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Summary. We present (in Euclidean and Minkowskian geometry) definitions and
some properties of oriented orthogonality relation. Next we consider consistence Euclidean
space and consistence Minkowskian space.
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The articles([6], [[1], [2], 8], [7], [4], [3], and[[5] provide the notation and terminology for this
paper.

LetV be an Abelian non empty loop structure andet be elements df . Let us observe that
the functorv+ w is commutative.

We adopt the following conventioV. denotes a real linear spaeg Uy, Uy, v, V1, Vo, W, Wy, X, Y
denote vectors of , andn denotes a real number.

Let us considel, x, y and let us considen. The functorp)'}{'y(u) yields a vector ol and is
defined by:

(Def. 1) pify(u) = Ty (U) - X+ (=G (W) -.
The following propositions are true:
(1) If x, y span the space, th@i'y(u +v) = p)'}{'y(u) + p)'\({'y(v).
(2) If x,y span the space, theif\ (n-u) = n-p}} (u).
(3) If x,y span the space, theif, (0,) = Oy.
(4) If x, y span the space, thesf\ (—u) = —p{, (u).
(5) If x, y span the space, the\ (u—v) = p}\ (u) — p}¥, (v).
(6) If x, y span the space am\,(u) = p}4, (v), thenu =v.
(7) If x, y span the space, thef|, (o} (u)) = u.

(8) If x, y span the space, then there existaich thau = p)’}f'y(v).

Let us consideW, x, y and let us considen. The functorpﬁy(u) yields a vector ol and is
defined by:

(Def. 2) p)Ey(u) = Tliy(u) X+ (7T[3(',y(u)) Y.

Next we state several propositions:
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(9) Ifx, yspan the space, thef, (—v) = —p&, (V).

(10) Ifx, y span the space, thesf,

(11) Ifx, y span the space, thef, (u—v) = p&, (u) — p&,(v).

(12) Ifx, yspan the space, thex,(n-u) = n-pg,(u).

(—

(U-+V) = Py (u) +PXy (V).

y(

(

(13) If x, y span the space arpliy(u) = px7y(v), thenu=v.

(14) Ifx, y span the space, thex, (pg (u)) = —u.

(15) Ifx, y span the space, then there existaich thapEy(v) =u.

Let us consideY and let us considex, y, u, v, Uz, v1. We say that the segmenisv anduy, v1
are E-coherently orthogonal in the basjy if and only if:

(Def. 3) p)'iy(u),p)ﬁy(v) 1/ ug,va.
We say that the segmentsv anduy, v; are M-coherently orthogonal in the basjg if and only if:
(Def. 4) p)'}{'y(u), p)'}f'y(v) 1/ ug,vs.
We now state a number of propositions:
(16) Ifx, y span the space, thentifv || uy,vi, thenp, (u), p%, (V) 1 p&, (u1), pE, (V).

(17) Ifx, y span the space, thenufv || ug, vy, thenp)'\({'y(u), p)'\({'y(v) 1 p)'}f'y(ul), p)"(f'y(vl).

(18) Suppose, y span the space. Suppose the segmgntsandyv, v, are E-coherently orthog-
onal in the basig, y. Then the segments v1 andu;, u are E-coherently orthogonal in the
basisx, y.

(19) Suppose, y span the space. Suppose the segmentg andv, v; are M-coherently
orthogonal in the basis, y. Then the segments v; andu, u; are M-coherently orthogonal
in the basis y.

(20) The segments, u andv, w are E-coherently orthogonal in the basjy.

(21) The segments, u andv, w are M-coherently orthogonal in the bagijsy.

(22) The segments, v andw, w are E-coherently orthogonal in the basiy.

(23) The segments, v andw, w are M-coherently orthogonal in the bagijsy.

(24) Ifx, y span the space, thenv, p%,(u) andpf, (v) are orthogonal w.r.t, y.

(25) The segments, v andp)'iy(u), p)'iy(v) are E-coherently orthogonal in the bagjy.
(26) The segments, v andp)'}f'y(u), p)'if'y(v) are M-coherently orthogonal in the basijsy.

(27) Suppose, y span the space. Thenv | ug,v; if and only if there exisus, v» such that
Uy # Vo and the segments, v, andu, v are E-coherently orthogonal in the basiy and the
segmentsly, Vo andus, v1 are E-coherently orthogonal in the basiy.

(28) Suppose, y span the space. Thenv || u,v; if and only if there exisus, v» such that
Uy # Vo and the segments, v» andu, v are M-coherently orthogonal in the bagjy and the
segmentsly, Vo andui, v; are M-coherently orthogonal in the bagijsy.

(29) Suppose, y span the space. Thenv, u; andvy are orthogonal w.r.tx, y if and only if
one of the following conditions is satisfied:
(i) the segments, vandus, vi are E-coherently orthogonal in the basig, or
(i) the segmentsl, v andvy, u; are E-coherently orthogonal in the basjy.
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(30) Suppose that
(i) X, yspan the space,
(i) the segmentsl, v anduy, v, are E-coherently orthogonal in the basjy, and
(i)  the segments, v andvs, u; are E-coherently orthogonal in the basijy.
Thenu=voru; =vj.

(81) Suppose that

(i) x, yspan the space,

(i) the segmentsl, vanduy, v; are M-coherently orthogonal in the basgjs/, and
(i)  the segmentsl, v andvy, u; are M-coherently orthogonal in the bagjsy.

Thenu=voru; =vj.

(32) Suppose that
(i) x, yspan the space,
(i) the segments, v anduy, v; are E-coherently orthogonal in the basjy, and
(iii)  the segments, v andus, w are E-coherently orthogonal in the basijy.
Then
(iv) the segments, v andv;, w are E-coherently orthogonal in the basjy, or
(v) the segments, v andw, v; are E-coherently orthogonal in the basijy.

(33) Suppose that
(i) x,yspan the space,
(i) the segmentsl, v andui, v; are M-coherently orthogonal in the bagjs/, and
(i)  the segments, v andug, w are M-coherently orthogonal in the bagjsy.
Then
(iv) the segments, v andvs, w are M-coherently orthogonal in the basjs, or
(v) the segments, v andw, v; are M-coherently orthogonal in the basgjsy.

(34) Suppose the segmenitsv anduz, v1 are E-coherently orthogonal in the bagjs. Then
the segments, u andvs, u; are E-coherently orthogonal in the basijy.

(35) Suppose the segmentsy andus, v1 are M-coherently orthogonal in the basisy. Then
the segments, u andvy, u; are M-coherently orthogonal in the bagijs.
(36) Suppose that
() X, yspan the space,
(ii) the segments, v anduy, v4 are E-coherently orthogonal in the basjy, and
(i) the segmentsl, v andvy, w are E-coherently orthogonal in the basjy.
Then the segments v anduz, w are E-coherently orthogonal in the basiy.

(37) Suppose that
(i) x,yspan the space,
(i) the segmentsl, vandusi, v; are M-coherently orthogonal in the bagjs/, and
(i)  the segmentsl, v andvy, w are M-coherently orthogonal in the bagijsy.
Then the segments v anduz, w are M-coherently orthogonal in the basjsy.

(38) Supposg, y span the space. Let givenv, w. Then there exista; such thatw £ u; and
the segmentw, u; andu, v are E-coherently orthogonal in the basiy.
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(39) Suppose, y span the space. Let givenv, w. Then there existg; such thatw = u; and
the segmentw, u; andu, v are M-coherently orthogonal in the bagjsy.

(40) Suppose, y span the space. Let givenv, w. Then there existg; such thatw = u; and
the segments, v andw, u; are E-coherently orthogonal in the basiy.

(41) Suppose, y span the space. Let givenv, w. Then there existg; such thatw = u; and
the segments, v andw, u; are M-coherently orthogonal in the basgjsy.

(42) Suppose that
(i) x, yspan the space,
(i) the segmentsl, u; andv, v; are E-coherently orthogonal in the basiy,
(i) the segmentsv, wy andyv, v; are E-coherently orthogonal in the basiy, and
(iv) the segmentsy, w; anduy, v, are E-coherently orthogonal in the basjy.
Thenw = w; or v =v; or the segments, u; anduy, V> are E-coherently orthogonal in the
basisx, y.
(43) Suppose that
(i) x, yspan the space,
(i) the segmentsl, u; andv, v, are M-coherently orthogonal in the basijs,
(iii)  the segmentsv, wi andv, v; are M-coherently orthogonal in the bagjs/, and
(iv) the segmentsy, w; anduy, v» are M-coherently orthogonal in the bagjsy.
Thenw = wy or v =v; or the segments, u; anduy, v» are M-coherently orthogonal in the
basisx, y.
(46f] Suppose that
(i) X, yspan the space,
(i) the segmentsl, u; andv, v; are E-coherently orthogonal in the basiy,
(i)  the segmenty, v1 andw, w; are E-coherently orthogonal in the basjy, and
(iv) the segmentsy, v, andw, wy are E-coherently orthogonal in the basiy.
Then the segments u; anduy, v» are E-coherently orthogonal in the basjsy or v=v; or
W= Wj.
(47) Suppose that
(i) %, yspanthe space,
(i) the segments, u; andv, v; are M-coherently orthogonal in the basijs,
(i)  the segmenty, v1 andw, wy are M-coherently orthogonal in the basjsy, and
(iv) the segmentsy, v, andw, wy are M-coherently orthogonal in the basijsy.
Then the segments u; anduy, v» are M-coherently orthogonal in the bagis/ orv=v; or
W= Wj.
(48) Suppose that
(i) %, yspanthe space,
(i) the segmentsi, u; andv, v; are E-coherently orthogonal in the basiy,
(i)  the segmenty, v1 andw, w; are E-coherently orthogonal in the basjy, and
(iv) the segments, u; anduy, v, are E-coherently orthogonal in the basiy.

Then the segments, v, andw, w; are E-coherently orthogonal in the basjy orv =v; or
uU=uj.

1 The propositions (44) and (45) have been removed.
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(49) Suppose that
(i) X, yspan the space,
(i) the segments, u; andv, v; are M-coherently orthogonal in the bagjsy,
(iii)  the segments, v; andw, wy are M-coherently orthogonal in the bagjs, and
(iv) the segments, u; anduy, v» are M-coherently orthogonal in the basijsy.
Then the segmentg, v, andw, wy are M-coherently orthogonal in the bagjyy orv=v; or
u=u.
(50) Suppose, y span the space. Let givenw, ug, vi, wi. Suppose that
(i) the segments, v andw, u; are not E-coherently orthogonal in the basiy,
(i) the segments, v anduz, w are not E-coherently orthogonal in the basig, and
(i)  the segmentsi;, wy anduy, w are E-coherently orthogonal in the basijy.
Then there exista, such that

(iv) the segments, v1 andv, up are E-coherently orthogonal in the basgjy or the segments
v, v; andug, v are E-coherently orthogonal in the basiy, and

(v) the segments;, wi anduy, up are E-coherently orthogonal in the basiy or the segments
uz, wi anduy, u; are E-coherently orthogonal in the basjy.
(51) Suppose, y span the space. Then there exist, w such that
(i) the segments, vandu, w are E-coherently orthogonal in the basiy, and
(i) for all v1, wy such that the segments, w; andu, v are E-coherently orthogonal in the
basisx, y holds the segmentg, wi andu, w are not E-coherently orthogonal in the basig
and the segmentg, wi andw, u are not E-coherently orthogonal in the basig or vi = wj.
(52) Suppose, y span the space. Let givenw, ug, vi, wi. Suppose that
(i) the segments, vi andw, u; are not M-coherently orthogonal in the basiy,
(i) the segments, v; anduz, w are not M-coherently orthogonal in the basjy, and
(i)  the segmentsi;, wy; anduy, w are M-coherently orthogonal in the bagijsy.
Then there exists, such that

(iv) the segments, v; andyv, u; are M-coherently orthogonal in the bagjs/ or the segments
v, v; anduy, v are M-coherently orthogonal in the basjsy, and

(v) the segments;, wy anduy, up are M-coherently orthogonal in the bagjy or the segments
u;, w1 anduy, u; are M-coherently orthogonal in the basjs.
(53) Suppose, y span the space. Then there exist, w such that
(i) the segments, vandu, w are M-coherently orthogonal in the basgis/, and

(i)  for all vq, wy such that the segmenés, w, andu, v are M-coherently orthogonal in the
basisx, y holds the segmentg, w; andu, w are not M-coherently orthogonal in the basiy
and the segmentg, w; andw, u are not M-coherently orthogonal in the basig or vi = wj.

In the sequeliz, v3 are sets.

Let us consideY and let us considet, y. The Euclidean oriented orthogonality defined dver
X, y yields a binary relation ofithe carrier oV, the carrier oV ] and is defined by the condition
(Def. 5).

(Def. 5) The following statements are equivalent

(i)  (us, v3) € the Euclidean oriented orthogonality defined ovex, y,

(i) there existus, Uy, vi, V2 such thaus = (uz, up) andvs = (v1, v») and the segments, u
andvy, v» are E-coherently orthogonal in the basiy.
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Let us consideY and let us considet, y. The Minkowskian oriented orthogonality defined over
V, x, y yielding a binary relation ofithe carrier oV, the carrier ol ] is defined by the condition
(Def. 6).

(Def. 6) The following statements are equivalent
() {us, v3) € the Minkowskian oriented orthogonality defined ovgrx, v,

(i) there existuy, Uy, vi, V2 such thauz = (ug, uz) andvs = (v1, v») and the segments, u,
andvy, v» are M-coherently orthogonal in the basijsy.

Let us consideV and let us considex, y. The functor CESpad¥,x,y) yields a strict affine
structure and is defined by:

(Def. 7) CESpac@/,x,y) = (the carrier oi, the Euclidean oriented orthogonality defined over
X ).

Let us conside¥ and let us consider, y. One can check that CESpd¥dex,y) is non empty.
Let us conside¥ and let us considex, y. The functor CMSpad¥, x,y) yields a strict affine
structure and is defined by:

(Def. 8) CMSpacé/,x,y) = (the carrier ol, the Minkowskian oriented orthogonality defined over
V, X, Y).

Let us conside¥ and let us consider, y. Observe that CMSpagé x,y) is non empty.
We now state two propositions:

(54) uzis an element of CESpa@é x,y) iff us is a vector olV.

(55) uszis an element of CMSpaf¥é, x,y) iff us is a vector oV.

In the sequep, g, r, sare elements of CESpagéx,y).
The following proposition is true

(56) Suppose = pandv=qgandu; =r andv; =s. Thenp,q]| r,sif and only if the segments
u, vandus, v1 are E-coherently orthogonal in the basiy.

In the sequep, g, r, sare elements of CMSpagé x,y).
Next we state the proposition

(57) Suppose = pandv=qandu; =r andv; =s. Thenp,q]| r,sif and only if the segments
u, vanduy, v1 are M-coherently orthogonal in the bagijsy.
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