Projective Spaces

Wojciech Leończuk Warsaw University Białystok Krzysztof Prażmowski Warsaw University Białystok

Summary. In the class of all collinearity structures a subclass of (dimension free) projective spaces, defined by means of a suitable axiom system, is singled out. Whenever a real vector space V is at least 3-dimensional, the structure ProjectiveSpace(V) is a projective space in the above meaning. Some narrower classes of projective spaces are defined: Fano projective spaces, projective planes, and Fano projective planes. For any of the above classes an explicit axiom system is given, as well as an analytical example. There is also a construction a of 3-dimensional and a 4-dimensional real vector space; these are needed to show appropriate examples of projective spaces.

MML Identifier: ANPROJ_2.

WWW: http://mizar.org/JFM/Vol2/anproj_2.html

The articles [8], [12], [10], [2], [3], [1], [7], [11], [9], [5], [6], and [4] provide the notation and terminology for this paper.

For simplicity, we follow the rules: V denotes a real linear space, o, p, q, r, s, u, v, w, y, u_1 , v_1 , w_1 , u_2 , v_2 , w_2 denote elements of V, a, b, c, d, a_1 , b_1 , c_1 , a_2 , c_2 denote real numbers, and z denotes a set.

Next we state several propositions:

- (1) Suppose that for all a, b, c such that $a \cdot u + b \cdot v + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0. Then
- (i) u is a proper vector,
- (ii) v is a proper vector,
- (iii) w is a proper vector,
- (iv) u, v and w are not lineary dependent, and
- (v) u and v are not proportional.
- (2) Let given u, v, u_1 , v_1 . Suppose that for all a, b, a_1 , b_1 such that $a \cdot u + b \cdot v + a_1 \cdot u_1 + b_1 \cdot v_1 = 0_V$ holds a = 0 and b = 0 and $a_1 = 0$ and $b_1 = 0$. Then u is a proper vector and v is a proper vector and v are not proportional and v are not lineary dependent and v are not lineary dependent.
- (3) Suppose for every w there exist a, b, c such that $w = a \cdot p + b \cdot q + c \cdot r$ and for all a, b, c such that $a \cdot p + b \cdot q + c \cdot r = 0_V$ holds a = 0 and b = 0 and c = 0. Let given u, u_1 . Then there exists y such that p, q and y are lineary dependent and u, u_1 and y are lineary dependent and y is a proper vector.

- (4) Suppose that
- (i) for every w there exist a, b, c, d such that $w = a \cdot p + b \cdot q + c \cdot r + d \cdot s$, and
- (ii) for all a, b, c, d such that $a \cdot p + b \cdot q + c \cdot r + d \cdot s = 0_V$ holds a = 0 and b = 0 and c = 0 and d = 0.

Let given u, v. Suppose u is a proper vector and v is a proper vector. Then there exist y, w such that

- (iii) u, v and w are lineary dependent,
- (iv) q, r and y are lineary dependent,
- (v) p, w and y are lineary dependent,
- (vi) y is a proper vector, and
- (vii) w is a proper vector.
- (5) Suppose that for all a, b, a_1 , b_1 such that $a \cdot u + b \cdot v + a_1 \cdot u_1 + b_1 \cdot v_1 = 0_V$ holds a = 0 and b = 0 and $a_1 = 0$ and $b_1 = 0$. Then there does not exist y such that y is a proper vector and u, v and y are lineary dependent and u_1 , v_1 and y are lineary dependent.

Let us consider V, u, v, w. We say that u, v and w are proper vectors if and only if:

(Def. 1) u is a proper vector and v is a proper vector and w is a proper vector.

Let us consider V, u, v, w, u_1 , v_1 , w_1 . We say that u, v, w, u_1 , v_1 , and w_1 lie on a triangle if and only if the conditions (Def. 2) are satisfied.

- (Def. 2)(i) u, v and w_1 are lineary dependent,
 - (ii) u, w and v_1 are lineary dependent, and
 - (iii) v, w and u_1 are lineary dependent.

Let us consider V, o, u, v, w, u_2 , v_2 , w_2 . We say that o, u, v, w, u_2 , v_2 , and w_2 are perspective if and only if the conditions (Def. 3) are satisfied.

- (Def. 3)(i) o, u and u_2 are lineary dependent,
 - (ii) o, v and v_2 are lineary dependent, and
 - (iii) o, w and w_2 are lineary dependent.

Next we state three propositions:

- (6) Suppose that
- (i) o, u and u_2 are lineary dependent,
- (ii) o and u are not proportional,
- (iii) o and u_2 are not proportional,
- (iv) u and u_2 are not proportional, and
- (v) o, u and u_2 are proper vectors.

Then there exist a_1 , b_1 such that $b_1 \cdot u_2 = o + a_1 \cdot u$ and $a_1 \neq 0$ and $b_1 \neq 0$ and there exist a_2 , a_2 such that $a_2 = a_2 \cdot v + a_2 \cdot u$ and $a_2 \neq 0$.

- (7) Suppose p, q and r are lineary dependent and p and q are not proportional and p, q and r are proper vectors. Then there exist a, b such that $r = a \cdot p + b \cdot q$.
- (8) Suppose that o is a proper vector and u, v and w are proper vectors and u_2 , v_2 and w_2 are proper vectors and u_1 , v_1 and w_1 are proper vectors and o, u, v, w, u_2 , v_2 , and w_2 are perspective and o and u_2 are not proportional and o and v_2 are not proportional and o and v_3 are not proportional and o and o and o are not proportional and o and o are not proportional and o and o are not lineary dependent and o, o and o are not lineary dependent and o, o and o are not lineary dependent and o, o and o are not lineary dependent and o, o and o are not lineary dependent and o, o and o are not lineary dependent and o, o and o are not lineary dependent and o, o and o are lineary dependent.

Let us consider V, o, u, v, w, u_2 , v_2 , w_2 . We say that o, u, v, w, u_2 , v_2 , and w_2 lie on an angle if and only if the conditions (Def. 4) are satisfied.

- (Def. 4)(i) o, u and u_2 are not lineary dependent,
 - (ii) o, u and v are lineary dependent,
 - (iii) o, u and w are lineary dependent,
 - (iv) o, u_2 and v_2 are lineary dependent, and
 - (v) o, u_2 and w_2 are lineary dependent.

Let us consider V, o, u, v, w, u_2 , v_2 , w_2 . We say that o, u, v, w, u_2 , v_2 , w_2 are half-mutually not proportional if and only if the conditions (Def. 5) are satisfied.

(Def. 5) o and v are not proportional and o and w are not proportional and o and v_2 are not proportional and o and o and o and o and o and o are not proportional and o and o and o are not proportional and o and o are not proportional and o and o are not proportional and o are not proportional and o and o are not proportional and o and o and o are not proportional and o and o are not proportional and o and o are not proportional and o and o and o are not proportional and o and o are not proportional and o and o are not proportional and o and o and o are not proportional and o and o are not proportional and o and o and o and o are not proportional and o and o and o

We now state the proposition

(9) Suppose that o is a proper vector and u, v and w are proper vectors and u_2 , v_2 and w_2 are proper vectors and u_1 , v_1 and w_1 are proper vectors and o, u, v, w, u_2 , v_2 , and w_2 lie on an angle and o, u, v, w, u_2 , v_2 , v_2 are half-mutually not proportional and u, v_2 and w_1 are lineary dependent and u, u and u are lineary dependent and u, u and u are lineary dependent and u, u and u are lineary dependent. Then u are lineary dependent.

We use the following convention: A denotes a non empty set, f, g, h, f_1 denote elements of \mathbb{R}^A , and x_1 , x_2 , x_3 , x_4 denote elements of A.

The following propositions are true:

- (10) There exist f, g, h such that
 - (i) for every z such that $z \in A$ holds if $z = x_1$, then f(z) = 1 and if $z \neq x_1$, then f(z) = 0,
 - (ii) for every z such that $z \in A$ holds if $z = x_2$, then g(z) = 1 and if $z \neq x_2$, then g(z) = 0, and
- (iii) for every z such that $z \in A$ holds if $z = x_3$, then h(z) = 1 and if $z \neq x_3$, then h(z) = 0.
- (11) Suppose that $x_1 \in A$ and $x_2 \in A$ and $x_3 \in A$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_2 \neq x_3$ and for every z such that $z \in A$ holds if $z = x_1$, then f(z) = 1 and if $z \neq x_1$, then f(z) = 0 and for every z such that $z \in A$ holds if $z = x_2$, then g(z) = 1 and if $z \neq x_2$, then g(z) = 0 and for every z such that $z \in A$ holds if $z = x_3$, then h(z) = 1 and if $z \neq x_3$, then h(z) = 0. Let given a, b, c. If $+_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\cdot_{\mathbb{R}^A}(\langle a, f \rangle), \cdot_{\mathbb{R}^A}(\langle b, g \rangle)), \cdot_{\mathbb{R}^A}(\langle c, h \rangle)) = \mathbf{0}_{\mathbb{R}^A}$, then a = 0 and b = 0 and c = 0.
- (12) Suppose $x_1 \in A$ and $x_2 \in A$ and $x_3 \in A$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_2 \neq x_3$. Then there exist f, g, h such that for all a, b, c if $+_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\cdot_{\mathbb{R}^A}(\langle a, f \rangle), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle b, g \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle c, h \rangle)) = \mathbf{0}_{\mathbb{R}^A}$, then a = 0 and b = 0 and c = 0.
- (13) Suppose that $A = \{x_1, x_2, x_3\}$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_2 \neq x_3$ and for every z such that $z \in A$ holds if $z = x_1$, then f(z) = 1 and if $z \neq x_1$, then f(z) = 0 and for every z such that $z \in A$ holds if $z = x_2$, then g(z) = 1 and if $z \neq x_2$, then g(z) = 0 and for every z such that $z \in A$ holds if $z = x_3$, then h(z) = 1 and if $z \neq x_3$, then h(z) = 0. Let h' be an element of \mathbb{R}^A . Then there exist a, b, c such that $h' = +_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\cdot_{\mathbb{R}^A}(\langle a, f \rangle), \cdot_{\mathbb{R}^A}(\langle b, g \rangle)), \cdot_{\mathbb{R}^A}(\langle c, h \rangle))$.
- (14) Suppose $A = \{x_1, x_2, x_3\}$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_2 \neq x_3$. Then there exist f, g, h such that for every element h' of \mathbb{R}^A holds there exist a, b, c such that $h' = +_{\mathbb{R}^A} (+_{\mathbb{R}^A} (\cdot_{\mathbb{R}^A}^{\mathbb{R}} (\langle a, f \rangle), \cdot_{\mathbb{R}^A}^{\mathbb{R}} (\langle b, g \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}} (\langle c, h \rangle))$.

- (15) Suppose $A = \{x_1, x_2, x_3\}$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_2 \neq x_3$. Then there exist f, g, h such that
 - (i) for all a, b, c such that $+_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle a, f \rangle), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle b, g \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle c, h \rangle)) = \mathbf{0}_{\mathbb{R}^A} \text{ holds } a = 0 \text{ and } b = 0 \text{ and } c = 0, \text{ and } a = 0$
- (ii) for every element h' of \mathbb{R}^A there exist a, b, c such that $h' = +_{\mathbb{R}^A} (+_{\mathbb{R}^A} (\cdot_{\mathbb{R}^A}^{\mathbb{R}} (\langle a, f \rangle), \cdot_{\mathbb{R}^A}^{\mathbb{R}} (\langle b, g \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}} (\langle c, h \rangle)).$
- (16) There exists a non trivial real linear space V and there exist elements u, v, w of V such that
- (i) for all a, b, c such that $a \cdot u + b \cdot v + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0, and
- (ii) for every element y of V there exist a, b, c such that $y = a \cdot u + b \cdot v + c \cdot w$.
- (17) There exist f, g, h, f_1 such that
 - (i) for every z such that $z \in A$ holds if $z = x_1$, then f(z) = 1 and if $z \neq x_1$, then f(z) = 0,
- (ii) for every z such that $z \in A$ holds if $z = x_2$, then g(z) = 1 and if $z \neq x_2$, then g(z) = 0,
- (iii) for every z such that $z \in A$ holds if $z = x_3$, then h(z) = 1 and if $z \neq x_3$, then h(z) = 0, and
- (iv) for every z such that $z \in A$ holds if $z = x_4$, then $f_1(z) = 1$ and if $z \neq x_4$, then $f_1(z) = 0$.
- (18) Suppose that $x_1 \in A$ and $x_2 \in A$ and $x_3 \in A$ and $x_4 \in A$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_1 \neq x_4$ and $x_2 \neq x_3$ and $x_2 \neq x_4$ and $x_3 \neq x_4$ and for every z such that $z \in A$ holds if $z = x_1$, then f(z) = 1 and if $z \neq x_1$, then f(z) = 0 and for every z such that $z \in A$ holds if $z = x_2$, then g(z) = 1 and if $z \neq x_2$, then g(z) = 0 and for every z such that $z \in A$ holds if $z = x_3$, then h(z) = 1 and if $z \neq x_3$, then h(z) = 0 and for every z such that $z \in A$ holds if $z = x_4$, then $f_1(z) = 1$ and if $z \neq x_4$, then $f_1(z) = 0$. Let given a, b, c, d. Suppose $+_{\mathbb{R}^A}(+_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\cdot (a, f)), \cdot (b, g)), \cdot (b, g)$ and g(z) = 0. Then g(z) = 0 and g(z) = 0 and g(z) = 0 and g(z) = 0.
- (19) Suppose $x_1 \in A$ and $x_2 \in A$ and $x_3 \in A$ and $x_4 \in A$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_1 \neq x_4$ and $x_2 \neq x_3$ and $x_2 \neq x_4$ and $x_3 \neq x_4$. Then there exist f, g, h, f_1 such that for all a, b, c, d if $+_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\cdot_{\mathbb{R}^A}(\langle a, f \rangle), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle b, g \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle c, h \rangle), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle d, f_1 \rangle)) = \mathbf{0}_{\mathbb{R}^A}$, then a = 0 and b = 0 and c = 0 and d = 0.
- (20) Suppose that $A = \{x_1, x_2, x_3, x_4\}$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_1 \neq x_4$ and $x_2 \neq x_3$ and $x_2 \neq x_4$ and $x_3 \neq x_4$ and for every z such that $z \in A$ holds if $z = x_1$, then f(z) = 1 and if $z \neq x_1$, then f(z) = 0 and for every z such that $z \in A$ holds if $z = x_2$, then g(z) = 1 and if $z \neq x_2$, then g(z) = 0 and for every z such that $z \in A$ holds if $z = x_3$, then h(z) = 1 and if $z \neq x_3$, then h(z) = 0 and for every z such that $z \in A$ holds if $z = x_4$, then $f_1(z) = 1$ and if $z \neq x_4$, then $f_1(z) = 0$. Let h' be an element of \mathbb{R}^A . Then there exist a, b, c, d such that $h' = +_{\mathbb{R}^A}(+_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\langle a, f \rangle), \cdot_{\mathbb{R}^A}(\langle b, g \rangle)), \cdot_{\mathbb{R}^A}(\langle c, h \rangle)), \cdot_{\mathbb{R}^A}(\langle d, f_1 \rangle))$.
- (21) Suppose $A = \{x_1, x_2, x_3, x_4\}$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_1 \neq x_4$ and $x_2 \neq x_3$ and $x_2 \neq x_4$ and $x_3 \neq x_4$. Then there exist f, g, h, f_1 such that for every element h' of \mathbb{R}^A holds there exist a, b, c, d such that $h' = +_{\mathbb{R}^A}(+_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\langle a, f \rangle), \cdot_{\mathbb{R}^A}(\langle b, g \rangle)), \cdot_{\mathbb{R}^A}(\langle c, h \rangle)), \cdot_{\mathbb{R}^A}(\langle d, f_1 \rangle))$.
- (22) Suppose $A = \{x_1, x_2, x_3, x_4\}$ and $x_1 \neq x_2$ and $x_1 \neq x_3$ and $x_1 \neq x_4$ and $x_2 \neq x_3$ and $x_2 \neq x_4$ and $x_3 \neq x_4$. Then there exist f, g, h, f_1 such that
 - (i) for all a, b, c, d such that $+_{\mathbb{R}^A}(+_{\mathbb{R}^A}(+_{\mathbb{R}^A}(\cdot_{\mathbb{R}^A}(\langle a, f \rangle), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle b, g \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle c, h \rangle)), \cdot_{\mathbb{R}^A}^{\mathbb{R}}(\langle d, f_1 \rangle)) = \mathbf{0}_{\mathbb{R}^A} \text{ holds } a = 0 \text{ and } b = 0 \text{ and } c = 0 \text{ and } d = 0, \text{ and }$
- (ii) for every element h' of \mathbb{R}^A there exist a, b, c, d such that $h' = +_{\mathbb{R}^A} (+_{\mathbb{R}^A} (+_{\mathbb{R}^A} (\cdot_{\mathbb{R}^A} (\langle a, f \rangle), \cdot_{\mathbb{R}^A} (\langle b, g \rangle)), \cdot_{\mathbb{R}^A} (\langle c, h \rangle)), \cdot_{\mathbb{R}^A} (\langle d, f_1 \rangle)).$
- (23) There exists a non trivial real linear space V and there exist elements u, v, w, u_1 of V such
 - (i) for all a, b, c, d such that $a \cdot u + b \cdot v + c \cdot w + d \cdot u_1 = 0_V$ holds a = 0 and b = 0 and c = 0 and d = 0, and
- (ii) for every element y of V there exist a, b, c, d such that $y = a \cdot u + b \cdot v + c \cdot w + d \cdot u_1$.

Let I_1 be a real linear space. We say that I_1 is up 3-dimensional if and only if:

(Def. 6) There exist elements u, v, w_1 of I_1 such that for all a, b, c such that $a \cdot u + b \cdot v + c \cdot w_1 = 0_{(I_1)}$ holds a = 0 and b = 0 and c = 0.

Let us note that there exists a real linear space which is up 3-dimensional.

One can check that every real linear space which is up 3-dimensional is also non trivial.

Let C_1 be a non empty collinearity structure. Let us observe that C_1 is reflexive if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let p, q, r be elements of C_1 . Then p, q and p are collinear and p, p and q are collinear and p, q and q are collinear.

Let us observe that C_1 is transitive if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let p, q, r, r_1 , r_2 be elements of C_1 . Suppose $p \neq q$ and p, q and r are collinear and p, q and r_2 are collinear. Then r, r_1 and r_2 are collinear.

Let I_1 be a non empty collinearity structure. We say that I_1 is Vebleian if and only if the condition (Def. 9) is satisfied.

(Def. 9) Let p, p_1 , p_2 , r, r_1 be elements of I_1 . Suppose p, p_1 and r are collinear and p_1 , p_2 and r_1 are collinear. Then there exists an element r_2 of I_1 such that p, p_2 and r_2 are collinear and r, r_1 and r_2 are collinear.

We say that I_1 is at least 3 rank if and only if:

(Def. 10) For all elements p, q of I_1 there exists an element r of I_1 such that $p \neq r$ and $q \neq r$ and p, q and r are collinear.

We use the following convention: V denotes a non trivial real linear space, u, v, w, y, u_1 , v_1 , w_1 denote elements of V, and p, p_1 , q, q_1 , q_2 , q_3 , r, r_1 , r_2 , r_3 denote elements of the projective space over V

One can prove the following proposition

(24) p, q and r are collinear if and only if there exist u, v, w such that p = the direction of u and q = the direction of v and r = the direction of w and u is a proper vector and v and v are linearly dependent.

Let us consider V. Observe that the projective space over V is reflexive and transitive. One can prove the following proposition

- (25) Suppose p, q and r are collinear. Then
 - (i) p, r and q are collinear,
- (ii) q, p and r are collinear,
- (iii) r, q and p are collinear,
- (iv) r, p and q are collinear, and
- (v) q, r and p are collinear.

Let us consider V. Note that the projective space over V is Vebleian.

Let V be an up 3-dimensional real linear space. Observe that the projective space over V is proper.

Next we state the proposition

(26) Given u, v such that let given a, b. If $a \cdot u + b \cdot v = 0_V$, then a = 0 and b = 0. Then the projective space over V is at least 3 rank.

Let V be an up 3-dimensional real linear space. Observe that the projective space over V is at least 3 rank.

Let us observe that there exists a non empty collinearity structure which is transitive, reflexive, proper, Vebleian, and at least 3 rank.

A projective space defined in terms of collinearity is a reflexive transitive Vebleian at least 3 rank proper non empty collinearity structure.

Let I_1 be a projective space defined in terms of collinearity. We say that I_1 is Fanoian if and only if the condition (Def. 11) is satisfied.

- (Def. 11) Let p_1 , r_2 , q, r_1 , q_1 , p, r be elements of I_1 . Suppose that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and p_2 , q_1 and p_2 are collinear and p_2 , q_3 and q_4 are collinear and q_4 , q_4 and q_5 are collinear and q_5 , q_6 and q_7 are collinear. Then
 - (i) p_1 , r_2 and q_1 are collinear, or
 - (ii) p_1 , r_2 and r_1 are collinear, or
 - (iii) p_1 , r_1 and q_1 are collinear, or
 - (iv) r_2 , r_1 and q_1 are collinear.

We say that I_1 is Desarguesian if and only if the condition (Def. 12) is satisfied.

We say that I_1 is Pappian if and only if the condition (Def. 13) is satisfied.

(Def. 13) Let o, p_1 , p_2 , p_3 , q_1 , q_2 , q_3 , r_1 , r_2 , r_3 be elements of I_1 . Suppose that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $o \neq q_2$ and $o \neq q_3$ and $o \neq$

Let I_1 be a projective space defined in terms of collinearity. We say that I_1 is 2-dimensional if and only if the condition (Def. 14) is satisfied.

(Def. 14) Let p, p_1 , q, q_1 be elements of I_1 . Then there exists an element r of I_1 such that p, p_1 and r are collinear and q, q_1 and r are collinear.

We introduce I_1 is up 3-dimensional as an antonym of I_1 is 2-dimensional.

Let I_1 be a projective space defined in terms of collinearity. We say that I_1 is at most 3 dimensional if and only if the condition (Def. 15) is satisfied.

(Def. 15) Let p, p_1 , q, q_1 , r_2 be elements of I_1 . Then there exist elements r, r_1 of I_1 such that p, q and r are collinear and p_1 , q_1 and r_1 are collinear and r_2 , r and r_1 are collinear.

Next we state the proposition

- (28)¹ Suppose that p_1 , r_2 and q are collinear and r_1 , q_1 and q are collinear and p_1 , r_1 and p are collinear and r_2 , q_1 and p are collinear and p_1 , q_1 and p are collinear and p_2 , p_3 and p_4 are collinear. Then
 - (i) p_1 , r_2 and q_1 are collinear, or
- (ii) p_1 , r_2 and r_1 are collinear, or
- (iii) p_1 , r_1 and q_1 are collinear, or
- (iv) r_2 , r_1 and q_1 are collinear.

¹ The proposition (27) has been removed.

Let *V* be an up 3-dimensional real linear space. One can verify that the projective space over *V* is Fanoian, Desarguesian, and Pappian.

We now state several propositions:

- (29) Given u, v, w such that for all a, b, c such that $a \cdot u + b \cdot v + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0 and for every y there exist a, b, c such that $y = a \cdot u + b \cdot v + c \cdot w$. Then there exist elements x_1 , x_2 of the projective space over V such that $x_1 \neq x_2$ and for all x_1 , x_2 and x_1 are collinear and x_2 and x_1 are collinear.
- (30) Given elements x_1 , x_2 of the projective space over V such that $x_1 \neq x_2$ and for all r_1 , r_2 there exists q such that x_1 , x_2 and q are collinear and r_1 , r_2 and q are collinear. Let given p, p_1 , q, q_1 . Then there exists r such that p, p_1 and r are collinear and q, q_1 and r are collinear.
- (31) Given u, v, w such that for all a, b, c such that $a \cdot u + b \cdot v + c \cdot w = 0_V$ holds a = 0 and b = 0 and c = 0 and for every y there exist a, b, c such that $y = a \cdot u + b \cdot v + c \cdot w$. Then there exists a projective space C_1 defined in terms of collinearity such that C_1 = the projective space over V and C_1 is 2-dimensional.
- (32) Given y, u, v, w such that
 - (i) for every w_1 there exist a, b, a_1, b_1 such that $w_1 = a \cdot y + b \cdot u + a_1 \cdot v + b_1 \cdot w$, and
- (ii) for all a, b, a_1 , b_1 such that $a \cdot y + b \cdot u + a_1 \cdot v + b_1 \cdot w = 0_V$ holds a = 0 and b = 0 and $a_1 = 0$ and $b_1 = 0$.

Then there exist p, q_1 , q_2 such that

- (iii) p, q_1 and q_2 are not collinear, and
- (iv) for all r_1 , r_2 there exist q_3 , r_3 such that r_1 , r_2 and r_3 are collinear and q_1 , q_2 and q_3 are collinear and p, r_3 and q_3 are collinear.
- (33) Suppose that
 - (i) the projective space over V is proper and at least 3 rank, and
- (ii) there exist p, q_1 , q_2 such that p, q_1 and q_2 are not collinear and for all r_1 , r_2 there exist q_3 , r_3 such that r_1 , r_2 and r_3 are collinear and q_1 , q_2 and q_3 are collinear and p, r_3 and q_3 are collinear.

Then there exists a projective space C_1 defined in terms of collinearity such that C_1 = the projective space over V and C_1 is at most 3 dimensional.

- (34) Given y, u, v, w such that
 - (i) for every w_1 there exist a, b, c, c_1 such that $w_1 = a \cdot y + b \cdot u + c \cdot v + c_1 \cdot w$, and
- (ii) for all a, b, a_1 , b_1 such that $a \cdot y + b \cdot u + a_1 \cdot v + b_1 \cdot w = 0_V$ holds a = 0 and b = 0 and $a_1 = 0$ and $b_1 = 0$.

Then there exists a projective space C_1 defined in terms of collinearity such that C_1 = the projective space over V and C_1 is at most 3 dimensional.

- (35) Given u, v, u_1 , v_1 such that let given a, b, a_1 , b_1 . If $a \cdot u + b \cdot v + a_1 \cdot u_1 + b_1 \cdot v_1 = 0_V$, then a = 0 and b = 0 and $a_1 = 0$ and $b_1 = 0$. Then there exists a projective space C_1 defined in terms of collinearity such that C_1 = the projective space over V and C_1 is non 2-dimensional.
- (36) Given u, v, u_1 , v_1 such that
 - (i) for every w there exist a, b, a_1 , b_1 such that $w = a \cdot u + b \cdot v + a_1 \cdot u_1 + b_1 \cdot v_1$, and
- (ii) for all a, b, a_1 , b_1 such that $a \cdot u + b \cdot v + a_1 \cdot u_1 + b_1 \cdot v_1 = 0_V$ holds a = 0 and b = 0 and $a_1 = 0$ and $b_1 = 0$.

Then there exists a projective space C_1 defined in terms of collinearity such that C_1 = the projective space over V and C_1 is up 3-dimensional and at most 3 dimensional.

Let us observe that there exists a projective space defined in terms of collinearity which is strict, Fanoian, Desarguesian, Pappian, and 2-dimensional and there exists a projective space defined in terms of collinearity which is strict, Fanoian, Desarguesian, Pappian, at most 3 dimensional, and up 3-dimensional.

A projective plane defined in terms of collinearity is a 2-dimensional projective space defined in terms of collinearity.

One can prove the following proposition

- (37) Let C_1 be a non empty collinearity structure. Then the following statements are equivalent
 - (i) C_1 is a 2-dimensional projective space defined in terms of collinearity,
- (ii) C_1 is an at least 3 rank proper collinearity space and for all elements p, p_1 , q, q_1 of C_1 there exists an element r of C_1 such that p, p_1 and r are collinear and q, q_1 and r are collinear.

REFERENCES

- [1] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Wojciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/anproj_1.html.
- [5] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funcsdom.html.
- [6] Wojciech Skaba. The collinearity structure. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/collsp. html.
- [7] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/domain_1.html.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [9] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/fraenkel.html.
- [10] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [11] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- $[12] \ \ \textbf{Zinaida Trybulec. Properties of subsets.} \ \textbf{\textit{Journal of Formalized Mathematics}}, 1, 1989. \ \texttt{http://mizar.org/JFM/Vol1/subset_1.html}.$

Received June 15, 1990

Published January 2, 2004