) \in \mathbb{R}_+$.
- (19) For all x, y such that $+(\cdot(x,x),\cdot(y,y)) = 0$ holds x = 0.
- (20) For all elements x, y, z of \mathbb{R} such that $x \neq 0$ and $\cdot(x,y) = 1$ and $\cdot(x,z) = 1$ holds y = z.
- (21) For all x, y such that y = 1 holds $\cdot(x, y) = x$.
- (22) For all x, y such that $y \neq 0$ holds $\cdot (\cdot (x, y), \text{inv } y) = x$.
- (23) For all x, y such that (x, y) = 0 holds x = 0 or y = 0.
- (24) For all x, y holds $inv \cdot (x, y) = \cdot (inv x, inv y)$.
- (25) For all elements x, y, z of \mathbb{R} holds +(x,+(y,z)) = +(+(x,y),z).
- (26) If $x + yi \in \mathbb{R}$, then y = 0.
- (27) For all elements x, y of \mathbb{R} holds $^{op}+(x,y)=+(^{op}x,^{op}y)$.

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [2] Grzegorz Bancerek. Arithmetic of non negative rational numbers. Journal of Formalized Mathematics, Addenda, 1998. http://mizar.org/JFM/Addenda/arytm_3.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct 4.html.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [8] Andrzej Trybulec. Non negative real numbers. Part I. Journal of Formalized Mathematics, Addenda, 1998. http://mizar.org/JFM/Addenda/arytm_2.html.
- [9] Andrzej Trybulec. Non negative real numbers. Part II. Journal of Formalized Mathematics, Addenda, 1998. http://mizar.org/ Addenda/arytm_1.html.
- [10] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [11] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [12] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received January 9, 2003

Published January 2, 2004