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Summary. In the class of all collinearity structures a subclass of (dimension free)
projective spaces, defined by means of a suitable axiom system, is singled out. Whenever a
real vector space V is at least 3-dimensional, the structure ProjectiveSpace(V) is a projective
space in the above meaning. Some narrower classes of projective spaces are defined: Fano
projective spaces, projective planes, and Fano projective planes. For any of the above classes
an explicit axiom system is given, as well as an analytical example. There is also a construction
a of 3-dimensional and a 4-dimensional real vector space; these are needed to show appropriate
examples of projective spaces.
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The articles [8], [12], [10], [2], [3], [1], [7], [11], [9], [5], [6], and [4] provide the notation and
terminology for this paper.

For simplicity, we follow the rules:V denotes a real linear space,o, p, q, r, s, u, v, w, y, u1, v1,
w1, u2, v2, w2 denote elements ofV, a, b, c, d, a1, b1, c1, a2, c2 denote real numbers, andz denotes
a set.

Next we state several propositions:

(1) Suppose that for alla, b, c such thata ·u+ b · v+ c ·w = 0V holdsa = 0 andb = 0 and
c = 0. Then

(i) u is a proper vector,

(ii) v is a proper vector,

(iii) w is a proper vector,

(iv) u, v andw are not lineary dependent, and

(v) u andv are not proportional.

(2) Let givenu, v, u1, v1. Suppose that for alla, b, a1, b1 such thata·u+b·v+a1 ·u1+b1 ·v1 =
0V holdsa = 0 andb = 0 anda1 = 0 andb1 = 0. Thenu is a proper vector andv is a proper
vector andu andv are not proportional andu1 is a proper vector andv1 is a proper vector and
u1 andv1 are not proportional andu, v andu1 are not lineary dependent andu1, v1 andu are
not lineary dependent.

(3) Suppose for everyw there exista, b, c such thatw = a · p+ b ·q+ c · r and for alla, b, c
such thata· p+b·q+c· r = 0V holdsa = 0 andb = 0 andc = 0. Let givenu, u1. Then there
existsy such thatp, q andy are lineary dependent andu, u1 andy are lineary dependent and
y is a proper vector.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol2/anproj_2.html


PROJECTIVE SPACES 2

(4) Suppose that

(i) for everyw there exista, b, c, d such thatw = a· p+b·q+c· r +d ·s, and

(ii) for all a, b, c, d such thata · p+b ·q+ c · r +d · s= 0V holdsa = 0 andb = 0 andc = 0
andd = 0.

Let givenu, v. Supposeu is a proper vector andv is a proper vector. Then there existy, w
such that

(iii) u, v andw are lineary dependent,

(iv) q, r andy are lineary dependent,

(v) p, w andy are lineary dependent,

(vi) y is a proper vector, and

(vii) w is a proper vector.

(5) Suppose that for alla, b, a1, b1 such thata·u+b·v+a1 ·u1 +b1 ·v1 = 0V holdsa = 0 and
b = 0 anda1 = 0 andb1 = 0. Then there does not existy such thaty is a proper vector andu,
v andy are lineary dependent andu1, v1 andy are lineary dependent.

Let us considerV, u, v, w. We say thatu, v andw are proper vectors if and only if:

(Def. 1) u is a proper vector andv is a proper vector andw is a proper vector.

Let us considerV, u, v, w, u1, v1, w1. We say thatu, v, w, u1, v1, andw1 lie on a triangle if and
only if the conditions (Def. 2) are satisfied.

(Def. 2)(i) u, v andw1 are lineary dependent,

(ii) u, w andv1 are lineary dependent, and

(iii) v, w andu1 are lineary dependent.

Let us considerV, o, u, v, w, u2, v2, w2. We say thato, u, v, w, u2, v2, andw2 are perspective if
and only if the conditions (Def. 3) are satisfied.

(Def. 3)(i) o, u andu2 are lineary dependent,

(ii) o, v andv2 are lineary dependent, and

(iii) o, w andw2 are lineary dependent.

Next we state three propositions:

(6) Suppose that

(i) o, u andu2 are lineary dependent,

(ii) o andu are not proportional,

(iii) o andu2 are not proportional,

(iv) u andu2 are not proportional, and

(v) o, u andu2 are proper vectors.

Then there exista1, b1 such thatb1 ·u2 = o+a1 ·u anda1 6= 0 andb1 6= 0 and there exista2,
c2 such thatu2 = c2 ·o+a2 ·u andc2 6= 0 anda2 6= 0.

(7) Supposep, q andr are lineary dependent andp andq are not proportional andp, q andr
are proper vectors. Then there exista, b such thatr = a· p+b·q.

(8) Suppose thato is a proper vector andu, v and w are proper vectors andu2, v2 and w2

are proper vectors andu1, v1 andw1 are proper vectors ando, u, v, w, u2, v2, andw2 are
perspective ando andu2 are not proportional ando andv2 are not proportional ando andw2

are not proportional andu andu2 are not proportional andv andv2 are not proportional and
w andw2 are not proportional ando, u andv are not lineary dependent ando, u andw are
not lineary dependent ando, v andw are not lineary dependent andu, v, w, u1, v1, andw1 lie
on a triangle andu2, v2, w2, u1, v1, andw1 lie on a triangle. Thenu1, v1 andw1 are lineary
dependent.
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Let us considerV, o, u, v, w, u2, v2, w2. We say thato, u, v, w, u2, v2, andw2 lie on an angle if
and only if the conditions (Def. 4) are satisfied.

(Def. 4)(i) o, u andu2 are not lineary dependent,

(ii) o, u andv are lineary dependent,

(iii) o, u andw are lineary dependent,

(iv) o, u2 andv2 are lineary dependent, and

(v) o, u2 andw2 are lineary dependent.

Let us considerV, o, u, v, w, u2, v2, w2. We say thato, u, v, w, u2, v2, w2 are half-mutually not
proportional if and only if the conditions (Def. 5) are satisfied.

(Def. 5) o andv are not proportional ando andw are not proportional ando andv2 are not propor-
tional ando andw2 are not proportional andu andv are not proportional andu andw are not
proportional andu2 andv2 are not proportional andu2 andw2 are not proportional andv and
w are not proportional andv2 andw2 are not proportional.

We now state the proposition

(9) Suppose thato is a proper vector andu, v andw are proper vectors andu2, v2 andw2 are
proper vectors andu1, v1 andw1 are proper vectors ando, u, v, w, u2, v2, andw2 lie on an
angle ando, u, v, w, u2, v2, w2 are half-mutually not proportional andu, v2 andw1 are lineary
dependent andu2, v andw1 are lineary dependent andu, w2 andv1 are lineary dependent and
w, u2 andv1 are lineary dependent andv, w2 andu1 are lineary dependent andw, v2 andu1

are lineary dependent. Thenu1, v1 andw1 are lineary dependent.

We use the following convention:A denotes a non empty set,f , g, h, f1 denote elements ofRA,
andx1, x2, x3, x4 denote elements ofA.

The following propositions are true:

(10) There existf , g, h such that

(i) for everyz such thatz∈ A holds ifz= x1, then f (z) = 1 and ifz 6= x1, then f (z) = 0,

(ii) for everyz such thatz∈ A holds ifz= x2, theng(z) = 1 and ifz 6= x2, theng(z) = 0, and

(iii) for every z such thatz∈ A holds ifz= x3, thenh(z) = 1 and ifz 6= x3, thenh(z) = 0.

(11) Suppose thatx1 ∈ A andx2 ∈ A andx3 ∈ A andx1 6= x2 andx1 6= x3 andx2 6= x3 and for
everyzsuch thatz∈ A holds ifz= x1, then f (z) = 1 and ifz 6= x1, then f (z) = 0 and for every
z such thatz∈ A holds if z= x2, theng(z) = 1 and ifz 6= x2, theng(z) = 0 and for everyz
such thatz∈ A holds ifz= x3, thenh(z) = 1 and ifz 6= x3, thenh(z) = 0. Let givena, b, c. If
+RA(+RA(·RRA(〈〈a, f 〉〉), ·RRA(〈〈b, g〉〉)), ·RRA(〈〈c, h〉〉)) = 0RA, thena = 0 andb = 0 andc = 0.

(12) Supposex1 ∈ A andx2 ∈ A andx3 ∈ A andx1 6= x2 andx1 6= x3 andx2 6= x3. Then there
exist f , g, h such that for alla, b, c if +RA(+RA(·RRA(〈〈a, f 〉〉), ·RRA(〈〈b, g〉〉)), ·RRA(〈〈c, h〉〉)) = 0RA,
thena = 0 andb = 0 andc = 0.

(13) Suppose thatA = {x1,x2,x3} andx1 6= x2 andx1 6= x3 andx2 6= x3 and for everyzsuch that
z∈ A holds ifz= x1, then f (z) = 1 and ifz 6= x1, then f (z) = 0 and for everyzsuch thatz∈ A
holds ifz= x2, theng(z) = 1 and ifz 6= x2, theng(z) = 0 and for everyzsuch thatz∈ A holds
if z= x3, thenh(z) = 1 and ifz 6= x3, thenh(z) = 0. Let h′ be an element ofRA. Then there
exista, b, c such thath′ = +RA(+RA(·RRA(〈〈a, f 〉〉), ·RRA(〈〈b, g〉〉)), ·RRA(〈〈c, h〉〉)).

(14) SupposeA = {x1,x2,x3} andx1 6= x2 andx1 6= x3 andx2 6= x3. Then there existf , g, h such
that for every elementh′ of RA holds there exista, b, c such thath′ = +RA(+RA(·RRA(〈〈a, f 〉〉),
·RRA(〈〈b, g〉〉)), ·RRA(〈〈c, h〉〉)).
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(15) SupposeA = {x1,x2,x3} andx1 6= x2 andx1 6= x3 andx2 6= x3. Then there existf , g, h such
that

(i) for all a, b, c such that+RA(+RA(·RRA(〈〈a, f 〉〉), ·RRA(〈〈b, g〉〉)), ·RRA(〈〈c, h〉〉)) = 0RA holdsa= 0
andb = 0 andc = 0, and

(ii) for every elementh′ of RA there exista, b, c such thath′ = +RA(+RA(·RRA(〈〈a, f 〉〉), ·RRA(〈〈b,

g〉〉)), ·RRA(〈〈c, h〉〉)).

(16) There exists a non trivial real linear spaceV and there exist elementsu, v, w of V such that

(i) for all a, b, c such thata·u+b·v+c·w = 0V holdsa = 0 andb = 0 andc = 0, and

(ii) for every elementy of V there exista, b, c such thaty = a·u+b·v+c·w.

(17) There existf , g, h, f1 such that

(i) for everyz such thatz∈ A holds ifz= x1, then f (z) = 1 and ifz 6= x1, then f (z) = 0,

(ii) for everyz such thatz∈ A holds ifz= x2, theng(z) = 1 and ifz 6= x2, theng(z) = 0,

(iii) for every z such thatz∈ A holds ifz= x3, thenh(z) = 1 and ifz 6= x3, thenh(z) = 0, and

(iv) for everyz such thatz∈ A holds ifz= x4, then f1(z) = 1 and ifz 6= x4, then f1(z) = 0.

(18) Suppose thatx1 ∈ A andx2 ∈ A andx3 ∈ A andx4 ∈ A andx1 6= x2 andx1 6= x3 andx1 6= x4

andx2 6= x3 andx2 6= x4 andx3 6= x4 and for everyzsuch thatz∈Aholds ifz= x1, then f (z)= 1
and if z 6= x1, then f (z) = 0 and for everyz such thatz∈ A holds if z= x2, theng(z) = 1 and
if z 6= x2, theng(z) = 0 and for everyz such thatz∈ A holds if z= x3, thenh(z) = 1 and if
z 6= x3, thenh(z) = 0 and for everyz such thatz∈ A holds if z= x4, then f1(z) = 1 and if
z 6= x4, then f1(z) = 0. Let givena, b, c, d. Suppose+RA(+RA(+RA(·RRA(〈〈a, f 〉〉), ·RRA(〈〈b, g〉〉)),
·RRA(〈〈c, h〉〉)), ·RRA(〈〈d, f1〉〉)) = 0RA. Thena = 0 andb = 0 andc = 0 andd = 0.

(19) Supposex1 ∈ A andx2 ∈ A andx3 ∈ A andx4 ∈ A andx1 6= x2 andx1 6= x3 andx1 6= x4

andx2 6= x3 andx2 6= x4 andx3 6= x4. Then there existf , g, h, f1 such that for alla, b, c, d
if +RA(+RA(+RA(·RRA(〈〈a, f 〉〉), ·RRA(〈〈b, g〉〉)), ·RRA(〈〈c, h〉〉)), ·RRA(〈〈d, f1〉〉)) = 0RA, thena = 0 and
b = 0 andc = 0 andd = 0.

(20) Suppose thatA = {x1,x2,x3,x4} and x1 6= x2 and x1 6= x3 and x1 6= x4 and x2 6= x3 and
x2 6= x4 andx3 6= x4 and for everyz such thatz∈ A holds if z = x1, then f (z) = 1 and if
z 6= x1, then f (z) = 0 and for everyz such thatz∈ A holds if z = x2, theng(z) = 1 and if
z 6= x2, theng(z) = 0 and for everyz such thatz∈ A holds if z = x3, thenh(z) = 1 and if
z 6= x3, thenh(z) = 0 and for everyz such thatz∈ A holds if z= x4, then f1(z) = 1 and if
z 6= x4, then f1(z) = 0. Let h′ be an element ofRA. Then there exista, b, c, d such that
h′ = +RA(+RA(+RA(·RRA(〈〈a, f 〉〉), ·RRA(〈〈b, g〉〉)), ·RRA(〈〈c, h〉〉)), ·RRA(〈〈d, f1〉〉)).

(21) SupposeA = {x1,x2,x3,x4} andx1 6= x2 andx1 6= x3 andx1 6= x4 andx2 6= x3 andx2 6= x4

andx3 6= x4. Then there existf , g, h, f1 such that for every elementh′ of RA holds there exist
a, b, c, d such thath′ = +RA(+RA(+RA(·RRA(〈〈a, f 〉〉), ·RRA(〈〈b, g〉〉)), ·RRA(〈〈c, h〉〉)), ·RRA(〈〈d, f1〉〉)).

(22) SupposeA = {x1,x2,x3,x4} andx1 6= x2 andx1 6= x3 andx1 6= x4 andx2 6= x3 andx2 6= x4

andx3 6= x4. Then there existf , g, h, f1 such that

(i) for all a, b, c, d such that+RA(+RA(+RA(·RRA(〈〈a, f 〉〉), ·RRA(〈〈b, g〉〉)), ·RRA(〈〈c, h〉〉)), ·RRA(〈〈d,
f1〉〉)) = 0RA holdsa = 0 andb = 0 andc = 0 andd = 0, and

(ii) for every elementh′ of RA there exista, b, c, d such thath′ = +RA(+RA(+RA(·RRA(〈〈a, f 〉〉),
·RRA(〈〈b, g〉〉)), ·RRA(〈〈c, h〉〉)), ·RRA(〈〈d, f1〉〉)).

(23) There exists a non trivial real linear spaceV and there exist elementsu, v, w, u1 of V such
that

(i) for all a, b, c, d such thata ·u+b ·v+c ·w+d ·u1 = 0V holdsa = 0 andb = 0 andc = 0
andd = 0, and

(ii) for every elementy of V there exista, b, c, d such thaty = a·u+b·v+c·w+d ·u1.
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Let I1 be a real linear space. We say thatI1 is up 3-dimensional if and only if:

(Def. 6) There exist elementsu, v, w1 of I1 such that for alla, b, c such thata·u+b·v+c·w1 = 0(I1)
holdsa = 0 andb = 0 andc = 0.

Let us note that there exists a real linear space which is up 3-dimensional.
One can check that every real linear space which is up 3-dimensional is also non trivial.
LetC1 be a non empty collinearity structure. Let us observe thatC1 is reflexive if and only if the

condition (Def. 7) is satisfied.

(Def. 7) Let p, q, r be elements ofC1. Thenp, q and p are collinear andp, p andq are collinear
andp, q andq are collinear.

Let us observe thatC1 is transitive if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let p, q, r, r1, r2 be elements ofC1. Supposep 6= q andp, q andr are collinear andp, q
andr1 are collinear andp, q andr2 are collinear. Thenr, r1 andr2 are collinear.

Let I1 be a non empty collinearity structure. We say thatI1 is Vebleian if and only if the condition
(Def. 9) is satisfied.

(Def. 9) Let p, p1, p2, r, r1 be elements ofI1. Supposep, p1 andr are collinear andp1, p2 andr1

are collinear. Then there exists an elementr2 of I1 such thatp, p2 andr2 are collinear andr,
r1 andr2 are collinear.

We say thatI1 is at least 3 rank if and only if:

(Def. 10) For all elementsp, q of I1 there exists an elementr of I1 such thatp 6= r andq 6= r andp, q
andr are collinear.

We use the following convention:V denotes a non trivial real linear space,u, v, w, y, u1, v1, w1

denote elements ofV, andp, p1, q, q1, q2, q3, r, r1, r2, r3 denote elements of the projective space
overV.

One can prove the following proposition

(24) p, q andr are collinear if and only if there existu, v, w such thatp = the direction ofu and
q = the direction ofv andr = the direction ofw andu is a proper vector andv is a proper
vector andw is a proper vector andu, v andw are lineary dependent.

Let us considerV. Observe that the projective space overV is reflexive and transitive.
One can prove the following proposition

(25) Supposep, q andr are collinear. Then

(i) p, r andq are collinear,

(ii) q, p andr are collinear,

(iii) r, q andp are collinear,

(iv) r, p andq are collinear, and

(v) q, r andp are collinear.

Let us considerV. Note that the projective space overV is Vebleian.
Let V be an up 3-dimensional real linear space. Observe that the projective space overV is

proper.
Next we state the proposition

(26) Givenu, v such that let givena, b. If a · u+ b · v = 0V , thena = 0 andb = 0. Then the
projective space overV is at least 3 rank.
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Let V be an up 3-dimensional real linear space. Observe that the projective space overV is at
least 3 rank.

Let us observe that there exists a non empty collinearity structure which is transitive, reflexive,
proper, Vebleian, and at least 3 rank.

A projective space defined in terms of collinearity is a reflexive transitive Vebleian at least 3
rank proper non empty collinearity structure.

Let I1 be a projective space defined in terms of collinearity. We say thatI1 is Fanoian if and only
if the condition (Def. 11) is satisfied.

(Def. 11) Letp1, r2, q, r1, q1, p, r be elements ofI1. Suppose thatp1, r2 andq are collinear andr1,
q1 andq are collinear andp1, r1 andp are collinear andr2, q1 andp are collinear andp1, q1

andr are collinear andr2, r1 andr are collinear andp, q andr are collinear. Then

(i) p1, r2 andq1 are collinear, or

(ii) p1, r2 andr1 are collinear, or

(iii) p1, r1 andq1 are collinear, or

(iv) r2, r1 andq1 are collinear.

We say thatI1 is Desarguesian if and only if the condition (Def. 12) is satisfied.

(Def. 12) Leto, p1, p2, p3, q1, q2, q3, r1, r2, r3 be elements ofI1. Suppose thato 6= q1 andp1 6= q1

ando 6= q2 andp2 6= q2 ando 6= q3 andp3 6= q3 ando, p1 andp2 are not collinear ando, p1

andp3 are not collinear ando, p2 andp3 are not collinear andp1, p2 andr3 are collinear and
q1, q2 andr3 are collinear andp2, p3 andr1 are collinear andq2, q3 andr1 are collinear and
p1, p3 andr2 are collinear andq1, q3 andr2 are collinear ando, p1 andq1 are collinear and
o, p2 andq2 are collinear ando, p3 andq3 are collinear. Thenr1, r2 andr3 are collinear.

We say thatI1 is Pappian if and only if the condition (Def. 13) is satisfied.

(Def. 13) Leto, p1, p2, p3, q1, q2, q3, r1, r2, r3 be elements ofI1. Suppose thato 6= p2 ando 6= p3

and p2 6= p3 and p1 6= p2 and p1 6= p3 ando 6= q2 ando 6= q3 andq2 6= q3 andq1 6= q2 and
q1 6= q3 ando, p1 andq1 are not collinear ando, p1 andp2 are collinear ando, p1 andp3 are
collinear ando, q1 andq2 are collinear ando, q1 andq3 are collinear andp1, q2 andr3 are
collinear andq1, p2 andr3 are collinear andp1, q3 andr2 are collinear andp3, q1 andr2 are
collinear andp2, q3 andr1 are collinear andp3, q2 andr1 are collinear. Thenr1, r2 andr3 are
collinear.

Let I1 be a projective space defined in terms of collinearity. We say thatI1 is 2-dimensional if
and only if the condition (Def. 14) is satisfied.

(Def. 14) Letp, p1, q, q1 be elements ofI1. Then there exists an elementr of I1 such thatp, p1 and
r are collinear andq, q1 andr are collinear.

We introduceI1 is up 3-dimensional as an antonym ofI1 is 2-dimensional.
Let I1 be a projective space defined in terms of collinearity. We say thatI1 is at most 3 dimen-

sional if and only if the condition (Def. 15) is satisfied.

(Def. 15) Letp, p1, q, q1, r2 be elements ofI1. Then there exist elementsr, r1 of I1 such thatp, q
andr are collinear andp1, q1 andr1 are collinear andr2, r andr1 are collinear.

Next we state the proposition

(28)1 Suppose thatp1, r2 andq are collinear andr1, q1 andq are collinear andp1, r1 andp are
collinear andr2, q1 and p are collinear andp1, q1 and r are collinear andr2, r1 and r are
collinear andp, q andr are collinear. Then

(i) p1, r2 andq1 are collinear, or

(ii) p1, r2 andr1 are collinear, or

(iii) p1, r1 andq1 are collinear, or

(iv) r2, r1 andq1 are collinear.

1 The proposition (27) has been removed.
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Let V be an up 3-dimensional real linear space. One can verify that the projective space overV
is Fanoian, Desarguesian, and Pappian.

We now state several propositions:

(29) Givenu, v, w such that for alla, b, c such thata·u+b·v+c·w= 0V holdsa= 0 andb= 0
andc = 0 and for everyy there exista, b, c such thaty = a ·u+b ·v+c ·w. Then there exist
elementsx1, x2 of the projective space overV such thatx1 6= x2 and for allr1, r2 there exists
q such thatx1, x2 andq are collinear andr1, r2 andq are collinear.

(30) Given elementsx1, x2 of the projective space overV such thatx1 6= x2 and for all r1, r2

there existsq such thatx1, x2 andq are collinear andr1, r2 andq are collinear. Let givenp,
p1, q, q1. Then there existsr such thatp, p1 andr are collinear andq, q1 andr are collinear.

(31) Givenu, v, w such that for alla, b, c such thata·u+b·v+c·w= 0V holdsa= 0 andb= 0
andc = 0 and for everyy there exista, b, c such thaty = a ·u+b ·v+c ·w. Then there exists
a projective spaceC1 defined in terms of collinearity such thatC1 = the projective space over
V andC1 is 2-dimensional.

(32) Giveny, u, v, w such that

(i) for everyw1 there exista, b, a1, b1 such thatw1 = a·y+b·u+a1 ·v+b1 ·w, and

(ii) for all a, b, a1, b1 such thata · y+ b ·u+ a1 · v+ b1 ·w = 0V holdsa = 0 andb = 0 and
a1 = 0 andb1 = 0.

Then there existp, q1, q2 such that

(iii) p, q1 andq2 are not collinear, and

(iv) for all r1, r2 there existq3, r3 such thatr1, r2 andr3 are collinear andq1, q2 andq3 are
collinear andp, r3 andq3 are collinear.

(33) Suppose that

(i) the projective space overV is proper and at least 3 rank, and

(ii) there existp, q1, q2 such thatp, q1 andq2 are not collinear and for allr1, r2 there exist
q3, r3 such thatr1, r2 andr3 are collinear andq1, q2 andq3 are collinear andp, r3 andq3 are
collinear.

Then there exists a projective spaceC1 defined in terms of collinearity such thatC1 = the
projective space overV andC1 is at most 3 dimensional.

(34) Giveny, u, v, w such that

(i) for everyw1 there exista, b, c, c1 such thatw1 = a·y+b·u+c·v+c1 ·w, and

(ii) for all a, b, a1, b1 such thata · y+ b ·u+ a1 · v+ b1 ·w = 0V holdsa = 0 andb = 0 and
a1 = 0 andb1 = 0.

Then there exists a projective spaceC1 defined in terms of collinearity such thatC1 = the
projective space overV andC1 is at most 3 dimensional.

(35) Givenu, v, u1, v1 such that let givena, b, a1, b1. If a ·u+b ·v+a1 ·u1 +b1 ·v1 = 0V , then
a = 0 andb = 0 anda1 = 0 andb1 = 0. Then there exists a projective spaceC1 defined in
terms of collinearity such thatC1 = the projective space overV andC1 is non 2-dimensional.

(36) Givenu, v, u1, v1 such that

(i) for everyw there exista, b, a1, b1 such thatw = a·u+b·v+a1 ·u1 +b1 ·v1, and

(ii) for all a, b, a1, b1 such thata ·u+b · v+a1 ·u1 +b1 · v1 = 0V holdsa = 0 andb = 0 and
a1 = 0 andb1 = 0.

Then there exists a projective spaceC1 defined in terms of collinearity such thatC1 = the
projective space overV andC1 is up 3-dimensional and at most 3 dimensional.
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Let us observe that there exists a projective space defined in terms of collinearity which is strict,
Fanoian, Desarguesian, Pappian, and 2-dimensional and there exists a projective space defined in
terms of collinearity which is strict, Fanoian, Desarguesian, Pappian, at most 3 dimensional, and up
3-dimensional.

A projective plane defined in terms of collinearity is a 2-dimensional projective space defined in
terms of collinearity.

One can prove the following proposition

(37) LetC1 be a non empty collinearity structure. Then the following statements are equivalent

(i) C1 is a 2-dimensional projective space defined in terms of collinearity,

(ii) C1 is an at least 3 rank proper collinearity space and for all elementsp, p1, q, q1 of C1

there exists an elementr of C1 such thatp, p1 andr are collinear andq, q1 andr are collinear.
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[2] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.
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