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Summary. In the article with a given arbitrary real linear space we correlate the (or-
dered) affine space defined in terms of a directed parallelity of segments. The abstract contains
a construction of the ordered affine structure associated with a vector space; this is a structure
of the type which frequently occurs in geometry and consists of the set of points and a binary
relation on segments. For suitable underlying vector spaces we prove that the corresponding
affine structures are ordered affine spaces or ordered affine planes, i.e. that they satisfy appro-
priate axioms. A formal definition of an arbitrary ordered affine space and an arbitrary ordered
affine plane is given.

MML Identifier: ANALOAF.
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The articles [5], [2], [4], [3], [7], [6], and [1] provide the notation and terminology for this paper.
We adopt the following rules:V denotes a real linear space,p, q, u, v, w, y denote vectors ofV,

anda, b denote real numbers.
Let us considerV and let us consideru, v, w, y. The predicateu,v ��‖ w,y is defined as follows:

(Def. 1) u = v or w = y or there exista, b such that 0< a and 0< b anda· (v−u) = b· (y−w).

Next we state a number of propositions:

(2)1 If 0 < a and 0< b, then 0< a+b.

(3) If a 6= b, then 0< a−b or 0< b−a.

(4) (w−v)+(v−u) = w−u.

(6)2 w− (u−v) = w+(v−u).

(9)3 If y+u = v+w, theny−w = v−u.

(10) a· (u−v) =−a· (v−u).

(11) (a−b) · (u−v) = (b−a) · (v−u).

(12) If a 6= 0 anda·u = v, thenu = a−1 ·v.

(13) If a 6= 0 anda·u = v, thenu = a−1 ·v and ifa 6= 0 andu = a−1 ·v, thena·u = v.

1Supported by RPBP.III-24.C6.
1 The proposition (1) has been removed.
2 The proposition (5) has been removed.
3 The propositions (7) and (8) have been removed.
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(16)4 If u,v ��‖ w,y andu 6= v andw 6= y, then there exista, b such thata· (v−u) = b· (y−w) and
0 < a and 0< b.

(17) u,v ��‖ u,v.

(18) u,v ��‖ w,w andu,u ��‖ v,w.

(19) If u,v ��‖ v,u, thenu = v.

(20) If p 6= q andp,q ��‖ u,v andp,q ��‖ w,y, thenu,v ��‖ w,y.

(21) If u,v ��‖ w,y, thenv,u ��‖ y,w andw,y ��‖ u,v.

(22) If u,v ��‖ v,w, thenu,v ��‖ u,w.

(23) If u,v ��‖ u,w, thenu,v ��‖ v,w or u,w ��‖ w,v.

(24) If v−u = y−w, thenu,v ��‖ w,y.

(25) If y = (v+w)−u, thenu,v ��‖ w,y andu,w ��‖ v,y.

(26) If there existp, q such thatp 6= q, then for allu, v, w there existsy such thatu,v ��‖ w,y and
u,w ��‖ v,y andv 6= y.

(27) If p 6= v andv, p ��‖ p,w, then there existsy such thatu, p ��‖ p,y andu,v ��‖ w,y.

(28) If for all a, b such thata ·u+b ·v = 0V holdsa = 0 andb = 0, thenu 6= v andu 6= 0V and
v 6= 0V .

(29) If there existu, v such that for alla, b such thata ·u+ b · v = 0V holdsa = 0 andb = 0,
then there existu, v, w, y such thatu,v ��∦ w,y andu,v ��∦ y,w.

(31)5 Givenp, q such that let givenw. Then there exista, b such thata· p+b·q= w. Let givenu,
v, w, y. Supposeu,v ��∦ w,y andu,v ��∦ y,w. Then there exists a vectorzof V such thatu,v ��‖ u,z
or u,v ��‖ z,u butw,y ��‖ w,z or w,y ��‖ z,w.

We introduce affine structures which are extensions of 1-sorted structure and are systems
〈 a carrier, a congruence〉,

where the carrier is a set and the congruence is a binary relation on[: the carrier, the carrier :].
Let us observe that there exists an affine structure which is non empty and strict.
We adopt the following rules:A1 denotes a non empty affine structure,a, b, c, d denote elements

of A1, andx, z denote sets.
Let us considerA1, a, b, c, d. The predicatea,b ��‖ c,d is defined by:

(Def. 2) 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ the congruence ofA1.

Let us considerV. The functor��V yields a binary relation on[: the carrier ofV, the carrier of
V :] and is defined as follows:

(Def. 3) 〈〈x, z〉〉 ∈ ��V iff there existu, v, w, y such thatx = 〈〈u, v〉〉 andz= 〈〈w, y〉〉 andu,v ��‖ w,y.

One can prove the following proposition

(33)6 〈〈〈〈u, v〉〉, 〈〈w, y〉〉〉〉 ∈ ��V iff u,v ��‖ w,y.

Let us considerV. The functor OASpaceV yields a strict affine structure and is defined as
follows:

(Def. 4) OASpaceV = 〈the carrier ofV, ��V〉.
4 The propositions (14) and (15) have been removed.
5 The proposition (30) has been removed.
6 The proposition (32) has been removed.
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Let us considerV. Note that OASpaceV is non empty.
Next we state two propositions:

(35)7 Givenu, v such that leta, b be real numbers. Ifa ·u+ b · v = 0V , thena = 0 andb = 0.
Then

(i) there exist elementsa, b of OASpaceV such thata 6= b,

(ii) for all elementsa, b, c, d, p, q, r, s of OASpaceV holdsa,b ��‖ c,c and if a,b ��‖ b,a, then
a= b and ifa 6= b anda,b ��‖ p,q anda,b ��‖ r,s, thenp,q ��‖ r,sand ifa,b ��‖ c,d, thenb,a ��‖ d,c
and ifa,b ��‖ b,c, thena,b ��‖ a,c and ifa,b ��‖ a,c, thena,b ��‖ b,c or a,c ��‖ c,b,

(iii) there exist elementsa, b, c, d of OASpaceV such thata,b ��∦ c,d anda,b ��∦ d,c,

(iv) for all elementsa, b, c of OASpaceV there exists an elementd of OASpaceV such that
a,b ��‖ c,d anda,c ��‖ b,d andb 6= d, and

(v) for all elementsp, a, b, c of OASpaceV such thatp 6= b andb, p ��‖ p,c there exists an
elementd of OASpaceV such thata, p ��‖ p,d anda,b ��‖ c,d.

(36) Given vectorsp, q of V such that letw be a vector ofV. Then there exist real numbersa,
b such thata · p+b ·q = w. Let a, b, c, d be elements of OASpaceV. Supposea,b ��∦ c,d and
a,b ��∦ d,c. Then there exists an elementt of OASpaceV such thata,b ��‖ a, t or a,b ��‖ t,a but
c,d ��‖ c, t or c,d ��‖ t,c.

Let I1 be a non empty affine structure. We say thatI1 is ordered affine space-like if and only if
the conditions (Def. 5) are satisfied.

(Def. 5)(i) For all elementsa, b, c, d, p, q, r, s of I1 holdsa,b ��‖ c,c and if a,b ��‖ b,a, thena = b
and ifa 6= b anda,b ��‖ p,q anda,b ��‖ r,s, thenp,q ��‖ r,sand ifa,b ��‖ c,d, thenb,a ��‖ d,c and
if a,b ��‖ b,c, thena,b ��‖ a,c and ifa,b ��‖ a,c, thena,b ��‖ b,c or a,c ��‖ c,b,

(ii) there exist elementsa, b, c, d of I1 such thata,b ��∦ c,d anda,b ��∦ d,c,

(iii) for all elementsa, b, c of I1 there exists an elementd of I1 such thata,b��‖ c,d anda,c��‖ b,d
andb 6= d, and

(iv) for all elementsp, a, b, c of I1 such thatp 6= b andb, p ��‖ p,c there exists an elementd of
I1 such thata, p ��‖ p,d anda,b ��‖ c,d.

Let us note that there exists a non empty affine structure which is strict, non trivial, and ordered
affine space-like.

An ordered affine space is a non trivial ordered affine space-like non empty affine structure.
We now state two propositions:

(37) There exist elementsa, b of A1 such thata 6= b and for all elementsa, b, c, d, p, q, r, s of
A1 holdsa,b ��‖ c,c and ifa,b ��‖ b,a, thena= b and ifa 6= b anda,b ��‖ p,q anda,b ��‖ r,s, then
p,q ��‖ r,s and if a,b ��‖ c,d, thenb,a ��‖ d,c and if a,b ��‖ b,c, thena,b ��‖ a,c and if a,b ��‖ a,c,
thena,b ��‖ b,c or a,c ��‖ c,b and there exist elementsa, b, c, d of A1 such thata,b ��∦ c,d and
a,b ��∦ d,c and for all elementsa, b, c of A1 there exists an elementd of A1 such thata,b ��‖ c,d
anda,c ��‖ b,d andb 6= d and for all elementsp, a, b, c of A1 such thatp 6= b andb, p ��‖ p,c
there exists an elementd of A1 such thata, p ��‖ p,d anda,b ��‖ c,d if and only if A1 is an
ordered affine space.

(38) Givenu, v such that leta, b be real numbers. Ifa ·u+ b · v = 0V , thena = 0 andb = 0.
Then OASpaceV is an ordered affine space.

Let I1 be an ordered affine space. We say thatI1 is 2-dimensional if and only if the condition
(Def. 6) is satisfied.

(Def. 6) Leta, b, c, d be elements ofI1. Supposea,b ��∦ c,d anda,b ��∦ d,c. Then there exists an
elementp of I1 such thata,b ��‖ a, p or a,b ��‖ p,a butc,d ��‖ c, p or c,d ��‖ p,c.

7 The proposition (34) has been removed.
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Let us observe that there exists an ordered affine space which is strict and 2-dimensional.
An ordered affine plane is a 2-dimensional ordered affine space.
One can prove the following two propositions:

(50)8 There exist elementsa, b of A1 such thata 6= b and for all elementsa, b, c, d, p, q, r, s of
A1 holdsa,b ��‖ c,c and ifa,b ��‖ b,a, thena= b and ifa 6= b anda,b ��‖ p,q anda,b ��‖ r,s, then
p,q ��‖ r,s and if a,b ��‖ c,d, thenb,a ��‖ d,c and if a,b ��‖ b,c, thena,b ��‖ a,c and if a,b ��‖ a,c,
thena,b ��‖ b,c or a,c ��‖ c,b and there exist elementsa, b, c, d of A1 such thata,b ��∦ c,d and
a,b ��∦ d,c and for all elementsa, b, c of A1 there exists an elementd of A1 such thata,b ��‖ c,d
anda,c ��‖ b,d andb 6= d and for all elementsp, a, b, c of A1 such thatp 6= b andb, p ��‖ p,c
there exists an elementd of A1 such thata, p ��‖ p,d anda,b ��‖ c,d and for all elementsa, b, c,
d of A1 such thata,b ��∦ c,d anda,b ��∦ d,c there exists an elementp of A1 such thata,b ��‖ a, p
or a,b ��‖ p,a butc,d ��‖ c, p or c,d ��‖ p,c if and only if A1 is an ordered affine plane.

(51) Givenu, v such that

(i) for all real numbersa, b such thata·u+b·v = 0V holdsa = 0 andb = 0, and

(ii) for everyw there exist real numbersa, b such thatw = a·u+b·v.
Then OASpaceV is an ordered affine plane.
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