Oriented Metric-Affine Plane - Part I

Jarosław Zajkowski
Warsaw University
Białystok

Abstract

Summary. We present (in Euclidean and Minkowskian geometry) definitions and some properties of oriented orthogonality relation. Next we consider consistence Euclidean space and consistence Minkowskian space

MML Identifier: ANALORT.
WWW: http://mizar.org/JFM/Vol3/analort.html

The articles [6], [1], [2], [8], [7], [4], [3], and [5] provide the notation and terminology for this paper.

Let V be an Abelian non empty loop structure and let v, w be elements of V. Let us observe that the functor $v+w$ is commutative.

We adopt the following convention: V denotes a real linear space, $u, u_{1}, u_{2}, v, v_{1}, v_{2}, w, w_{1}, x, y$ denote vectors of V, and n denotes a real number.

Let us consider V, x, y and let us consider u. The functor $\rho_{x, y}^{\mathrm{M}}(u)$ yields a vector of V and is defined by:
(Def. 1) $\quad \rho_{x, y}^{\mathrm{M}}(u)=\pi_{x, y}^{1}(u) \cdot x+\left(-\pi_{x, y}^{2}(u)\right) \cdot y$.
The following propositions are true:
(1) If x, y span the space, then $\rho_{x, y}^{\mathrm{M}}(u+v)=\rho_{x, y}^{\mathrm{M}}(u)+\rho_{x, y}^{\mathrm{M}}(v)$.
(2) If x, y span the space, then $\rho_{x, y}^{\mathrm{M}}(n \cdot u)=n \cdot \rho_{x, y}^{\mathrm{M}}(u)$.
(3) If x, y span the space, then $\rho_{x, y}^{\mathrm{M}}\left(0_{V}\right)=0_{V}$.
(4) If x, y span the space, then $\rho_{x, y}^{\mathrm{M}}(-u)=-\rho_{x, y}^{\mathrm{M}}(u)$.
(5) If x, y span the space, then $\rho_{x, y}^{\mathrm{M}}(u-v)=\rho_{x, y}^{\mathrm{M}}(u)-\rho_{x, y}^{\mathrm{M}}(v)$.
(6) If x, y span the space and $\rho_{x, y}^{\mathrm{M}}(u)=\rho_{x, y}^{\mathrm{M}}(v)$, then $u=v$.
(7) If x, y span the space, then $\rho_{x, y}^{\mathrm{M}}\left(\rho_{x, y}^{\mathrm{M}}(u)\right)=u$.
(8) If x, y span the space, then there exists v such that $u=\rho_{x, y}^{\mathrm{M}}(v)$.

Let us consider V, x, y and let us consider u. The functor $\rho_{x, y}^{\mathrm{E}}(u)$ yields a vector of V and is defined by:
(Def. 2) $\quad \rho_{x, y}^{\mathrm{E}}(u)=\pi_{x, y}^{2}(u) \cdot x+\left(-\pi_{x, y}^{1}(u)\right) \cdot y$.
Next we state several propositions:
(9) If x, y span the space, then $\rho_{x, y}^{\mathrm{E}}(-v)=-\rho_{x, y}^{\mathrm{E}}(v)$.
(10) If x, y span the space, then $\rho_{x, y}^{\mathrm{E}}(u+v)=\rho_{x, y}^{\mathrm{E}}(u)+\rho_{x, y}^{\mathrm{E}}(v)$.
(11) If x, y span the space, then $\rho_{x, y}^{\mathrm{E}}(u-v)=\rho_{x, y}^{\mathrm{E}}(u)-\rho_{x, y}^{\mathrm{E}}(v)$.
(12) If x, y span the space, then $\rho_{x, y}^{\mathrm{E}}(n \cdot u)=n \cdot \rho_{x, y}^{\mathrm{E}}(u)$.
(13) If x, y span the space and $\rho_{x, y}^{\mathrm{E}}(u)=\rho_{x, y}^{\mathrm{E}}(v)$, then $u=v$.
(14) If x, y span the space, then $\rho_{x, y}^{\mathrm{E}}\left(\rho_{x, y}^{\mathrm{E}}(u)\right)=-u$.
(15) If x, y span the space, then there exists v such that $\rho_{x, y}^{\mathrm{E}}(v)=u$.

Let us consider V and let us consider x, y, u, v, u_{1}, v_{1}. We say that the segments u, v and u_{1}, v_{1} are E-coherently orthogonal in the basis x, y if and only if:
(Def. 3) $\quad \rho_{x, y}^{\mathrm{E}}(u), \rho_{x, y}^{\mathrm{E}}(v) \| u_{1}, v_{1}$.
We say that the segments u, v and u_{1}, v_{1} are M-coherently orthogonal in the basis x, y if and only if:
(Def. 4) $\quad \rho_{x, y}^{\mathrm{M}}(u), \rho_{x, y}^{\mathrm{M}}(v) \| u_{1}, v_{1}$.
We now state a number of propositions:
(16) If x, y span the space, then if $u, v \Uparrow u_{1}, v_{1}$, then $\rho_{x, y}^{\mathrm{E}}(u), \rho_{x, y}^{\mathrm{E}}(v) \| \rho_{x, y}^{\mathrm{E}}\left(u_{1}\right), \rho_{x, y}^{\mathrm{E}}\left(v_{1}\right)$.
(17) If x, y span the space, then if $u, v \Uparrow u_{1}, v_{1}$, then $\rho_{x, y}^{\mathrm{M}}(u), \rho_{x, y}^{\mathrm{M}}(v) \Uparrow \rho_{x, y}^{\mathrm{M}}\left(u_{1}\right), \rho_{x, y}^{\mathrm{M}}\left(v_{1}\right)$.
(18) Suppose x, y span the space. Suppose the segments u, u_{1} and v, v_{1} are E-coherently orthogonal in the basis x, y. Then the segments v, v_{1} and u_{1}, u are E-coherently orthogonal in the basis x, y.
(19) Suppose x, y span the space. Suppose the segments u, u_{1} and v, v_{1} are M-coherently orthogonal in the basis x, y. Then the segments v, v_{1} and u, u_{1} are M-coherently orthogonal in the basis x, y.
(20) The segments u, u and v, w are E-coherently orthogonal in the basis x, y.
(21) The segments u, u and v, w are M-coherently orthogonal in the basis x, y.
(22) The segments u, v and w, w are E-coherently orthogonal in the basis x, y.
(23) The segments u, v and w, w are M-coherently orthogonal in the basis x, y.
(24) If x, y span the space, then $u, v, \rho_{x, y}^{\mathrm{E}}(u)$ and $\rho_{x, y}^{\mathrm{E}}(v)$ are orthogonal w.r.t. x, y.
(25) The segments u, v and $\rho_{x, y}^{\mathrm{E}}(u), \rho_{x, y}^{\mathrm{E}}(v)$ are E-coherently orthogonal in the basis x, y.
(26) The segments u, v and $\rho_{x, y}^{\mathrm{M}}(u), \rho_{x, y}^{\mathrm{M}}(v)$ are M-coherently orthogonal in the basis x, y.
(27) Suppose x, y span the space. Then $u, v \| u_{1}, v_{1}$ if and only if there exist u_{2}, v_{2} such that $u_{2} \neq v_{2}$ and the segments u_{2}, v_{2} and u, v are E-coherently orthogonal in the basis x, y and the segments u_{2}, v_{2} and u_{1}, v_{1} are E-coherently orthogonal in the basis x, y.
(28) Suppose x, y span the space. Then $u, v \| u_{1}, v_{1}$ if and only if there exist u_{2}, v_{2} such that $u_{2} \neq v_{2}$ and the segments u_{2}, v_{2} and u, v are M-coherently orthogonal in the basis x, y and the segments u_{2}, v_{2} and u_{1}, v_{1} are M-coherently orthogonal in the basis x, y.
(29) Suppose x, y span the space. Then u, v, u_{1} and v_{1} are orthogonal w.r.t. x, y if and only if one of the following conditions is satisfied:
(i) the segments u, v and u_{1}, v_{1} are E-coherently orthogonal in the basis x, y, or
(ii) the segments u, v and v_{1}, u_{1} are E-coherently orthogonal in the basis x, y.
(30) Suppose that
(i) x, y span the space,
(ii) the segments u, v and u_{1}, v_{1} are E-coherently orthogonal in the basis x, y, and
(iii) the segments u, v and v_{1}, u_{1} are E-coherently orthogonal in the basis x, y.

Then $u=v$ or $u_{1}=v_{1}$.
(31) Suppose that
(i) x, y span the space,
(ii) the segments u, v and u_{1}, v_{1} are M-coherently orthogonal in the basis x, y, and
(iii) the segments u, v and v_{1}, u_{1} are M-coherently orthogonal in the basis x, y.

Then $u=v$ or $u_{1}=v_{1}$.
(32) Suppose that
(i) x, y span the space,
(ii) the segments u, v and u_{1}, v_{1} are E-coherently orthogonal in the basis x, y, and
(iii) the segments u, v and u_{1}, w are E-coherently orthogonal in the basis x, y.

Then
(iv) the segments u, v and v_{1}, w are E-coherently orthogonal in the basis x, y, or
(v) the segments u, v and w, v_{1} are E-coherently orthogonal in the basis x, y.
(33) Suppose that
(i) x, y span the space,
(ii) the segments u, v and u_{1}, v_{1} are M-coherently orthogonal in the basis x, y, and
(iii) the segments u, v and u_{1}, w are M-coherently orthogonal in the basis x, y.

Then
(iv) the segments u, v and v_{1}, w are M-coherently orthogonal in the basis x, y, or
(v) the segments u, v and w, v_{1} are M-coherently orthogonal in the basis x, y.
(34) Suppose the segments u, v and u_{1}, v_{1} are E-coherently orthogonal in the basis x, y. Then the segments v, u and v_{1}, u_{1} are E-coherently orthogonal in the basis x, y.
(35) Suppose the segments u, v and u_{1}, v_{1} are M-coherently orthogonal in the basis x, y. Then the segments v, u and v_{1}, u_{1} are M-coherently orthogonal in the basis x, y.
(36) Suppose that
(i) x, y span the space,
(ii) the segments u, v and u_{1}, v_{1} are E-coherently orthogonal in the basis x, y, and
(iii) the segments u, v and v_{1}, w are E-coherently orthogonal in the basis x, y.

Then the segments u, v and u_{1}, w are E-coherently orthogonal in the basis x, y.
(37) Suppose that
(i) x, y span the space,
(ii) the segments u, v and u_{1}, v_{1} are M-coherently orthogonal in the basis x, y, and
(iii) the segments u, v and v_{1}, w are M-coherently orthogonal in the basis x, y.

Then the segments u, v and u_{1}, w are M-coherently orthogonal in the basis x, y.
(38) Suppose x, y span the space. Let given u, v, w. Then there exists u_{1} such that $w \neq u_{1}$ and the segments w, u_{1} and u, v are E-coherently orthogonal in the basis x, y.
(39) Suppose x, y span the space. Let given u, v, w. Then there exists u_{1} such that $w \neq u_{1}$ and the segments w, u_{1} and u, v are M-coherently orthogonal in the basis x, y.
(40) Suppose x, y span the space. Let given u, v, w. Then there exists u_{1} such that $w \neq u_{1}$ and the segments u, v and w, u_{1} are E-coherently orthogonal in the basis x, y.
(41) Suppose x, y span the space. Let given u, v, w. Then there exists u_{1} such that $w \neq u_{1}$ and the segments u, v and w, u_{1} are M-coherently orthogonal in the basis x, y.
(42) Suppose that
(i) x, y span the space,
(ii) the segments u, u_{1} and v, v_{1} are E-coherently orthogonal in the basis x, y,
(iii) the segments w, w_{1} and v, v_{1} are E-coherently orthogonal in the basis x, y, and
(iv) the segments w, w_{1} and u_{2}, v_{2} are E-coherently orthogonal in the basis x, y.

Then $w=w_{1}$ or $v=v_{1}$ or the segments u, u_{1} and u_{2}, v_{2} are E-coherently orthogonal in the basis x, y.
(43) Suppose that
(i) x, y span the space,
(ii) the segments u, u_{1} and v, v_{1} are M-coherently orthogonal in the basis x, y,
(iii) the segments w, w_{1} and v, v_{1} are M-coherently orthogonal in the basis x, y, and
(iv) the segments w, w_{1} and u_{2}, v_{2} are M-coherently orthogonal in the basis x, y.

Then $w=w_{1}$ or $v=v_{1}$ or the segments u, u_{1} and u_{2}, v_{2} are M-coherently orthogonal in the basis x, y.
(46) Suppose that
(i) x, y span the space,
(ii) the segments u, u_{1} and v, v_{1} are E-coherently orthogonal in the basis x, y,
(iii) the segments v, v_{1} and w, w_{1} are E-coherently orthogonal in the basis x, y, and
(iv) the segments u_{2}, v_{2} and w, w_{1} are E-coherently orthogonal in the basis x, y.

Then the segments u, u_{1} and u_{2}, v_{2} are E-coherently orthogonal in the basis x, y or $v=v_{1}$ or $w=w_{1}$.
(47) Suppose that
(i) x, y span the space,
(ii) the segments u, u_{1} and v, v_{1} are M-coherently orthogonal in the basis x, y,
(iii) the segments v, v_{1} and w, w_{1} are M-coherently orthogonal in the basis x, y, and
(iv) the segments u_{2}, v_{2} and w, w_{1} are M-coherently orthogonal in the basis x, y.

Then the segments u, u_{1} and u_{2}, v_{2} are M-coherently orthogonal in the basis x, y or $v=v_{1}$ or $w=w_{1}$.
(48) Suppose that
(i) x, y span the space,
(ii) the segments u, u_{1} and v, v_{1} are E-coherently orthogonal in the basis x, y,
(iii) the segments v, v_{1} and w, w_{1} are E-coherently orthogonal in the basis x, y, and
(iv) the segments u, u_{1} and u_{2}, v_{2} are E-coherently orthogonal in the basis x, y.

Then the segments u_{2}, v_{2} and w, w_{1} are E-coherently orthogonal in the basis x, y or $v=v_{1}$ or $u=u_{1}$.

[^0](49) Suppose that
(i) x, y span the space,
(ii) the segments u, u_{1} and v, v_{1} are M-coherently orthogonal in the basis x, y,
(iii) the segments v, v_{1} and w, w_{1} are M-coherently orthogonal in the basis x, y, and
(iv) the segments u, u_{1} and u_{2}, v_{2} are M-coherently orthogonal in the basis x, y.

Then the segments u_{2}, v_{2} and w, w_{1} are M-coherently orthogonal in the basis x, y or $v=v_{1}$ or $u=u_{1}$.
(50) Suppose x, y span the space. Let given $v, w, u_{1}, v_{1}, w_{1}$. Suppose that
(i) the segments v, v_{1} and w, u_{1} are not E-coherently orthogonal in the basis x, y,
(ii) the segments v, v_{1} and u_{1}, w are not E-coherently orthogonal in the basis x, y, and
(iii) the segments u_{1}, w_{1} and u_{1}, w are E-coherently orthogonal in the basis x, y.

Then there exists u_{2} such that
(iv) the segments v, v_{1} and v, u_{2} are E-coherently orthogonal in the basis x, y or the segments v, v_{1} and u_{2}, v are E-coherently orthogonal in the basis x, y, and
(v) the segments u_{1}, w_{1} and u_{1}, u_{2} are E-coherently orthogonal in the basis x, y or the segments u_{1}, w_{1} and u_{2}, u_{1} are E-coherently orthogonal in the basis x, y.
(51) Suppose x, y span the space. Then there exist u, v, w such that
(i) the segments u, v and u, w are E-coherently orthogonal in the basis x, y, and
(ii) for all v_{1}, w_{1} such that the segments v_{1}, w_{1} and u, v are E-coherently orthogonal in the basis x, y holds the segments v_{1}, w_{1} and u, w are not E-coherently orthogonal in the basis x, y and the segments v_{1}, w_{1} and w, u are not E-coherently orthogonal in the basis x, y or $v_{1}=w_{1}$.
(52) Suppose x, y span the space. Let given $v, w, u_{1}, v_{1}, w_{1}$. Suppose that
(i) the segments v, v_{1} and w, u_{1} are not M-coherently orthogonal in the basis x, y,
(ii) the segments v, v_{1} and u_{1}, w are not M-coherently orthogonal in the basis x, y, and
(iii) the segments u_{1}, w_{1} and u_{1}, w are M-coherently orthogonal in the basis x, y.

Then there exists u_{2} such that
(iv) the segments v, v_{1} and v, u_{2} are M-coherently orthogonal in the basis x, y or the segments v, v_{1} and u_{2}, v are M-coherently orthogonal in the basis x, y, and
(v) the segments u_{1}, w_{1} and u_{1}, u_{2} are M-coherently orthogonal in the basis x, y or the segments u_{1}, w_{1} and u_{2}, u_{1} are M-coherently orthogonal in the basis x, y.
(53) Suppose x, y span the space. Then there exist u, v, w such that
(i) the segments u, v and u, w are M-coherently orthogonal in the basis x, y, and
(ii) for all v_{1}, w_{1} such that the segments v_{1}, w_{1} and u, v are M-coherently orthogonal in the basis x, y holds the segments v_{1}, w_{1} and u, w are not M-coherently orthogonal in the basis x, y and the segments v_{1}, w_{1} and w, u are not M-coherently orthogonal in the basis x, y or $v_{1}=w_{1}$.

In the sequel u_{3}, v_{3} are sets.
Let us consider V and let us consider x, y. The Euclidean oriented orthogonality defined over V, x, y yields a binary relation on $[:$ the carrier of V, the carrier of $V:]$ and is defined by the condition (Def. 5).
(Def. 5) The following statements are equivalent
(i) $\left\langle u_{3}, v_{3}\right\rangle \in$ the Euclidean oriented orthogonality defined over V, x, y,
(ii) there exist $u_{1}, u_{2}, v_{1}, v_{2}$ such that $u_{3}=\left\langle u_{1}, u_{2}\right\rangle$ and $v_{3}=\left\langle v_{1}, v_{2}\right\rangle$ and the segments u_{1}, u_{2} and v_{1}, v_{2} are E-coherently orthogonal in the basis x, y.

Let us consider V and let us consider x, y. The Minkowskian oriented orthogonality defined over V, x, y yielding a binary relation on [: the carrier of V, the carrier of V :] is defined by the condition (Def. 6).
(Def. 6) The following statements are equivalent
(i) $\left\langle u_{3}, v_{3}\right\rangle \in$ the Minkowskian oriented orthogonality defined over V, x, y,
(ii) there exist $u_{1}, u_{2}, v_{1}, v_{2}$ such that $u_{3}=\left\langle u_{1}, u_{2}\right\rangle$ and $v_{3}=\left\langle v_{1}, v_{2}\right\rangle$ and the segments u_{1}, u_{2} and v_{1}, v_{2} are M-coherently orthogonal in the basis x, y.

Let us consider V and let us consider x, y. The functor CESpace (V, x, y) yields a strict affine structure and is defined by:
(Def. 7) CESpace $(V, x, y)=\langle$ the carrier of V, the Euclidean oriented orthogonality defined over V, $x, y\rangle$.

Let us consider V and let us consider x, y. One can check that CESpace (V, x, y) is non empty.
Let us consider V and let us consider x, y. The functor CMSpace (V, x, y) yields a strict affine structure and is defined by:
(Def. 8) CMSpace $(V, x, y)=\langle$ the carrier of V, the Minkowskian oriented orthogonality defined over $V, x, y\rangle$.

Let us consider V and let us consider x, y. Observe that CMSpace (V, x, y) is non empty. We now state two propositions:
(54) u_{3} is an element of $\operatorname{CESpace}(V, x, y)$ iff u_{3} is a vector of V.
(55) u_{3} is an element of CMSpace (V, x, y) iff u_{3} is a vector of V.

In the sequel p, q, r, s are elements of CESpace (V, x, y).
The following proposition is true
(56) Suppose $u=p$ and $v=q$ and $u_{1}=r$ and $v_{1}=s$. Then $p, q \Uparrow r, s$ if and only if the segments u, v and u_{1}, v_{1} are E-coherently orthogonal in the basis x, y.

In the sequel p, q, r, s are elements of CMSpace (V, x, y).
Next we state the proposition
(57) Suppose $u=p$ and $v=q$ and $u_{1}=r$ and $v_{1}=s$. Then $p, q \| r, s$ if and only if the segments u, v and u_{1}, v_{1} are M-coherently orthogonal in the basis x, y.

REFERENCES

[1] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html.
[3] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical metric affine spaces and planes. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/analmetr.html
[4] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Journal of Formalized Mathematics, 2 , 1990. http://mizar.org/JFM/Vol2/analoaf.html
[5] Henryk Oryszczyszyn and Krzysztof Prażmowski. A construction of analytical ordered trapezium spaces. Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/geomtrap.html
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[7] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ rlvect_1.html.
[8] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset_ 1.html

Received October 24, 1991
Published January 2, 2004

[^0]: ${ }^{1}$ The propositions (44) and (45) have been removed.

