Analytical Ordered Affine Spaces¹

Henryk Oryszczyszyn Warsaw University Białystok Krzysztof Prażmowski Warsaw University Białystok

Summary. In the article with a given arbitrary real linear space we correlate the (ordered) affine space defined in terms of a directed parallelity of segments. The abstract contains a construction of the ordered affine structure associated with a vector space; this is a structure of the type which frequently occurs in geometry and consists of the set of points and a binary relation on segments. For suitable underlying vector spaces we prove that the corresponding affine structures are ordered affine spaces or ordered affine planes, i.e. that they satisfy appropriate axioms. A formal definition of an arbitrary ordered affine space and an arbitrary ordered affine plane is given.

MML Identifier: ANALOAF.

WWW: http://mizar.org/JFM/Vol2/analoaf.html

The articles [5], [2], [4], [3], [7], [6], and [1] provide the notation and terminology for this paper. We adopt the following rules: V denotes a real linear space, p, q, u, v, w, y denote vectors of V, and a, b denote real numbers.

Let us consider V and let us consider u, v, w, y. The predicate $u, v \uparrow v$, w is defined as follows:

(Def. 1) u = v or w = y or there exist a, b such that 0 < a and 0 < b and $a \cdot (v - u) = b \cdot (y - w)$.

Next we state a number of propositions:

- $(2)^1$ If 0 < a and 0 < b, then 0 < a + b.
- (3) If $a \neq b$, then 0 < a b or 0 < b a.
- (4) (w-v)+(v-u)=w-u.
- $(6)^2$ w (u v) = w + (v u).
- $(9)^3$ If y + u = v + w, then y w = v u.
- $(10) \quad a \cdot (u v) = -a \cdot (v u).$
- (11) $(a-b) \cdot (u-v) = (b-a) \cdot (v-u)$.
- (12) If $a \neq 0$ and $a \cdot u = v$, then $u = a^{-1} \cdot v$.
- (13) If $a \neq 0$ and $a \cdot u = v$, then $u = a^{-1} \cdot v$ and if $a \neq 0$ and $u = a^{-1} \cdot v$, then $a \cdot u = v$.

¹Supported by RPBP.III-24.C6.

¹ The proposition (1) has been removed.

² The proposition (5) has been removed.

³ The propositions (7) and (8) have been removed.

- (16)⁴ If $u, v \upharpoonright w, y$ and $u \neq v$ and $w \neq y$, then there exist a, b such that $a \cdot (v u) = b \cdot (y w)$ and 0 < a and 0 < b.
- (17) $u, v \uparrow u, v$.
- (18) $u, v \upharpoonright w, w \text{ and } u, u \upharpoonright v, w.$
- (19) If $u, v \upharpoonright v, u$, then u = v.
- (20) If $p \neq q$ and $p,q \uparrow \downarrow u,v$ and $p,q \uparrow \downarrow w,y$, then $u,v \uparrow \downarrow w,y$.
- (21) If $u, v \upharpoonright w, v$, then $v, u \upharpoonright v, w$ and $w, v \upharpoonright u, v$.
- (22) If u, v
 ewline v, w, then u, v
 ewline u, w.
- (23) If $u, v \parallel u, w$, then $u, v \parallel v, w$ or $u, w \parallel w, v$.
- (24) If v u = y w, then $u, v \parallel w, y$.
- (25) If y = (v + w) u, then $u, v \upharpoonright w, y$ and $u, w \upharpoonright v, y$.
- (26) If there exist p, q such that $p \neq q$, then for all u, v, w there exists y such that u, $v \parallel w$, y and u, $w \parallel v$, y and $v \neq y$.
- (27) If $p \neq v$ and $v, p \parallel p, w$, then there exists y such that $u, p \parallel p, y$ and $u, v \parallel w, y$.
- (28) If for all a, b such that $a \cdot u + b \cdot v = 0_V$ holds a = 0 and b = 0, then $u \neq v$ and $u \neq 0_V$ and $v \neq 0_V$.
- (29) If there exist u, v such that for all a, b such that $a \cdot u + b \cdot v = 0_V$ holds a = 0 and b = 0, then there exist u, v, w, y such that u, $v \not \parallel w$, y and u, $v \not \parallel y$, w.

We introduce affine structures which are extensions of 1-sorted structure and are systems \langle a carrier, a congruence \rangle ,

where the carrier is a set and the congruence is a binary relation on [: the carrier, the carrier:].

Let us observe that there exists an affine structure which is non empty and strict.

We adopt the following rules: A_1 denotes a non empty affine structure, a, b, c, d denote elements of A_1 , and x, z denote sets.

(Def. 2) $\langle \langle a, b \rangle, \langle c, d \rangle \rangle \in \text{the congruence of } A_1.$

Let us consider V. The functor $| |_V$ yields a binary relation on [: the carrier of V; and is defined as follows:

(Def. 3) $\langle x, z \rangle \in \uparrow \upharpoonright_V$ iff there exist u, v, w, y such that $x = \langle u, v \rangle$ and $z = \langle w, y \rangle$ and $u, v \upharpoonright \upharpoonright w, y$.

One can prove the following proposition

$$(33)^6 \quad \langle \langle u, v \rangle, \langle w, y \rangle \rangle \in \downarrow \upharpoonright_V \text{ iff } u, v \uparrow \upharpoonright w, y.$$

Let us consider V. The functor OASpace V yields a strict affine structure and is defined as follows:

(Def. 4) OASpace $V = \langle \text{the carrier of } V, \uparrow \mid_V \rangle$.

⁴ The propositions (14) and (15) have been removed.

⁵ The proposition (30) has been removed.

⁶ The proposition (32) has been removed.

Let us consider *V*. Note that OASpace *V* is non empty. Next we state two propositions:

- (35)⁷ Given u, v such that let a, b be real numbers. If $a \cdot u + b \cdot v = 0_V$, then a = 0 and b = 0. Then
 - (i) there exist elements a, b of OASpace V such that $a \neq b$,
- (ii) for all elements a, b, c, d, p, q, r, s of OASpace V holds $a, b \parallel c, c$ and if $a, b \parallel b, a$, then a = b and if $a \neq b$ and $a, b \parallel p, q$ and $a, b \parallel r, s$, then $p, q \parallel r, s$ and if $a, b \parallel c, d$, then $b, a \parallel d, c$ and if $a, b \parallel b, c$, then $a, b \parallel a, c$ and if $a, b \parallel a, c$, then $a, b \parallel a, c$ and if $a, b \parallel a, c$ and if a, b
- (iii) there exist elements a, b, c, d of OASpace V such that $a,b \not\parallel c,d$ and $a,b \not\parallel d,c$,
- (iv) for all elements a, b, c of OASpace V there exists an element d of OASpace V such that a, $b \parallel c$, d and a, $c \parallel b$, d and $b \neq d$, and
- (v) for all elements p, a, b, c of OASpace V such that $p \neq b$ and b, $p \parallel p$, c there exists an element d of OASpace V such that a, $p \parallel p$, d and a, $b \parallel c$, d.
- (36) Given vectors p, q of V such that let w be a vector of V. Then there exist real numbers a, b such that $a \cdot p + b \cdot q = w$. Let a, b, c, d be elements of OASpace V. Suppose a, $b \not\parallel d$, c. Then there exists an element t of OASpace V such that a, $b \not\parallel a$, t or a, $b \not\parallel t$, a but c, $d \not\parallel c$, t or c, $d \not\parallel t$, c.

Let I_1 be a non empty affine structure. We say that I_1 is ordered affine space-like if and only if the conditions (Def. 5) are satisfied.

- (Def. 5)(i) For all elements a, b, c, d, p, q, r, s of I_1 holds a, $b \parallel c$, c and if a, $b \parallel b$, a, then a = b and if $a \neq b$ and a, $b \parallel p$, q and a, $b \parallel r$, s, then a, $b \parallel c$, and if a, $b \parallel b$, a, then a, $b \parallel a$, a, and if a, $b \parallel b$, a, then a, $b \parallel a$, a, and if a, $b \parallel b$, a, and if a, $b \parallel b$, a, and if a, $b \parallel a$, a, and if a, and if a, and if a, a, and if a
 - (ii) there exist elements a, b, c, d of I_1 such that $a, b \not\parallel c, d$ and $a, b \not\parallel d, c$,

 - (iv) for all elements p, a, b, c of I_1 such that $p \neq b$ and b, $p \parallel p$, c there exists an element d of I_1 such that a, $p \parallel p$, d and a, $b \parallel c$, d.

Let us note that there exists a non empty affine structure which is strict, non trivial, and ordered affine space-like.

An ordered affine space is a non trivial ordered affine space-like non empty affine structure. We now state two propositions:

- (38) Given u, v such that let a, b be real numbers. If $a \cdot u + b \cdot v = 0_V$, then a = 0 and b = 0. Then OASpace V is an ordered affine space.

Let I_1 be an ordered affine space. We say that I_1 is 2-dimensional if and only if the condition (Def. 6) is satisfied.

(Def. 6) Let a, b, c, d be elements of I_1 . Suppose $a, b \not\parallel c, d$ and $a, b \not\parallel d, c$. Then there exists an element p of I_1 such that $a, b \not\parallel a, p$ or $a, b \not\parallel p, a$ but $c, d \not\parallel c, p$ or $c, d \not\parallel p, c$.

⁷ The proposition (34) has been removed.

Let us observe that there exists an ordered affine space which is strict and 2-dimensional. An ordered affine plane is a 2-dimensional ordered affine space.

One can prove the following two propositions:

- (50)⁸ There exist elements a, b of A_1 such that $a \neq b$ and for all elements a, b, c, d, p, q, r, s of A_1 holds $a, b \parallel c, c$ and if $a, b \parallel b, a$, then a = b and if $a \neq b$ and $a, b \parallel p, q$ and $a, b \parallel r, s$, then $p, q \parallel r, s$ and if $a, b \parallel c, d$, then $b, a \parallel d, c$ and if $a, b \parallel b, c$, then $a, b \parallel a, c$ and if $a, b \parallel a, c$, then $a, b \parallel b, c$ or $a, c \parallel c, b$ and there exist elements a, b, c, d of A_1 such that $a, b \parallel c, d$ and $a, b \parallel d, c$ and for all elements a, b, c of A_1 such that $a, b \parallel c, d$ and $a, c \parallel b, d$ and $b \neq d$ and for all elements a, b, c of $a, b \parallel c, d$ and for all elements $a, b \parallel c, d$ and $a, b \parallel c, d$ and only if A_1 is an ordered affine plane.
- (51) Given u, v such that
 - (i) for all real numbers a, b such that $a \cdot u + b \cdot v = 0_V$ holds a = 0 and b = 0, and
- (ii) for every w there exist real numbers a, b such that $w = a \cdot u + b \cdot v$.

Then OASpace V is an ordered affine plane.

REFERENCES

- [1] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/realset1.html.
- [2] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [3] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [4] Andrzej Trybulec. Domains and their Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/domain_1.html.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [6] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [7] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset_1.html.

Received April 11, 1990

Published January 2, 2004

⁸ The propositions (39)–(49) have been removed.