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Summary. We present a formalization of the seminal paper by W. W. Armstrohg [1]
on functional dependencies in relational data bases. The paper is formalized in its entirety
including examples and applications. The formalization was done with a routine effort albeit
some new notions were defined which simplified formulation of some theorems and proofs.
The definitive reference to the theory of relational databaséslis [16], where saturated sets
are called closed sets. Armstrong’s “axioms” for functional dependencies are still widely
taught at all levels of database design, see for instanc¢e [14].

MML Identifier: ARMSTRNG.

WWW: http://mizar.org/JEM/Volld/armstrng.html

The articles[[2P],[[9],[120],[[1R],[[26],[130],.133], [31]/129] 18], 125] [ 13]/ [11] 161/ 1271 123]/ 14],
[24], [15], [21], 121, [5], [32], [7], [1q], [18], [17], [28], [20], and[[13] provide the notation and
terminology for this paper.

1. PRELIMINARIES
The following proposition is true

(1) LetBbe aset. Suppodeis N-closed. LeiX be a set an& be a finite family of subsets of
X. If X € BandSC B, then Interse¢t) < B.

Let us observe that there exists a binary relation which is reflexive, antisymmetric, transitive,
and non empty.
Next we state the proposition

(2) LetRbe an antisymmetric transitive non empty binary relation drzk a finite subset of
fieldR. If X # 0, then there exists an elementXfwhich is maximal w.r.tX, R.

Let X be a set and l&R be a binary relation. The functor MaximalX) yields a subset oX
and is defined by:

(Def. 1) For every set holdsx € Maximals(X) iff xis maximal w.r.t.X, R
Letx, X be sets. We say thatis N-irreducible inX if and only if:
(Def. 2) xe X and for all setz, y such thaz € X andy € X andx=zNy holdsx=zorx=y.

We introducex is N-reducible inX as an antonym aof is N-irreducible inX.
Let X be a non empty set. The functarlrreduciblegX) yielding a subset oX is defined by:

1This work has been supported by NSERC Grant OGP9207 and Shinshu Endowment Fund.
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(Def. 3) For every set holdsx € N-Irreducible$X) iff x is N-irreducible inX.

The schemé&inintersectdeals with a non empty finite sétand a unary predicat®, and states

that:
For every sek such thak € 4 holds?[x|

provided the following requirements are met:
e For every sek such thak is N-irreducible in4 holds®[x], and

e For all set, y such thai € 4 andy € 4 and®?[x] andPy] holdsP[xNy].
Next we state the proposition
(3) LetX be a non empty finite set ancbe an element aX. Then there exists a non empty
subsetA of X such thaix = (A and for every set such thas € A holdssis N-irreducible in
X.

Let X be a set and IéB be a family of subsets of. We say thaB is (B1) if and only if:

(Def. 4) X € B.

Let B be a set. We introdud® is (B2) as a synonym a8 is N-closed.
Let X be a set. Note that there exists a family of subse$ which is (B1) and (B2).

Next we state the proposition

(4) LetX be a set an@ be a non empty family of subsets ¥f SupposeB is N-closed. Let
x be an element 0B. Supposexis N-irreducible inB andx # X. Let Sbe a finite family of

subsets oK. If SC B andx = IntersectS), thenx € S.

Let X, D be non empty sets and letbe a natural number. Observe that every function f6om

into D" is finite sequence yielding.
Let f be a finite sequence yielding function andxdie a set. One can check thidk) is finite

sequence-like.
Letn be a natural number and Ipf g ben-tuples ofBoolean The functorp A q yields an-tuple

of Booleanand is defined as follows:
(Def. 5) For every satsuch thai € Segn holds(pAQ)(i) = pi A G-

Let us observe that the functpr\ q is commutative.

We now state four propositions:

(5) Forevery natural numberand for everyn-tuple p of Boolearholds(n-BinarySequend®)) A
p = n-BinarySequend®).

(6) Forevery natural numberand for evenn-tuple p of Boolearholds—(n-BinarySequend®)) A
p=p.

(7) For every natural numbéholds(i + 1) -BinarySequend@') = (0,...,0) ™ (1).

\Y/
|

(8) Let n, i be natural numbers. Suppose< n. Then (n-BinarySequend®))(i +
1) = 1 and for every natural numbej such thatj € Segn and j # i + 1 holds
(n-BinarySequend?'))(j) = 0.

2. THE RELATIONAL MODEL OF DATA

We introduce DB-relationships which are systems

( attributes, domains, a relationship
where the attributes constitute a finite non empty set, the domains constitute a non-empty many

sorted set indexed by the attributes, and the relationship is a suljge¢hefdomains
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3. DEPENDENCYSTRUCTURES

Let X be a set. A relation on subsetsXfis a binary relation on’2 A dependency set of is a
binary relation on 2.
Let X be a set. Observe that there exists a dependency Xewvbfch is non empty and finite.
Let X be a set. The functor dependen¢ksyields a dependency set ¥fand is defined by:

(Def. 7| dependencigX) = [ 2%, 2X].

Let X be a set. Note that dependen¢ksis non empty. A dependency &fis an element of
dependenci€X).

Let X be a set and It be a non empty dependency seiXofWe see that the element Bfis a
dependency oK.

The following three propositions are true:

(9) For all setX, x holdsx € dependencigX) iff there exist subsets, b of X such thak = (a,
b).

(10) For all set, x and for every dependency getf X such thak € F there exist subsets
b of X such thak = (a, b).

(11) For every seX and for every dependency getof X holds every subset df is a depen-
dency set oK.

Let Rbe a DB-relationship and |, B be subsets of the attributesRf The predicat® —r B
is defined as follows:

(Def. 8) For all element$, g of the relationship oR such thatf [A= g[A holdsf |B = g|B.

We introduce A, B) holds inR as a synonym o\ —r B.
Let R be a DB-relationship. The functor dependency-stru¢Rirgields a dependency set of
the attributes oR and is defined by:

(Def. 9) dependency-structyi®) = {(A, B); A ranges over subsets of the attributefRpB ranges
over subsets of the attributesRf A —g B}.

The following proposition is true

(12) For every DB-relationshiR and for all subset#, B of the attributes oR holds (A, B) €
dependency-structufi) iff A—g B.

4. FULL FAMILIES OF DEPENDENCIES

Let X be a set and |e®, Q be dependencies of. The predicat® > Q is defined as follows:
(Def. 10) P C QqandQ; C P,.

Let us note that the predica®e> Q is reflexive. We introduc® < P andP is at least as informative
asQ as synonyms dP > Q.
Next we state two propositions:

(13) For every seX and for all dependencidy Q of X such thaP < Q andQ < P holdsP = Q.

(14) For every seK and for all dependencid®, Q, Sof X such thatP < Q andQ < Sholds
P<S

Let X be a set and leA, B be subsets oK. Then(A, B) is a dependency of.
The following proposition is true

1 The definition (Def. 6) has been removed.
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(15) For every seX and for all subsets, B, A', B of X holds(A, B) > (A', B') iff AC A’ and
B' CB.

Let X be a set. The functor Dependencies-Olgields a binary relation on dependencgés
and is defined by:

(Def. 11) Dependencies-Ordér= {(P, Q); P ranges over dependenciesXafQ ranges over depen-
dencies ofX: P < Q}.

We now state four propositions:

(16) For all setsX, x holdsx € Dependencies-Ord#r iff there exist dependencidy Q of X
such thak = (P, Q) andP < Q.

(17) For every seX holds dom Dependencies-Ordet= [ 2%, 2X .
(18) For every seX holds rng Dependencies-Ordee= [ 2%, 2X].
(19) For every seX holds field Dependencies-Ordéer= [ 2%, 2X .

Let X be a set. Note that Dependencies-Olés non empty and Dependencies-Ordes
total, reflexive, antisymmetric, and transitive.
Let X be a set and |gt be a dependency set ¥f We say thaF is (F1) if and only if:

(Def. 12) For every subsétof X holds{A, A) € F.

We introduceF is (DC2) as a synonym df is (F1). We introducd- is (F2) andF is (DC1) as
synonyms of is transitive.
Next we state the proposition

(20) LetX be a set ané be a dependency set Bf ThenF is (F2) if and only if for all subsets
A, B, C of X such that{A, B) € F and(B, C) € F holds({A,C) € F.

Let X be a set and It be a dependency set ¥f We say thaF is (F3) if and only if:

(Def. 13) For all subsets, B, A, B' of X such that(A, B) € F and (A, B) > (A’, B') holds (A',
B') e F.
We say thaf is (F4) if and only if:

(Def. 14) For all subsets, B, A, B’ of X such that{(A B) € F and (A, B') € F holds (AUA,
BUB') e F.

Next we state the proposition
(21) For every seX holds dependenciéx) is (F1), (F2), (F3), and (F4).

Let X be a set. One can verify that there exists a dependency Xewbich is (F1), (F2), (F3),
(F4), and non empty.
Let X be a set and |k be a dependency set ¥f We say thafF is full family if and only if:

(Def. 15) F is (F1), (F2), (F3), and (F4).

Let X be a set. Observe that there exists a dependency Xetvbich is full family.
Let X be a set. A Full family oK is a full family dependency set of.
Next we state the proposition

(22) For every finite seX holds every dependency setXfs finite.

Let X be a finite set. Note that there exists a Full familyXofvhich is finite and every depen-
dency set oK is finite.

Let X be a set. Note that every dependency seé afich is full family is also (F1), (F2), (F3),
and (F4) and every dependency seKafhich is (F1), (F2), (F3), and (F4) is also full family.

Let X be a set and |t be a dependency set ¥f We say thaF is (DC3) if and only if:
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(Def. 16) For all subseta, B of X such thaB C Aholds{A, B) € F.

Let X be a set. Observe that every dependency s¥twlich is (F1) and (F3) is also (DC3) and
every dependency set ¥fwhich is (DC3) and (F2) is also (F1) and (F3).

Let X be a set. One can verify that there exists a dependency 3etdifich is (DC3), (F2),
(F4), and non empty.

The following propositions are true:

(23) For every seX and for every dependency detof X such that- is (DC3) and (F2) holds
F is (F1) and (F3).

(24) For every seX and for every dependency detof X such thaf is (F1) and (F3) hold&
is (DC3).

Let X be a set. One can verify that every dependency s¥twhich is (F1) is also non empty.
Next we state two propositions:

(25) For every DB-relationshiR holds dependency-structF® is full family.
(26) LetX be a set an& be a subset oK. Then{(A, B); A ranges over subsets ¥f B ranges
over subsets ok: K C A v B C A} is a Full family of X.

5. MAXIMAL ELEMENTS OFFULL FAMILIES

Let X be a set and |gt be a dependency set Bf The functor Maximal@~) yields a dependency
set ofX and is defined as follows:

We now state the proposition
(27) For every seX and for every dependency gef X holds Maximal$F) C F.

Let X be a set, leF be a dependency set ¥f and letx, y be sets. The predicate ¢ y is
defined by:

(Def. 18) {x,y) € MaximalgF).

The following propositions are true:

(28) LetX be a finite setP be a dependency of, andF be a dependency set & If P € F,
then there exist subsets B of X such thafA, B) € MaximalgF) and(A, B) > P.

(29) LetX be a setF be a dependency set ¥f andA, B be subsets ok. ThenA ¢ Bif and
only if the following conditions are satisfied:

() (A/B)eF,and

(i) itis not true that there exist subsei§ B of X such thafA’, B') € F butA# A’ or B#£ B’
but (A, B) < (A, B').

Let X be a set and lé¥l be a dependency set ¥f We say thaM is (M1) if and only if:

(Def. 19) For every subsétof X there exist subse®®’, B’ of X such that{A’, B') > (A, A) and(A,
B) e M.

We say thai is (M2) if and only if:

(Def. 20) For all subsets, B, A, B’ of X such that{A, B) € M and(A’, B’) ¢ M and (A, B) > (A,
B') holdsA= A’ andB=PB'.

We say thaM is (M3) if and only if:
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(Def. 21) For all subsets, B, A, B’ of X such that{A, B) € M and{A’, B’) € M andA’ C B holds
B' CB.

The following propositions are true:

(30) For every finite non empty st and for every Full familyF of X holds Maximal$F) is
(M1), (M2), and (M3).

(31) LetX be afinite set ant¥, F be dependency sets ¥f Suppose that
i Mis(M1), (M2), and (M3), and
(i) F={(A B);Aranges over subsets ¥f B ranges over subsets ¥f \/x g/ supset otx ({A’,
B') > (A B) A (A,B)eM)}.

ThenM = Maximal{F) andF is full family and for every Full familyG of X such that
M = MaximalgG) holdsG = F.

Let X be a non empty finite set and [Etbe a Full family ofX. Observe that Maxima(F) is
non empty.
The following proposition is true

(32) LetX be a finite setF be a dependency set &f, andK be a subset oK. Suppose
F = {(A, B); Aranges over subsets ¥f B ranges over subsets ¥f K C A v BC A}. Then
{{K, X} }U{(A, A); Aranges over subsets ¥f K ¢ A} = MaximalgF).

6. SATURATED SUBSETS OFATTRIBUTES

Let X be a set and leff be a dependency set ¥ The functor saturated-subs@ts yielding a
family of subsets oK is defined by:

(Def. 22) saturated-subséfs) = {B; B ranges over subsets Bf \/p.upset oix A F B}.

We introduce closed-attribute-subdel as a synonym of saturated-sub$Ets

Let X be a set and ldt be a finite dependency setXf One can verify that saturated-sub$Ets
is finite.

Next we state two propositions:

(33) LetX, xbe sets an& be a dependency set¥f Thenx € saturated-subséts) if and only
if there exist subset8, A of X such thatk= B andA "¢ B.

(34) For every finite non empty seX and for every Full family F of X holds
saturated-subs€fs) is (B1) and (B2).

Let X be a set and leB be a set. The functdiB)-enclosed irX yielding a dependency set Bf
is defined as follows:

(Def. 23) (B)-enclosed inX = {(a, b);a ranges over subsets o, b ranges over subsets o:
/\c:set(ce BAraCc = bgc)}.

Next we state three propositions:

(35) For every seX and for every familyB of subsets oK and for every dependency detof
X holds(B)-enclosed irX is full family.

(36) For every finite non empty set and for every familyB of subsets ofX holds B C
saturated-subse{®B)-enclosed irX).

(37) LetX be a finite non empty set aBlbe a family of subsets of. SupposeB is (B1) and
(B2). ThenB = saturated-subsé€{8)-enclosed irX) and for every Full familyG of X such
thatB = saturated-subsé(s) holdsG = (B)-enclosed irX.
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Let X be a set and Ik be a dependency set ¥f The functor(F )-enclosure yields a family of
subsets oK and is defined by:

(Def. 24) (F)-enclosure= {b;b ranges over subsets ¥f Aap:supsetotx ((AB) €EF A ACDh =
BCb)}.

One can prove the following two propositions:

(38) For every finite non empty s¥tand for every dependency geof X holds(F)-enclosure
is (B1) and (B2).

(39) Let X be a finite non empty set anB be a dependency set . ThenF C
((F)-enclosurg-enclosed inX and for every dependency s8tof X such thatc C G and
G is full family holds ((F)-enclosurg-enclosed irX C G.

Let X be a finite non empty set and lete a dependency set¥f The functor dependency-clos(Fe
yielding a Full family ofX is defined as follows:

(Def. 25) F C dependency-closufE) and for every dependency 8tof X such that C G andG
is full family holds dependency-closuie) C G.

The following propositions are true:

(40) For every finite non empty seX and for every dependency sé& of X holds
dependency-closufg) = ((F)-enclosurg-enclosed irX.

(41) LetX be a setK be a subset ok, andB be a family of subsets of. If B= {X} U{A;A
ranges over subsets ¥f K Z A}, thenB is (B1) and (B2).

(42) LetX be a finite non empty seE be a dependency set &f, andK be a subset oX.
Supposé= = {(A, B); Aranges over subsets ¥f B ranges over subsets ¥t K CA v BC
A}. Then{X} U{B;B ranges over subsets ¥f K Z B} = saturated-subs«fs).

(43) LetX be a finite setF be a dependency set &f, andK be a subset oK. Suppose
F = {(A, B); Aranges over subsets ¥f B ranges over subsets ¥f K C A v BC A}. Then
{X}U{B;Branges over subsets ¥f K Z B} = saturated-subs€fs).

Let X, G be sets and |éB be a family of subsets of. We say thaG is generator set d if and
only if:

(Def. 26) G C B andB = {IntersectS); Sranges over families of subsetsXf SC G}.

One can prove the following four propositions:

(44) For every finite non empty s&t holds every familyG of subsets oKX is generator set of
saturated-subse($5)-enclosed irX).

(45) LetX be a finite non empty set afidbe a Full family ofX. Then there exists a familg of
subsets oK such thatG is generator set of saturated-sub&ejsandF = (G)-enclosed irX.

(46) LetX be a set an@® be a non empty finite family of subsets Xf If B is (B1) and (B2),
thenn-Irreducible¢B) is generator set d.

(47) LetX, G be sets an® be a non empty finite family of subsetsXf If B is (B1) and (B2)
andG is generator set d8, thenn-Irreducible¢B) C GU {X}.

7. JUSTIFICATION OF THEAXIOMS

We now state the proposition

(48) LetX be a non empty finite set arfed be a Full family of X. Then there exists a DB-
relationshipR such that the attributes d&® = X and for every elemera of X holds (the
domains ofR)(a) = Z andF = dependency-structu(ie).
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8. STRUCTURE OF THEFAMILY OF CANDIDATE KEYS

Let X be a set and Idt be a dependency set Bf The functor candidate-ke{s) yields a family
of subsets oK and is defined by:

(Def. 27) candidate-keyB ) = {A; Aranges over subsets ¥f (A, X) € Maximal{F)}.

We now state the proposition

(49) LetX be a finite setF be a dependency set &f, andK be a subset oK. Suppose
F = {(A, B); Aranges over subsets ¥f B ranges over subsets ¥f K C A v BC A}. Then
candidate-key$ ) = {K}.

Let X be a set. We introducké is (C1) as an antonym of is empty.
Let X be a set. We say that is without proper subsets if and only if:

(Def. 28) For all setg, y such thaik € X andy € X andx C y holdsx =Y.

We introduceX is (C2) as a synonym of is without proper subsets.
One can prove the following four propositions:

(50) For every DB-relationshiR holds candidate-keydependency-structuf®)) is (C1) and
(C2).

(51) LetX be a finite set an@ be a family of subsets of. If C is (C1) and (C2), then there
exists a Full familyF of X such thaC = candidate-keys ).

(52) LetX be a finite setC be a family of subsets ok, andB be a set. Suppoge is (C1)
and (C2) andB = {b;b ranges over subsets Bf Ax:supsetoix (K €C = K Z b)}. Then
C = candidate-key$B)-enclosed irX).

(53) LetX be a non empty finite set ar@l be a family of subsets ok. SupposeC is (C1)
and (C2). Then there exists a DB-relationsRijguch that the attributes &&= X andC =
candidate-key@ependency-structuf®)).

9. APPLICATIONS

Let X be a set and |t be a dependency set ¥f We say thaF is (DC4) if and only if:
(Def. 29) For all subsets, B, C of X such tha{A, B) € F and(A, C) € F holds{A, BUC) € F.
We say thaf is (DC5) if and only if:

(Def. 30) For all subset, B, C, D of X such that{A, B) € F and (BUC, D) € F holds (AUC,
D) e F.

We say thaf is (DC6) if and only if:
(Def. 31) For all subsets, B, C of X such that{A, B) € F holds(AUC, B) € F.

One can prove the following three propositions:

(54) LetX be a set an# be a dependency set ¥f ThenF is (F1), (F2), (F3), and (F4) if and
only if F is (F2), (DC3), and (F4).

(55) LetX be a set an& be a dependency set ¥f ThenF is (F1), (F2), (F3), and (F4) if and
only if F is (DC1), (DC3), and (DC4).

(56) LetX be a set an# be a dependency set ¥f ThenF is (F1), (F2), (F3), and (F4) if and
only if F is (DC2), (DC5), and (DC6).

Let X be a set and Iét be a dependency set ¥f The functor characteris{iE) is defined by:
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(Def. 32) characterist{€ ) = {A;Aranges over subsets ¥ /. supset oix ({8, D) EF A @aCA A
bZ A}

One can prove the following propositions:

(57) LetX, Abe sets ané be a dependency set ¥f Supposeé € characteristi@F). ThenAis
a subset oK and there exist subsetsb of X such that(a, b) € F andaC Aandb Z A.

(58) LetX be a setAbe a subset oX, andF be a dependency set Xf If there exist subsets,
b of X such thafa, b) € F anda C Aandb Z A, thenA € characteristi(F).
(59) LetX be afinite non empty set atlbe a dependency set ¥f Then

(i) for all subsetsA, B of X holds{A, B} € dependency-closu(E) iff for every subset of X
such thatA C aandB ¢ a holdsa € characteristi(F ), and

(i) saturated-subsefsependency-closufg)) = 2X \ characteristitF ).
(60) For every finite non empty se and for all dependency set§, G of

X such that characteristie) = characteristigG) holds dependency-closyfe) =
dependency-closufé).

(61) For every non empty finite seX and for every dependency sé& of X holds
characteristig-) = characteristitdependency-closufE)).

Let A be a set, leK be a set, and Ieff be a dependency set 8f We say thaK is prime
implicant of F with no complemented variables if and only if the conditions (Def. 33) are satisfied.
(Def. 33)()) For every subsetof A such thaK C aanda # A holdsa € characteristig-), and
(i) for every setk such thak C K there exists a subsatof A such thak C a anda # A and
a ¢ characteristi(F ).

The following proposition is true

(62) LetX be afinite non empty sef, be a dependency set ¥f andK be a subset ok. Then
K € candidate-keyslependency-closufE)) if and only if K is prime implicant ofr with no
complemented variables.
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