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A Tree of Execution of a Macroinstructiond

Artur Kornitowicz
University of Bialystok, Poland

Summary. A tree of execution of a macroinstruction has been defined. It is a tree
decorated by the instruction locations of a computer. Successors of each vertex are determined
by the set of all possible values of the instruction counter after execution of the instruction
placed in the location indicated by given vertex.
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The articles([21],[[1P],[[25],[[15],[11],[122],[13],[14],[[16],[[26], [9],[111] [[20], I5],[16],.[20],. 23],
[8I, @41, [20, [7], 1281, [23], [19], [24], and [17] provide the notation and terminology for this paper.
For simplicity, we adopt the following conventiorx, y, X denote setsm, n denote natural
numbersQ denotes an ordinal number, aRdS denote binary relations.

Let D be a set, lef be a partial function fron to N, and letn be a set. Observe th&tn) is
natural.

Let Rbe an empty binary relation and Métbe a set. One can check thjtX is empty.

We now state two propositions:

(1) IfdomR= {x} and rnqR = {y}, thenR= x——y.
(2) field{{x,x)} = {x}.

Let X be an infinite set and letbe a set. Note that — a s infinite.
One can verify that there exists a function which is infinite.

Let Rbe a finite binary relation. One can check that field finite.
The following proposition is true

(3) IffieldRis finite, thenRis finite.

Let Rbe an infinite binary relation. One can verify that fiRl@ infinite.
We now state the proposition

(4) If domRis finite and rn@ris finite, thenR is finite.

Let us observe thatg is empty.
Let X be a non empty set. Note thag is non empty.
We now state two propositions:

(6) “po={(xx}
(6) Sx CEX, X

1The paper was written during author’s post-doctoral fellowship granted by Shinshu University, Japan.
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Let X be a finite set. One can check that is finite.
Next we state the proposition

(7) If Sx is finite, thenX is finite.

Let X be an infinite set. Observe tha is infinite.
We now state four propositions:

(8) If RandSare isomorphic an® is well-ordering, therSis well-ordering.
(9) If RandSare isomorphic an®is finite, thenSis finite.

(10) x——yis anisomorphism betwe€r{x, x) } and{(y, y)}.

(11) {(x, x}} and{(y, y)} are isomorphic.

Let us note thad is empty.
We now state four propositions:

(12) So=0.
(13) For every finite seX such thatX C O holds<x = cardX.
(14) If{x} CO,thenS, =1.

(15) If {x} C O, then the canonical isomorphism betwéie;h andg{x} = 0——X.

Let O be an ordinal number, let be a subset dD, and letn be a set. Note that (the canonical
isomorphism betweeﬁg and<x)(n) is ordinal.

Let X be a natural-membered set and fhebe a set. Note that (the canonical isomorphism
betweerf-=-and<x)(n) is natural.

We now state three propositions:
(16) Ifn—x=m— x,thenn=m.
(17) For every tred and for every elemerttof T holdst]Segh € T.

(18) For all treesTy, T, such that for every natural numberholds T;-level(n) = T,-level(n)
holdsT; = T>.

The functor TriviallnfiniteTree is defined as follows:

(Def. 1) TriviallnfiniteTree= {k — 0 : k ranges over natural numbérs

One can check that TriviallnfiniteTree is non empty and tree-like.
Next we state the proposition

(19) N = TriviallnfiniteTree.

One can verify that TriviallnfiniteTree is infinite.
Next we state the proposition

(20) For every natural numberholds TriviallnfiniteTree -levéh) = {n — 0}.

For simplicity, we adopt the following conventioM is a set with non empty elemensSjs a
standard IC-Ins-separated definite non empty non void AMI dldr, |1, are instruction-locations
of S Jis an instruction of5, andF is a subset of the instruction locations®f

LetN be a set with non empty elements, $te a standard IC-Ins-separated definite non empty
non void AMI overN, and letF be a finite partial state @& Let us assume th&t is non empty and
F is programmed. The functor FirstL@€) yielding an instruction-location ddis defined by the
condition (Def. 2).
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(Def. 2) There exists a non empty subbtbf N such thatM = {locnum(l);| ranges over elements
of the instruction locations d. | € domF } and FirstLo¢F ) = ils(minM).

One can prove the following propositions:
(21) For every non empty programmed finite partial st Sholds FirstLo¢F) € domF.

(22) For all non empty programmed finite partial stakesG of S such thatF C G holds
FirstLodG) < FirstLodF).

(23) For every non empty programmed finite partial statef S such thatl; € domF holds
FirstLogF) <lj.

(24) For every lower non empty programmed finite partial skatef S holds FirstLo¢F) =
ils(0).

Let N be a set with non empty elements, Bbe a standard IC-Ins-separated definite non
empty non void AMI overN, and letF be a subset of the instruction locations®f The func-
tor LocNumgF) yields a subset df and is defined as follows:

(Def. 3) LocNumgF) = {locnum(l);| ranges over instruction-locations &fl € F}.

The following proposition is true
(25) locnunily) € LocNumgF) iff 11 € F.

LetN be a set with non empty elements, $te a standard IC-Ins-separated definite non empty
non void AMI overN, and letF be an empty subset of the instruction locationS.dbne can check
that LocNums$F ) is empty.

LetN be a set with non empty elements, $dte a standard IC-Ins-separated definite non empty
non void AMI overN, and letF be a non empty subset of the instruction locationS.oDne can
verify that LocNums$F) is non empty.

We now state several propositions:

(26) IfF ={ilg(n)}, then LocNum§F) = {n}.
(27) F ~LocNumgF).

(28) f - gLocNums{F)~
(29) If Sis realistic andl is halting, then LocNum#NIC(J,L)) = {locnum(L)}.
(30) If Sisrealistic andl is sequential, then LocNurfiNIC(J,L)) = {locnumNextLocL)}.

LetN be a set with non empty elements, $te a standard IC-Ins-separated definite non empty
non void AMI overN, and letM be a subset of the instruction locationsSofThe functor LocSe)
yields a transfinite sequence of elements of the instruction locaticBard is defined by:

(Def. 4) domLocSefM) = M and for every set such thatm € M holds (LocSeqM))(m) =

il s((the canonical isomorphism betweeg——— andQLocNumiM))(m)).
~LocNumgM)

The following proposition is true
(31) IfF ={ilg(n)}, then LocSe@F) = 0——ils(n).

Let N be a set with non empty elements, &te a standard IC-Ins-separated definite non empty
non void AMI overN, and letM be a subset of the instruction locationsfOne can verify that
LocSedM) is one-to-one.

LetN be a set with non empty elements, $te a standard IC-Ins-separated definite non empty
non void AMI overN, and letM be a finite partial state & The functor ExecTrg#M) yields a tree
decorated with elements of the instruction locationS ahd is defined by the conditions (Def. 5).
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(Def.5)(i) (ExecTreéM))(0) = FirstLodM), and

(i) for every element of domExecTreéM) holds suct = {t ™ (k); k ranges over natural
numbers:k € NIC(TyexecTreem)) )M, (ExecTre¢M))(t)) } and for every natural numben

such thatm € NIC(T(gxecTreem)) )M, (ExecTregéM))(t)) holds (ExecTregM))(t ™ (m)) =
(LocSedNIC(T(gxectreem)) 1) M, (ExecTre¢M))(t)))) (m).

Next we state the proposition

(32) For every standard halting realistic IC-Ins-separated definite non empty non voiGGAMI

overN holds ExecTregStopS) = TriviallnfiniteTree— il 5(0).
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