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Summary. A tree of execution of a macroinstruction has been defined. It is a tree
decorated by the instruction locations of a computer. Successors of each vertex are determined
by the set of all possible values of the instruction counter after execution of the instruction
placed in the location indicated by given vertex.
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The articles [21], [12], [25], [15], [1], [22], [3], [4], [16], [26], [9], [11], [10], [5], [6], [20], [13],
[8], [14], [2], [7], [18], [23], [19], [24], and [17] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention:x, y, X denote sets,m, n denote natural
numbers,O denotes an ordinal number, andR, Sdenote binary relations.

Let D be a set, letf be a partial function fromD to N, and letn be a set. Observe thatf (n) is
natural.

Let Rbe an empty binary relation and letX be a set. One can check thatR�X is empty.
We now state two propositions:

(1) If domR= {x} and rngR= {y}, thenR= x7−→. y.

(2) field{〈〈x, x〉〉}= {x}.

Let X be an infinite set and leta be a set. Note thatX 7−→ a is infinite.
One can verify that there exists a function which is infinite.
Let Rbe a finite binary relation. One can check that fieldR is finite.
The following proposition is true

(3) If fieldR is finite, thenR is finite.

Let Rbe an infinite binary relation. One can verify that fieldR is infinite.
We now state the proposition

(4) If domR is finite and rngR is finite, thenR is finite.

Let us observe that⊆ /0 is empty.
Let X be a non empty set. Note that⊆

X is non empty.
We now state two propositions:

(5) ⊆
{x} = {〈〈x, x〉〉}.

(6) ⊆
X ⊆ [:X, X :].

1The paper was written during author’s post-doctoral fellowship granted by Shinshu University, Japan.
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Let X be a finite set. One can check that⊆
X is finite.

Next we state the proposition

(7) If ⊆X is finite, thenX is finite.

Let X be an infinite set. Observe that⊆
X is infinite.

We now state four propositions:

(8) If RandSare isomorphic andR is well-ordering, thenS is well-ordering.

(9) If RandSare isomorphic andR is finite, thenS is finite.

(10) x7−→. y is an isomorphism between{〈〈x, x〉〉} and{〈〈y, y〉〉}.

(11) {〈〈x, x〉〉} and{〈〈y, y〉〉} are isomorphic.

Let us note that/0 is empty.
We now state four propositions:

(12) ⊆
O = O.

(13) For every finite setX such thatX ⊆O holds⊆X = cardX.

(14) If {x} ⊆O, then⊆{x} = 1.

(15) If {x} ⊆O, then the canonical isomorphism between⊆
⊆{x}

and⊆{x} = 07−→. x.

Let O be an ordinal number, letX be a subset ofO, and letn be a set. Note that (the canonical
isomorphism between⊆⊆

X
and⊆X)(n) is ordinal.

Let X be a natural-membered set and letn be a set. Note that (the canonical isomorphism
between⊆⊆

X
and⊆X)(n) is natural.

We now state three propositions:

(16) If n 7→ x = m 7→ x, thenn = m.

(17) For every treeT and for every elementt of T holdst�Segn∈ T.

(18) For all treesT1, T2 such that for every natural numbern holdsT1-level(n) = T2-level(n)
holdsT1 = T2.

The functor TrivialInfiniteTree is defined as follows:

(Def. 1) TrivialInfiniteTree= {k 7→ 0 : k ranges over natural numbers}.

One can check that TrivialInfiniteTree is non empty and tree-like.
Next we state the proposition

(19) N≈ TrivialInfiniteTree.

One can verify that TrivialInfiniteTree is infinite.
Next we state the proposition

(20) For every natural numbern holds TrivialInfiniteTree-level(n) = {n 7→ 0}.

For simplicity, we adopt the following convention:N is a set with non empty elements,S is a
standard IC-Ins-separated definite non empty non void AMI overN, L, l1 are instruction-locations
of S, J is an instruction ofS, andF is a subset of the instruction locations ofS.

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, and letF be a finite partial state ofS. Let us assume thatF is non empty and
F is programmed. The functor FirstLoc(F) yielding an instruction-location ofS is defined by the
condition (Def. 2).
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(Def. 2) There exists a non empty subsetM of N such thatM = {locnum(l); l ranges over elements
of the instruction locations ofS: l ∈ domF} and FirstLoc(F) = ilS(minM).

One can prove the following propositions:

(21) For every non empty programmed finite partial stateF of Sholds FirstLoc(F) ∈ domF.

(22) For all non empty programmed finite partial statesF , G of S such thatF ⊆ G holds
FirstLoc(G)≤ FirstLoc(F).

(23) For every non empty programmed finite partial stateF of S such thatl1 ∈ domF holds
FirstLoc(F)≤ l1.

(24) For every lower non empty programmed finite partial stateF of S holds FirstLoc(F) =
ilS(0).

Let N be a set with non empty elements, letS be a standard IC-Ins-separated definite non
empty non void AMI overN, and letF be a subset of the instruction locations ofS. The func-
tor LocNums(F) yields a subset ofN and is defined as follows:

(Def. 3) LocNums(F) = {locnum(l); l ranges over instruction-locations ofS: l ∈ F}.

The following proposition is true

(25) locnum(l1) ∈ LocNums(F) iff l1 ∈ F.

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, and letF be an empty subset of the instruction locations ofS. One can check
that LocNums(F) is empty.

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, and letF be a non empty subset of the instruction locations ofS. One can
verify that LocNums(F) is non empty.

We now state several propositions:

(26) If F = {ilS(n)}, then LocNums(F) = {n}.

(27) F ≈ LocNums(F).

(28) F ⊆ ⊆
LocNums(F).

(29) If S is realistic andJ is halting, then LocNums(NIC(J,L)) = {locnum(L)}.

(30) If S is realistic andJ is sequential, then LocNums(NIC(J,L)) = {locnum(NextLocL)}.

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, and letM be a subset of the instruction locations ofS. The functor LocSeq(M)
yields a transfinite sequence of elements of the instruction locations ofSand is defined by:

(Def. 4) domLocSeq(M) = M and for every setm such thatm∈ M holds (LocSeq(M))(m) =
ilS((the canonical isomorphism between⊆⊆

LocNums(M)
and⊆LocNums(M))(m)).

The following proposition is true

(31) If F = {ilS(n)}, then LocSeq(F) = 07−→. ilS(n).

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, and letM be a subset of the instruction locations ofS. One can verify that
LocSeq(M) is one-to-one.

Let N be a set with non empty elements, letSbe a standard IC-Ins-separated definite non empty
non void AMI overN, and letM be a finite partial state ofS. The functor ExecTree(M) yields a tree
decorated with elements of the instruction locations ofSand is defined by the conditions (Def. 5).
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(Def. 5)(i) (ExecTree(M))( /0) = FirstLoc(M), and

(ii) for every elementt of domExecTree(M) holds succt = {t a 〈k〉;k ranges over natural

numbers:k ∈ NIC(π(ExecTree(M))(t)M,(ExecTree(M))(t))} and for every natural numberm

such thatm∈ NIC(π(ExecTree(M))(t)M,(ExecTree(M))(t)) holds (ExecTree(M))(t a 〈m〉) =
(LocSeq(NIC(π(ExecTree(M))(t)M,(ExecTree(M))(t))))(m).

Next we state the proposition

(32) For every standard halting realistic IC-Ins-separated definite non empty non void AMIS
overN holds ExecTree(StopS) = TrivialInfiniteTree7−→ ilS(0).
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